地面三维激光扫描测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间信息获取技术是当前地球空间信息科学研究的热点问题之一,由于自然界空间对象的纷繁复杂,传统的地学三维数据采样率较低,难以准确地表达地学对象的真实状况,使得三维数据实时获取在空间信息科学领域显得尤为重要。随着计算机技术的快速发展和科学技术的不断进步,将现实世界的实体信息快速地转换为计算机可以识别处理的数据已经不再是人类的梦想。科技的创新、不断涌现的新技术为空间数据采集提供了各种各样的新方法和新手段,推动三维空间数据获取向着集成化、实时化、动态化、数字化和智能化的方向发展。地面三维激光扫描技术就是这个信息获取时代的产物,该技术作为获取空间数据的有效手段,能够快速的获取反映客观事物实时、动态变化、真实形态特性的信息。有人称地面三维激光扫描技术是继GPS技术以来在测绘领域的又一次技术革命。
     本文首先介绍了地面三维激光扫描系统的工作原理,对多种不同的三维激光扫描仪进行详细的类别划分。对系统的定位定向和坐标系统的转换问题作了探讨。接着分析了系统获取数据过程中的误差来源以及误差对扫描获取点云数据精度的影响。然后针对扫描点云数据处理的基本步骤对点云处理算法,如点云的识别,边缘信息的提取,多幅扫描的匹配连接,表面模型的建立,数据的存储和检索作详细的描述。
     最后,针对实际的扫描试验,对获取的几类点云数据进行处理分析,并在AutoCAD平台上实现点云实体表面模型的重建及建筑物结构线的提取,就建筑物的结构线长度与传统测量方法获取的数据作比较分析,给出一些有意义的结论和建议。试验结果表明,地面三维激光扫描技术获取数据的快速性、高效性、高精度和高分辨率特性是传统测量方法不可比拟的,该技术的应用有着广泛的前景。
The technology about spatial data collection was a hot topic in geo-spatial information fields. Its very difficulty to describe the objects with complexity and diversity in our world with conventional data collection instruments .Its not a dream to describe the objects in our real life by computer with its speedy development. The innovation and improvement of technology promote the data obtained means directed in integration, real time, dynamic, digitalized and intelligent steps. Three dimension terrestrial laser scanning technology is a new data collection means in this circumstance. Terrestrial laser scanner system have found application to many measurement tasks such as engineering projects and cultural recording because of their high resolution ,high efficiency, accurate and rapid point cloud capabilities. This technology has become increasingly perfect in the last decade. Some people called the terrestrial laser scanning technology a new revolution after the emergence of global position system in geodesy and geomatic fields.At first, this paper introduced the basic principle of terrestrial laser scanning technology systematically and classified the multiple terrestrial laser scanners at the same time. The system collected point clouds included error was analyzed and the error propagation rule was found in succession, meanwhile the sole point position precision was given. Subsequently, the point clouds processing arithmetic such as point identification, edge and corner feature extraction, scanning block matching and joining, surface model reconstruction and data structure was expatiated in detail respectively.Finally, the fusion of terrestrial laser scanning data and image data processing model put forward and the work flow was given. The real scanning test was implemented and real objects surface model was reconstructed in AutoCAD platform based on VBA language. The structure line was extracted and the length was compared with total station data. The results demonstrated the superiority of terrestrial laser scanning technology and some constructive advices and conclusion were given.
引文
[1] 李清泉,杨必胜,史文中等.三维空间数据的实时获取、建模与可视化.武汉:武汉大学出版社,2003.
    [2] 惠增宏.激光三维扫描、重建技术及其在工程中的应用.西北工业大学硕士学位论文.2002年.
    [3] 杨伟,刘春,刘大杰.激光扫描数据三维坐标转换的精度分析[J].工程勘察2004年第3期.
    [4] 张远智,胡广洋,刘煜彤,王庆洲.基于工程应用的三维激光扫描系统.公路运输文摘,2001年第9期.
    [5] 张远智,胡广洋,刘玉彤,王庆洲.基于工程应用的3维激光扫描系统.测绘通报.2002(1):34-37.
    [6] 郑德华,雷伟刚.地面三维激光影像扫描测量技术[J].铁路航测.2003年第2期.
    [7] 余明,丁辰,刘长征,过静瑁.北京故宫修复测绘研究.测绘通报.2004年第4期.
    [8] 许智钦,闫明,张宝峰,王宇华,郑义忠,叶声华.逆向工程技术三维激光扫描测量.天津大学学报.第34卷第3期.2001年5月.
    [9] 郑德华,杨林.数字近景摄影测量辅助三维激光影像扫描的建筑物表面数据采集系统.建筑科学.第20卷第四期 2004年8月.
    [10] 周克勤,许志刚,宇文仲.三维激光影像扫描技术在古建测绘与保护中的应用.工程勘察.2004年第5期.
    [11] 曾文宪,陶本藻.三维坐标转换的非线性模型.武汉大学学报信息科学版.第28卷第5期.2003年10月.
    [12] 李英成,文沃根,王伟.快速获取地面三维数据的LIDAR技术系统.测绘科学.2002(4)35-39.
    [13] 谭建荣,李立新.基于曲面局平特性的散乱数据拓扑重建算法.软件学报.2002,13(11).
    [14] Rudolf STAIGER. Terrestrial Laser Scanning Technology, Systems and Applications. 2nd FIG Regional Conference. Marrakech, Morocco, December 2-5, 2003.
    [15] Thorsten SCHULZ, Hilmar INGENSAND. Terrestrial Laser Scanning-Investigations and Applications for High Precision Scanning[J]. FIG Working Week 2004. Athens, Greece, May 22-27, 2004.
    [16] Stuart Gordon, Derek Lichti, Mike Stewart. Application of a High-Resolution, Ground-Based Laser Scanner for Deformation Measurements. The 10th FIG International Symposium on Deformation Measurements. 19-22 March 2001 Orange, California, USA.
    [17] Thomas A. WUNDERLICH. Terrestrial Laser Scanning -an Important Step towards Construction Information. FIG Working Week 2003. Paris, France, April 13-17.
    [18] E. J. Huising, L. M. Gomes Pereira. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS Journal of Photogrammetry & Remote Sensing 53 (1998) 245-261.
    [19] Derek D. Lichti, Stuart J. Gordon. Error Propagation in Directly Georeferenced Terrestrial Laser Scanner Point Clouds for Cultural Heritage Recording. FIG Working Week 2004. Athens, Greece, May 22-27, 2004.
    [20] Kris Morin, Dr. Naser EL-Sheimy. Post-mission Adjustment Methods of Airborne Laser Scanning Data. FIG ⅩⅩⅡ International Congress. Washington, D. C. USA, April 19-26 2002.
    [21] L. Bornaz, F. Rinaudo. Terrestrial Laser Scanner Data Processing. FIG Working Week 2004. Athens, Greece, May 22-27, 2004.
    [22] Valanis A, Tsakiri M. Automatic Target Identification for Laser Scanners. 2000.
    [23] G. Artese, V. Achilli, G. Salemi, A. Trecroci. Automatic Orientation and Merging of Laser Scanner Acquisitions Through Volumetric Targets: Procedure Description and Test Results.
    [24] B. Jutzi, U. Stilla. Extraction of Features From Objects in Urban Areas Using Space-Time Analysis of Recorded Laser Pulses.
    [25] J. Clark, S. Robson. Accuracy of Measurements Made With A CYRAX2500 Laser Scanner Against Surfaces of Known Colour. 2003.
    [26] Kwang-Ho Bae, Derek D. Lichti. Automated Registration of Unorganised Point Clouds from Terrestrial Laser Scanners. 2001.
    [27] Impyeong Lee, Yunsoo Choi. Fusion of Terrestrial Laser Scanner Data and Images for Building Reconstruction. 2003.
    [28] Boehler, W. Heinz, G. Marbs, A. The Potential of Non-contact Close Range Laser Scanners for Cultural Heritage Recording. Proc. 18th Int. Symposium of CIPA, Postdam, Germany, 8, 2001.
    [29] Frank GIELSDORF, Andreas RIETDORF, Lothar GRUENDIG. A Concept for the Calibration of Terrestrial Laser Scanners[C]. FIG Working Week 2004Athens, Greece, May 22-27, 2004.
    [30] Gabriele Fangi, Federica Fiori, Gianluca Gagliardini, Eva Savina Malinverni. Fast and Accurate Close Range 3D Modelling By Laser Scanning System. Proc. 18th Int. Symposium of CIPA. Postdam, Germany, 8, 2001.
    [31] Kwang-Ho Bae, Derek D. Lichti. Automated Registration of Unorganised Point Clouds From Terrestrial Laser Scanners. 2002.
    [32] M. Attene and M. Spagnuolo. Automatic surface reconstruction from point sets in space. In Proceedings of Eurographics. ACM Press, 2000. 457-565.
    [33] Hugues Hoppe, Tony DeRose, Tom Duchampy, John McDonaldz, Werner Stuetzlez. Surface reconstruction from unorganized points. Computer Graphics, 1992, 26(2): 71-78.
    [34] T. Bodenmueller and G. Hirzinger. Online Surface Reconstruction from Unorganized 3D-Points for the DLR Hand-guided Scanner System. 2002.
    [35] Thomas Brinkhoff. Spatial Access Methods for Organizing LaserScanner Data.
    [36] P. G. Bryan, D. M. Barber, J. P. Mills. Towards A Standard Specification for Terrestrial Laser Scanning in Cultural Heritage-One year on. Symposium of CIPA, Antalya,Turkey, 6.
    [37] J. Jansa, N. Studnicka, G. Forkert, A. Haring, H. Kager. Terrestrial Laser Scanning and Photogrammetery-Acquisition Techniques Complementing One Another.
    [38] Derek D. Lichti. A Resolution Measure For Terrestrial Laser. 2004.
    [39] H. Arefil, M. Hahnl, F. Samadzadegan, J. Lindenberger.Comparison of Clustering Techniques Applied to Laser Data. 2004.
    [40] Yahya Alshawabkeh, Norbert Haala. Integration of Digital Photogrammetry and Laser Scanning for Heritage Documentation. 2003.
    [41] Ben Gorte, Norbert Pfeifer. Structuring Laser-Scanned Trees Using 3D Mathematical Morphology. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700