不同脂肪源对异育银鲫生长、体脂沉积和血液生化指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪是水产动物的主要营养元素,在水产饲料中起着重要作用,目前鱼油是水产饲料主要的油脂来源,但由于鱼油供应紧张、价格上涨和存在二恶英等有毒有害物质,所以寻找鱼油的替代油脂已迫在眉睫。本试验以异育银鲫为研究对象,通过在饲料中添加等量的不同脂肪源来研究各油脂对异育银鲫生长、体脂沉积、血液生化指标和脂肪酸组成的影响,为生产异育银鲫配合饲料,提供对脂肪这一营养成分的种类和含量方面的选择依据。
     1不同脂肪源对异育银鲫鱼种生长性能及体成分的影响
     试验选择尾均重(6.04±0.05)g的健康异育银鲫鱼种525尾,驯养1周后,随机分为5组,每组3个重复,每个重复35尾鱼。在基础饲料中分别添加4%的鱼油、豆油、猪油、花生油和混合油(鱼油:豆油:猪油=3:4:3),制成5种等氮等能试验饲料,试验期为60 d。试验结果发现混合油组的增重率(WG)、特定生长率(SGR)显著高于鱼油组和猪油组(P<0.05),但与其他组无显著差异(P>0.05);蛋白质效率(PER)、饲料系数(FCR)各组间均无显著性差异(P>0.05);豆油组的肠体比显著高于鱼油组和猪油组(P<0.05);猪油组的肝体指数(HSI)显著高于鱼油组(P<0.05),猪油组的内脏指数显著高于混合油组(P<0.05);不同脂肪源对肥满度的影响不显著(P>0.05);猪油组肌肉中粗蛋白显著低于其他各组(P<0.05);鱼体肌肉中水分、粗脂肪、粗灰分和磷各组间差异不显著(P>0.05);猪油组肝脏中粗脂肪含量显著高于鱼油组和花生油组(P<0.05);肝脏中粗蛋白鱼油组和豆油组显著高于猪油组和花生油组(P<0.05)。研究结果显示,当豆油和花生油单独添加时,与添加鱼油组表现出相似的生长性能和体成分,而单独添加猪油,不仅生长稍差而且肌肉蛋白降低肝脏脂肪升高。建议生产上鱼油、豆油和猪油混合添加,使得油脂中各种脂肪酸的比例适中,不但节约了饲料成本,而且异育银鲫表现出较好的生长效果。
     2不同脂肪源对异育银鲫消化酶活性、表观消化率与血液生化指标的影响
     饲养方案同1,试验结果发现鱼油组和豆油组肠道和肝胰脏中蛋白酶活性显著高于猪油组(P<0.05),但与花生油组和混合油组无显著差异(P>0.05);豆油组和混合油组肝胰脏脂肪酶活性显著高于猪油组(P<0.05),混合油组肠道脂肪酶活性显著高于猪油组(P<0.05),其他各组之间没有显著差异(P>0.05);各组间肝胰脏和肠道中淀粉酶活性没有显著差异(P>0.05),但肠道淀粉酶活性普遍高于肝胰脏淀粉酶活性。肝胰脏中粗脂肪含量鱼油组显著低于其他各组(P<0.05),花生油组显著低于豆油组、猪油组和昆合油组(P<0.05)。猪油组粗蛋白和粗脂肪的表观消化率显著低于其他各组(P<0.05),但各组干物质和总磷的表观消化率没有显著差异(P>0.05)。
     血浆中总蛋白(TP)和白蛋白(ALB)的含量鱼油组显著高于猪油组(P0.<05),而谷草转氨酶(AST)和谷丙转氨酶(ALT)活性猪油组显著高于鱼油组(P<0.05),其余各组之间差异不显著(P>0.05)。鱼油组甘油三酯(TG)含量显著低于豆油组(P<0.05),高密度脂蛋白(HDL-C)含量鱼油组却显著高于猪油组(P<0.05)。各试验组的球蛋白(GLB)、胆固醇(CHO)、血糖(BGLU)、碱性磷酸酶(AKP)和低密度脂蛋白(LDL-C)无显著差异性(P>0.05)。此外血浆中与脂肪代谢相关的激素指标如皮质醇、胰高血糖素(Glu)和胰岛素(Ins)各组之间无显著差异(P>0.05)。研究结果显示,猪油不利于异育银鲫对营养物质的消化吸收同时阻碍体内脂肪代谢,而鱼油能调节和平衡鱼体内的脂肪代谢,有利于异育银鲫的健康生长。
     3不同脂肪源对异育银鲫体脂沉积、脂类代谢酶活性和脂肪酸组成的影响
     饲养方案同1,试验结果发现肝胰脏中粗脂肪含量鱼油组显著低于其他各组(P<0.05),花生油组显著低于豆油组、猪油组和混合油组(P<0.05)。各组间腹脂率、肌肉和腹腔中脂肪含量没有显著(P>0.05)。鱼油组的肝胰脏脂蛋白酯酶活性显著高于猪油组和花生油组(P<0.05);鱼油组和混合油组肝胰脏肝酯酶活性显著高于猪油组和花生油组(P<0.05)。鱼油组组织中饱和脂肪酸(SFA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)含量显著高于其他组(P<0.05),但其他各组之间没有显著差异(P>0.05)。组织中亚油酸(18:2n-6)含量豆油组最高,鱼油组最低,其他各组间差异不显著(P>0.05)。研究结果显示,鱼油能提高肝脏中脂蛋白酯酶和肝酯酶的活性从而降低鱼体脂肪沉积,而猪油的作用相反;饲料中脂肪酸组成影响异育银鲫各组织中脂肪酸的组成。
Lipid is the main nutrient elements in aquatic animals and plays an important role in aquatic feed, fish oil has historically been the dominant raw materials in the production of fish feeds. However, the limiting supply and high cost of fish oils, along with the possible accumulation of dioxins and dioxins-like PCBs in fish oils have forced the industry to investigate alternative lipid sources for use in fish diets. The objective of this study was to determine the impact of dietary lipid sources on growth, lipid deposition, blood biochemical index and fatty acid profile of Carassius auratus gibelio (average initial weight:6.04±0.05g). For the production of Carassius auratus gibelio feed, providing the nutrient composition of fat type and content of the choice of basis.
     1 Effects of dietary oil sources on growth performance and body composition of Carassius auratus gibelio
     Five experimental diets were formulated to contain 4% lipid originated from fish oil, soybean oil, lard, peanut oil and an mixed oil (fish oil:soybean oil:lard,3:4:3), respectfully. 525 healthy fish were randomly divided into five groups in the experiment. The feeding trial lasted for 60 days. Weight gain and specific growth rate (SGR) of fish fed mixed oil was significantly (P<0.05) higher than that of fish fed fish oil and lard, but not different from that of other groups. No significant difference was found among all treatments in protein efficiency ratio (PER) and feed conversion ratio (FCR). Mesenteric length/length of fish fed soybean oil was significantly (P<0.05) higher than that of fish fed fish oil and lard. Hepatosomatic index (HSI) of fish fed lard was significantly (P<0.05) higher than that of fish fed fish oil. However, visceralsomatic index (VSI) of fish fed lard was significantly (P<0.05) higher than that of fish fed mixed oil.
     Muscle protein content of fish fed lard was significantly (P<0.05) lower than that of other groups. However, no significant difference was observed among all treatments in moisture, lipid, ash and phosphorus content. Liver lipid content of fish fed lard was significantly (P<0.05) higher than that of fish fed fish oil and peanut oil, and liver protein content of fish fed fish oil and soybean oil were significantly (P<0.05) higher than that of fish fed lard and peanut oil. The results of this study indicated no significant difference on growth performance and body composition of Carassius auratus gibelio when soybean oil, peanut oil and fish oil were used solely. It also suggested that fish oil, soybean oil and lard could be mixed together as a better oil source for Carassius auratus gibelio, which not only reduced feed costs but also enhanced fish growth.
     2 Effects of dietary oil sources on activities of digestive enzymes, apparent digestibility and blood biochemical index of Carassius auratus gibelio
     The conceputual design of raising was the same as that of the One. Intestine and liver protease activities of fish fed fish oil and soybean oil were significantly (P<0.05) higher than that of fish fed lard, but not different from that of the rest groups. Liver lipase activities of fish fed soybean oil and the oil mixture were significantly (P<0.05) higher than that of fish fed lard; whereas, the highest intestine lipid activities was found in fish fed the oil mixture. No significant difference was observed in intestine and liver amylase activities among all the treatments. Apparent protein and lipid digestibility of fish fed lard were significantly (P<0.05) lower than that of other groups.
     Total protein(TP) and albumin (ALB) of fish fed fish oil were significantly (P<0.05) larger than that of fish fed lard, group were lowest, but not different from that of the rest groups. The activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of fish fed lard were significantly (P<0.05) higher than that of fish fed fish oil, there were no significant differences between other groups (P>0.05). The concentration of the triglyceride(TG) of fish fed fish oil was significantly (P<0.05) lower than that of fish fed lard, however, the concentration of the high density lipoprotein-cholesterol (HDL-C) of fish fed fish oil was significantly (P<0.05) higher than that of fish fed lard. No significant difference was observed in concentrations of albumin (ALB), total cholesterol (TC), blood glucose (BGLU), low density lipoprotein-cholesterol (LDL-C), and activities of alkaline phosphatase (AKP). In addition, the concentrations of cortisol, insulin (Ins) and glucagons (Glu) were no significant difference among all treatments (P>0.05). The results showed that lard is not conducive to fat metabolism, while fish oil can adjust and balance fat metabolism of fish, which promoted healthy growth of Carassius auratus gibelio.
     3 Lipid deposition, lipid metabolism enzymes and fatty acid profile of Carassius auratus gibelio fed different dietary lipid sources
     The conceputual design of raising was the same as that of the One. Liver lipid content of fish fed fish oil was significantly (P<0.05) lower than that of the other groups; whereas, little difference was observed in intraperitoneal fat (IPF) ratio, muscle and viscera lipid content among all the treatments. Lipoprotein lipase (LPL) and hepatic lipase (HL) activities of fish fed fish oil was significantly (P<0.05) higher than that of fish fed lard and peanut oil. Saturated fatty acids (SFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of fish fed fish oil was significantly (P<0.05) higher than that of the other groups. In addition, the highest linoleic acid was found in fish fed soybean oil while the lowest in fish fed fish oil, no obvious differences from that of the rest groups. The results of this study indicated that fish oil can enhance the LPL and HL activities of Carassius auratus gibelio coupled with the relatively low liver lipid content; whereas, the opposite is ture for lard. Tissue fatty acid profile was significantly influenced by dietary FA composition.
引文
[1]Auwerx J, Leroy P, Schoonjans K. Lipoprotein lipase:recent contributions from molecular biology[J]. Critical Reviews in Clinical Laboratory Sciences,1992,29:243-268.
    [2]Arzel J, Francisco X. Martinez L, et al. Effect of dietary lipid on growth performance and body composition of brown trout(Salmo truttd) reared in seawater[J]. Aquaculture,1994,123:361-375.
    [3]Burley R W, Evans A J, Pearsond A. Molecular aspects of the synthesis and deposition of hens egg yolk with special reference to low density lipoprotein[J]. Poultry Science,1993,72:850-855.
    [4]Bell J G, John M, Douglas R T, et al. Replacement of fish oil with rapeseed oil in diets of Atland salmon (Salmo salar) affects tissue lipid composition and hepatocyte fatty acid metabolism[J]. Journal of Nutrition,2001,131:1535-1543.
    [5]Bligh E G and Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology,1959,37:911-917.
    [6]Bell M V, Henderson R J, Sargent J R. The role of polyunsarurated fatty acids in fish[M]. Comparative Biochemistry and Physiology.1986,83B:711-719.
    [7]Bendiksen E A, Berg O K, Jobling M, et al. Digestibility, growth and nutrient utilisation of Atlantic salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source[J]. Aquaculture,2003,224:283-299.
    [8]Bransden M P, Carte C G, Nichols P D. Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.):effect on growth performance, tissue fatty acid composition and disease resistance[J].Comparative Biochemistry and Physiology Part B,2003,35:611-625
    [9]Bell J G, Mcghee F, Campbell P J, et al. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlanti salmon(Salmo salar):changes in flesh fatty acid composition and effectiveness of subsequent fish oil "wash out"[J].Aquaculture,2003,218:515-528.
    [10]Bobban S, Rebecca L, Steven R, et al. Effect of dietary lipid source on the growth, tissue composition and hematological parameters of largemouth bass(Micropterus salmoides)[J]. Aquaculture,2006,255:210-222.
    [11]Castell J D, Sinnhuber R O, Wales J H, et al. Essentiial fatty acids in the diet of Rainbow trout (Salmo gairdneri):growth, feed conversion and some gross deficiency symptoms[J]. Journal of Nutrition,1972,102:77-86.
    [12]Christie W W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters[J]. Journal of Lipid Research,1982,23:1072-1075.
    [13]Clarke S D, Armstrong M K, Jump D B. Dietary polyunsaturated fats uniquely suppress rat liver fatty acid symthase and S14 mRNA content[J]. Journal of Nutrition,1990,120:225-231.
    [14]Caballero M J, Mena P and Maynar M. Changes in sex hormone binding globulin, high density lipoprotein cholesterol and plasma lipids in male cyclists during training and competition[J]. European of essentiel fatty aciddeficient diets on growth,wlor-Joumal of Applied Physiology,1992, 64(1):9-13.
    [15]Choi S Y, Goldberg I J,Curtiss L K, et al. Interaction between ApoB and hepatic lipase mediates the uptake of ApoB-containing lipoproteins[J]. Journal of Biological Chemistry,1998,273(32): 20456-20462.
    [16]Caballeroa M J, Obachb A, Rosenlundb G, et al. Izquierdoa Impact of different dietary lipid sources on growth,lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss[J].Aquaculture,2002,214:253-271.
    [17]Chamberlain G W, Barlow S M. A balanced assessment of aquaculture[J]. Advocate,2000,3:7.
    [18]Dosanjh B S, Higgs D A,Plotnikoff M D,et al. Preliminary evaluation of canola oil,pork lard and marine lipid singly and in combination as supplemental dietary lipid sources for juvenile fall Chinook salmon(oncorhynchus tshawytscha) [J].Aquaculture,1988,68(4):325-343.
    [19]Dask M, Tripathi D. Studies on the digestive enzyme of grass carp[J]. Aquaculture,1991,92: 21-32.
    [20]David S F, Giovanni M T, Paul L J, et al. Effects of dietary oil source on growth and fillet fatty acid composition of Murray cod, Maccullochella peelii peelii[J]. Aquaculture,2006,253:547-556.
    [21]David S F, Giovanni M T, Paul L J, et al. Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii[J]. Aquaculture,2007,269: 447-455.
    [22]Dulce A M, Luisa M P V, Santosh P L. Apparent digestibility of lipid and fatty acids in fish oil, poultry fat and vegetable oil diets by Atlantic halibut, Hippoglossus hippoglossus L[J]. Aquaculture, 2009,294:132-137.
    [23]Erland A, Trond S, Magny S T, et al. Evaluation of selected trivalent metal oxides as inert markers used to estimate apparent digestibility in salmonids[J]. Aquaculture,2000,188:65-78.
    [24]Folch M, Lees M and Stanley G H S. A Simple method for the isolation and purification of total lipids from animal tissues[J]. Journal of Biological Chemistry,1957,226:497-509.
    [25]Greene D H S, Selivonchick D P. Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout(Oncorhynchus mykiss)[J]. Aquaculture,1990,89:165-182.
    [26]Gholam R N, Delbert M Gatlin III. Effects of different kinds of dietary lipid on growth and fatty acid composition of juvenile sunshine bass, Morone chrysops ♀×M. saxatilis (?)[J]. Aquaculture, 1993,114:141-154.
    [27]Guillou A, Soucy P, Khalil M, et al. Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook charr (Salvelinus fontinalis)[J]. Aquaculture,1995,136:351-362.
    [28]Greene M W, Shamblott M J, Leung S M, et al. Characterization of a teleost insulin—like growth factor Ⅱ(IGF-Ⅱ gene:evidence for promoter CCAAT/enhancer-binding protein sites, and the presence of hepatic C/EBP[J]. Molecular Marine Biology and Biotechnology,1998,7(3):181-190.
    [29]Grisdale H B, Ruyter B, Rosenlund G, et al. Influence of high contents of dietary soybean oil on growth, feed utilization, tissue fatty acid composition, heart histology and standard oxygen consumption of Atlantic salmon (Salmo salar) raised at two temperatures[J]. Aquaculture,2002, 207:311-329.
    [30]Giovanni M T, Tiziana M, Livar F,et al. Effects of alternative dietary lipid sources on performance, tissue chemical composition,mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.) [J].Aquaculture,2003,225:251-267
    [31]Glencross B, Hawkins W, Curnow J. Evaluation of canola oils as alternative lipid resources in diets for juvenile red seabream,Pagrus auratus[J]. Aquaculture Nutrition,2003,9:305-315.
    [32]Hegested D M, Mcgandy R B, Myers M L,et al. Quantitative effects of dietary fat on serum cholesterol in man[J]. American Journal of Clinical Nutrition,1965,17:281-295.
    [33]Hiraoka Y, Nakagawa H, Murachi S, et al. Blood properties of rainbow trout in acute hepatotoxity(sic) by carbon tetrachloride[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1979,45(4):527-532.
    [34]Halver J E. Fish Nutrition (2nd edn.) [M]. San Diego:Academic Press. Inc,1989:32-109.
    [35]Ibeas C, Cejas J R, Gomez T, et al. Influence of dietary n-3HUFA levels on juvenile gilthead seabream(Sparus aurata) growth and tissue fatty acid composition [J]. Aquaculture,1996,142: 221-235
    [36]Izquierdo M S, Obach A, Arantzamendi L, et al. Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality[J]. Aquac. Nutr,2003,9:397-407.
    [37]Kanazawa A. Essential Fatty Acid and Lipid Requirement of Fish.In:Cowey C B.Nutrition and Feeding in Fish[M]. London:Academic Press,1985,281-298
    [38]Lowry O P, Rosebrough N J, Farr A L, et al. Protein measurement with the folin-phenol reagent[J]. Journal of Biological Chemistry,1951,193:265-275.
    [39]Levy A, Perelman B, Waner T. Reference blood chemical values ostrich [J]. American Journal of veterinary research struthio camelus,1989,50(91):1548-1550.
    [40]Laakso T S, Vanhanen H, Laakso I, et al. Replacem ent of butter on bread by rapeseed oil-containing margarine:effects on plasm a fatty acid composition and serum cholesterol[J]. British Journal of Nutrition,1992,68:639-654.
    [41]Lovegrove J A, Brooks C N, Murphy M C, et al. Use of manufactured foods en-Riched with fish oils as a means of increasing long-chain n-3 polyunsaturated fatty acid intake[J]. British Journal of Nutrition,1997,78:223-236.
    [42]Lim P K, Ng W K and Sidek H.The influence of a dietary lipid source on growth,muscle fatty acid composition and erythrocyte osmotic fragility of hybrid tilapia[J]. Fish Physiology and Biochemistry,2001,25(4):301-310.
    [43]Lee S M, Lee J H, Kim K D. Effect of dietary essential fatty acids on growth,body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus)[J]. Aquaculture,2003,225: 269-281.
    [44]Lundebye A K, Berntssen M H G, Lie (?), et al. Dietary uptake of dioxins (PCDD/PCDFs) and dioxin-like PCBs in Atlantic salmon (Salmo salar)[J]. Aquaculture Nutrition,2004,10:199-207.
    [45]Martino R C, Cyrino J E P, Portz L, et al. Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids[J]. Aquaculture,2002,209: 233-246.
    [46]Menoyo D, Lopez-Bote C J, Bautista J M, et al. Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids[J]. Aquaculture,2003,225:295-307.
    [47]Min Xue, Lin Luo, Xiufeng Wu, et al. Effects of six alternative lipid sources on growth and tissue fatty acid composition in Japanese sea bass (Lateolabrax japonicus)[J]. Aquaculture,2006,260: 206-214.
    [48]Martins D A, Luisa M P V, Santosh P L. Apparent digestibility of lipid and fatty acids in fish oil, poultry fat and vegetable oildiets by Atlantic halibut, Hippoglossus hippoglossus L[J]. Aquaculture, 2009,294:132-137.
    [49]Nakagawa H. Classification of albumin and globulin in yellow tail plasma[J]. Bulletin of the Japanese Society of Scientific Fisheries,1978,44(3):251-257.
    [50]New M B, Wijkstrom U N. Use of fishmeal and fish oil in aquafeeds:further thoughts on the fishmeal trap[J]. FAO Fisheries Circular No.975 FIPP/C975,2002.
    [51]Ng W K, Sigholt T, Bell J G. The influence of environmental temperature on the apparent nutrient and fatty acid digestibility in Atlantic salmon (Salmo salar L.) fed finishing diets containing different blends of fish oil, rapeseed oil and palm oil[J]. Aquaculture Research,2004,35: 1228-1237.
    [52]Nyblom H, Berggren U, Balldin J, et al. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking[J]. Alcohol and alcoholism,2004,39 (4):336-339.
    [53]Ozaki K. Fish blood and circulated physiology [M]. Shanghai:Shanghai Science & Technology Press,1982,27-182.
    [54]Panserat S, Perrin A, Kaushik S. High dietary lipids induce liver glucose-6-phosphatase expression in rainbow trout(Oncorhynchus mykiss)[J]. Journal of Nutrition,2002,132:137-141.
    [55]Ricardo L, Isabel G, Abigail A, et al. Physiological changes in the juvenile euryhaline teleost,the tilapia Oreochromis hornomm.injected With E. coli-derived homologous growth hormone[J]. Journal of Marine Biotechnology,1998,6(3):142-151.
    [56]Rasanthi M G, Khunnitee L, Sena S D S. Lipid and fatty acid digestibility of three oil types in the Australian shortfin eel, Anguilla australis[J]. Aquaculture,2002,203:335-347.
    [57]Rajsa F, Gautier A, Bady I, et al. Polyunsaturatedfatty acyl coenzyme A suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4[J]. Journal of Biological Chemistry,2002,277:15736-15744.
    [58]Regost C, Arzel J, Robin J, et al. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima):1.Growth performance, flesh fatty acid profile, and lipid metabolism[J]. Aquaculture,2003,217:465-482.
    [59]Raso S, Anderson T A. Effect of dietary fish oil replacement on growth and carcass proximate composition of juvenile barramundi (Lates calcarifer)[J]. Aquaculture Research,2003,34: 813-819.
    [60]Stickney R R. LipidvRequiremnet of some warm water species[J]. Aquaculture,1989,79:145-156
    [61]Shomomuar Y, Tanura T, Suzuki M. Less body fat acuumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet[J]. Journal of Nutrition,1990,120:1291-1296.
    [62]Sargent J R, Bell J G, McEvoy L, et al. Recent developments in the essential fatty acid nutrition of fish[J]. Aquaculture,1999,177,191-199.
    [63]Sang M L, Jong H L, Kyoung D K. Effect of dietary essential fatty acids on growth,body composition and blood chemistry of juvenile starry flounder(Platichthys stellatus)[J]. Aquaculture, 2003,225:269-281
    [64]Sargent J, Tocher D R, Bell J G. The lipids, In:Halver, J.E. (Ed.),Fish Nutrition,2nd ed[M]. Academic Press, London,2002:181-257.
    [65]Takeuchi T, S Satohand, Watanabe T. Dietary lipids suitable for the practical feed of tilapia nilotica[J]. Bulletin of the Japanese Society of Scientific Fisheries,1983,49(9):1361-1365.
    [66]Thongrod S,Takecuchi T,Soath S,et al. Requirement of fingerling white fish Coregonus lavaretus maraena for dietary n-3 fatty acids[J]. Nippon Suisan Gakkaishi,1989,55:1983-1987.
    [67]Takeuchi T, Arai S, WatanabeT, et al. Requirement of Eel Anguilla Japonica for essential fatty acids[J]. Bulletin of the Japanese Society of Scientific Fisheries,1980,46(3):345-353
    [68]Takeuchi T, Toyota M, Satoh S, et al. Requiremant of juvenile red seabream Pagrus major for eicosapentaenoic and docosahexaenoic acids [J]. Nippon Suisan Gakkaish,1990,56:1263-1269.
    [69]Takada R, Saition M, Mori T. Dietary y-Linolenic acid-enriched oil reduces body fat contentment and induces liver enzyme activities relating to fatty acid Beta-oxidation in rats[J]. Journal of Nutrition,1994,124:469-474.
    [70]Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish[M]. Reviews in Fisheries Science,2003,11:107-184.
    [71]Turchini G M, Gunasekera R M, De Silva S S. Effect of crude oil extracts from trout offal as a replacement for fish oil in the diets of the Australian native fish Murray cod Maccullochella peelii peelii[J]. Aquaculture Research,2003a,34:697-708.
    [72]Turchini G M, Mentasti T, Fr(?)yland L, et al. Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.)[J]. Aquaculture,2003b,225:251-267.
    [73]Thompson B R, Smith A J, Londos C,et al. Bemlohr Physical Association between the Adipocyte Fatty Acid-binding Protein and Hormone sensitive Lipase:A Fluorescence Resonance Energy Transfer Analysis[J]. Journal of Biological Chemistry,2004,279:52399-52405.
    [74]Watanabe T. Lipid nutrition in fish[M]. Comparative Biochemistry and Physiology Part B,1982,73: 3-15.
    [75]Waagb(?) R, Sandnes K O, Sandvin A, et al. Chemical and sensory evaluation of fillets from Atlantic salmon (Salmo salar) fed three levels of n-3 polyunsaturated fatty acids and two levels of vitamin E [J]. Food Chemistry,1993,46:361-366.
    [76]成永旭.饲料中不同脂肪源对草鱼生长和肝脏脂肪含量的影响[J].水产科技情报,1995,22(4):171-172.
    [77]陈勇,周洪琪.三种多糖对异育银鲫肠道、肝胰脏蛋白酶和淀粉酶活性的影响[J].上海水产大学学报,2005,14(4):468-471.
    [78]陈寓儿,金珊,王国良.鲈鱼溶藻弧菌病的血液生理生化指标研究[J].台湾海峡,2005,2(1):104-108.
    [79]曹俊明,林鼎,劳彩玲,等.饲料中添加大豆磷脂对草鱼肝胰脏脂质脂肪酸组成的影响[J].水 产学报,1997,21(1):32-38.
    [80]曹俊明,刘永坚,劳彩玲,等.饲料中不同脂肪酸对草鱼组织脂质含量和脂肪酸构成的影响[J].动物营养学报,1997,9(3):36-44.
    [81]杜震宇,刘永坚,郑文晖,等.三种脂肪源和两种降脂因子对鲈生长、体营养成分组成和血清生化指标的影响[J].水产学报,2002,26(6):542-550.
    [82]冯健,刘永坚,刘栋辉,等.红姑鱼日粮脂肪水平和脂肪酸比例与脂肪肝病关系研究[J].海洋科学,2004,28(6):28-31.
    [83]冯健,覃志彪.4种不同脂肪源对太平洋鲑生长和体组成的影响鲑[J].水生生物学报,2006,30(3):256-260.
    [84]冯大伟,李八方,赵雪,等.鲤鱼、鱿鱼和鳕鱼皮中脂肪酸的气相色谱-质谱(GC/MS)分析与比较[J].水利渔业,2006,26(5):21-23.
    [85]高淳仁,雷齐霖.不同脂肪源对真鲷幼鱼生长、存活及体内脂肪酸组成的影响[J].中国水产科学,1999,6(3):55-60.
    [86]高露姣,陈立侨.不同脂肪源饲料对施氏鲟幼鱼生长的影响[J].海洋渔业,2004,26(3):210—214.
    [87]高露姣,施兆鸿,艾春香.不同脂肪源对施氏鲟幼鱼血清生化指标的影响[J].海洋渔业,2005,27(4):319-323.
    [88]高艳玲,叶元土,谭芳芳.不同脂肪源饲料和复合肉碱对团头鲂生长和体成分的影响[J].饲料研究,2009,7:60-64.
    [89]高艳玲.不同脂肪源和复合肉碱对团头鲂生长、部分生理机能及体组织脂肪酸组成的影响[D].苏州大学,硕士学位论文,2009.
    [90]贺喜,戴求仲,张石蕊,等.日粮共轭亚油酸对两个品种肉仔鸡生长性能及脂类代谢的影响[J].动物营养学报,2007,19(5):581-587.
    [91]黄琪琰,刘丽燕,范丽萍.异育银鲫溶血性腹水病的病理生理研究[J].水产学报,1992,16(4):316-321.
    [92]黄林,赵海鹏,金丽,等.患肌肉溃烂病中华倒刺鲃血清生化指标变化[J].淡水渔业,2009,39(5):67-70.
    [93]季文娟.饲料中不同脂肪源对黑鲷幼鱼生长和鱼体脂肪酸组成的影响[J].海洋水产研究,1999,20(1):70-74.
    [94]吉红,单世涛,扈翔,等.豆油和菜油对鲫生长、体成分及血清生化指标的影响[J].水生态学杂志,2009,2(1):64-68.
    [95]骆作勇,王雷,王宝杰,等.不同投喂模式对奥利亚罗非鱼血液生化指标与生长性能的影响[J].中国水产科学,2007,14(5):743-748.
    [96]廖翔华,林鼎,毛永庆.养殖鱼类营养需求研究进展[J].水生生物学报,1989,13(2):170-186.
    [97]来长青,刘传忠,宋剑,等.饲料中添加不同比例磷脂油养殖虹蹲试验[J].水产学杂志,1998,11(2):76-80
    [98]李红霞,刘文斌,李向飞,等.饲料中添加氯化胆碱、甜菜碱和溶血卵磷脂对异育银鲫生长、脂肪代谢和血液指标的影响[J].水产学报,2010,34(2):292-299.
    [99]林虬,宋永康,苏德森,等.饲用鱼油脂肪酸特征指标的分析研究[J].福建农业学报,2005,20(2):128-132.
    [100]刘玮,戴年华,任本根,等.不同脂肪源饲料对团头鲂稚鱼生长的影响[J].水产学报,1997,21:44-48.
    [101]刘玮,徐萍,任本根,等.不同脂肪源饲料对草鱼稚鱼生长的影响[J].水产学报,1995,19(4):362-365.
    [102]刘波,唐永凯,俞菊华,等.饲料脂肪对翘嘴红鲌生长、葡萄糖激酶和葡萄糖-6-磷酸酶活性与基因表达的影响[J].中国水产科学,2008,15(6):1024-1033.
    [103]刘朝亮,陈璞,高莉,等.不同油料籽实对奶牛血液生化指标及其脂肪酸的影响[J].粮食与饲料工业,2009,9:42-44.
    [104]刘穗华,曹俊明,黄燕华,等.饲料中不同亚麻酸/亚油酸比对凡纳滨对虾幼虾生长性能和脂肪酸组成的影响[J].动物营养学报,2010,22(5):1413-1421.
    [105]倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗罗非鲫淀粉酶活性的比较研究[J].大连水产学院学报,1992,7(1):24-31.
    [106]母昌考,王春琳.鱼类必需脂肪酸营养研究现状[J].饲料工业,2003,24(6):44-46.
    [107]马晶晶,邵庆均,许梓荣,等.n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响[J].水产学报,2009,33(4):640-649.
    [108]宋昭彬,何学福.鱼类饥饿研究现状[J].动物学杂志,1998,33(1):48-52.
    [109]孙金梅,杨公社,唐文花,等.激素对猪脂肪组织离体代谢的影响[J].西北农业大学学报,1999,27(4):28-33
    [110]谭肖英.鱼类对饲料脂肪源利用的研究进展[J].饲料广角,2007,5:38-41.
    [111]王道尊,潘兆龙,梅志平.不同脂肪源饲料对青鱼生长的影响[J].水产学报,1989,13(4):370-374.
    [112]王骥腾,韩涛,田丽霞.3种植物油源对军曹鱼生长、体组成和脂肪酸组成的影响[J].浙江海洋学院学报(自然科学版),2007,26(3):237-245.
    [113]王爱民,徐跑,李静,等.异育银鲫饲料中适宜脂肪需求量研究[J].上海水产大学学报,2008,17(6):661-667.
    [114]尾崎久雄.鱼类血液与循环生理[M].上海:上海科学技术出版社,1982,27-182.
    [115]须山三千三,鸿巢章二编(吴光红等译).水产食品学[M].上海:上海科技出版社.1992.
    [116]向枭,陈建,周兴华,等.5种脂肪源对齐口裂腹鱼生长性能及血清生化指标的影响[J].动物营养学报,2010,22(2):498-504.
    [117]杨凤.动物营养学(第二版)[M].北京:中国农业出版社,2003,76-88
    [118]赵华,王康宁.多不饱和脂肪酸对动物体脂沉积及其基因表达的影响[J].动物营养学报,2004,16(1):1-5.
    [119]赵万鹏,刘永坚,潘庆,等.草鱼摄食后血糖和肝糖原质量分数的变化[J].中山大学学报(白然科学版),2002,41(5):56-62.
    [120]朱大世.饥饿和不同脂肪源对草鱼体脂含量及脂肪酸合成酶的影响[D].硕十学位论文.武汉:华中农业大学,2005.
    [121]周景祥,陈勇,黄权,等.鱼类消化酶的活性及环境条件的影响[J].北华大学学报(自然科学版),2001,2(1):70-73.
    [122]张立实,谭茵,欧阳雁丽,等.高芥酸莱籽油对大鼠肝组织脂肪酸氧化功能的影响[J].营养学报,1991,13(2):108-113.
    [123]周玉,郭文场,杨振国,等.鱼类血液学指标的研究进展[J].上海水产大学学报,2001,10(2):163-165..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700