不同磷源对黑鲷幼鱼生长性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷元素是水产动物所不可缺少的重要营养元素,大部分水产动物的配合饲料中都添加磷以提高水产动物的生产性能。
     本试验以黑鲷幼鱼为试验对象,在水温为28±1℃、盐度为26~29‰、溶氧为5.0mg/L以上的养殖水体中,研究饲料中添加不同磷源对黑鲷幼鱼生长、鱼体常规营养成分含量、组织磷含量以及组织生化指标的影响和黑鲷幼鱼对不同磷源磷的表观消化率。
     试验选取同一放养批次、体质健康的黑鲷幼鱼,随机分为7组,每组三个重复,每个重复25尾,平均每尾体重13.32±0.11g,进行为期56d的养殖试验。其中的一组作为对照组(T1),对其投喂总磷含量为0.72%的基础饲料;对另外的6组试验组,分别在黑鲷幼鱼饲料中添加磷酸二氢钠、磷酸氢二钠、磷酸钠达到磷含量1.4%(T2-T4)和1.8%(T5-T7)两个总磷水平。试验最后三周,采集黑鲷幼鱼采食后4小时左右的新鲜粪便,分析黑鲷幼鱼对饲料中各种营养成分的表观消化率。养殖试验结束后,分析和计算黑鲷幼鱼的饲养指标和饲料指标,并宰杀所有试验鱼,采集全鱼、肝脏、肌肉、脊椎骨、皮肤、鳞片、血清等样品,进行常规营养成分、磷含量和生化指标等的分析。
     试验结果表明,在饲料中添加不同磷源可以促进黑鲷幼鱼的生长。无论是在黑鲷饲料中添加1.4%还是1.8%磷水平,黑鲷幼鱼成活率、特定生长率显著高于对照组(P<0.05)。在1.4%磷添加水平中,成活率、特定生长率以添加磷酸二氢钠组(T2组)最高,磷酸氢二钠(T3组)次之,磷酸钠(T4组)最低(P>0.05);在1.8%磷添加水平中,添加磷酸二氢钠组(T5组)的成活率为94.67%,低于磷酸氢二钠(T6组)和磷酸钠(T7组)的97.33%,但各组之间没有显著性差异(P>0.05)。增重率在1.4%磷添加水平中,T2组、T3组显著高于对照组(T1组)和T4组(P<0.05),T2组和T3组以及T1组和T4组之间差异不显著(P>0.05);而在1.8%磷添加组中,各添加组增重率显著高于对照组(P<0.05),但各添加组之间差异不显著(P>0.05)。腹脂率以基础对照组的3.0%为最高,显著高于除T4组之外的其它磷添加组(P<0.05);在1.4%和1.8%两个添加水平中,都以磷酸二氢钠、磷酸氢二钠、磷酸钠顺序升高,T4组腹脂率显著高于T2组和T3组(P<0.05),而T5组、T6组、T7组之间差异不显著(P>0.05)。肝体指数以对照组的1.91为最高,显著大于除T4组之外的其它添加组(P<0.05);在1.4%添加水平中,T3组、T4组显著大于T2组(P<0.05),T3组和T4组之间差异不显著(P>0.05);在1.8%添加水平中,T5组、T6组、T7组的肝体指数差异不明显(P>0.05)。饲料系数对照组(1.70)显著高于除T4组(1.65)之外的其它添加组(P<0.05);在1.4%添加水平中,T2组和T3组的饲料系数显著低于T4组(P<0.05);在1.8%添加水平中,各添加组差异不显著(P>0.05)。
     在肌肉的脂肪含量中,T1组的含量显著高于T2组、T3组、T5组、T6组和T7组(P<0.05),但与T4组差异不显著(P>0.05)。在肝脏脂肪含量中,对照组脂肪含量为25.90%,显著高于各添加组(P<0.05);在1.4%添加水平中,T2组脂肪含量为17.78%显著低于T4组(P<0.05),但与T3组差异不显著(P>0.05);在1.8%添加水平中,各组脂肪含量以T5组、T6组、T7组顺序递增,但各组之间差异并不显著(P>0.05)。
     黑鲷幼鱼脊椎骨、皮肤、鳞片的灰分、磷、钙以及钙磷比基本呈一致的变化趋势。对照组(T1组)由于饲料中的总磷含量较低,黑鲷幼鱼的脊椎骨、皮肤、鳞片的灰分、磷、钙以及钙磷比都比其他各组低;在1.4%和1.8%两个添加水平中,黑鲷幼鱼的脊椎骨、皮肤、鳞片的灰分、磷、钙以及钙磷比基本以磷酸二氢钠(T2组、T5组)、磷酸氢二钠(T3组、T6组)、磷酸钠(T4组、T7组)为顺序递降。
     各组饲料的干物质表观消化率差异不明显(P>0.05)。在1.4%添加水平中,T2组的蛋白质表观消化率明显高于T4组(P<0.05),但与T3组差异不明显(P>0.05);在1.8%添加水平中,各组黑鲷幼鱼对蛋白质的表观消化率差异不显著(P>0.05)。T1组的脂肪消化率为88.21%,显著低于其它各组(P<0.05):在1.4%添加水平中,T2组和T3组的脂肪表观消化率显著高于T4组(P<0.05),而1.8%添加水平的T5组、T6组和T7组的脂肪表观消化率差异不显著(P>0.05)。磷的表观消化率以对照组的90.30%为最高,显著高于T4组(P<0.05),但与其它磷添加组差异不显著(P>0.05);在1.4%添加水平中,磷的表观消化率以T2组、T3组、T4组的顺序递减,但各组之间差异不明显(P>0.05);1.8%添加水平磷的表观消化率变化趋势和差异显著性同1.4%添加水平。
     血清中的总葡萄糖含量以T1组最高,且显著高于各添加组(P<0.05);在1.4%添加水平中,总葡萄糖含量以T2组、T3组、T4组顺序递增,但各组之间差异不显著(P>0.05);在1.8%添加水平中,总葡萄糖含量以T5组、T6组、T7组顺序递增,T7组显著高于其它各组(P<0.05),但T5组、T6组之间差异不显著(P>0.05)。T1组总胆固醇的含量为8.70mmol/L,显著高于T2组、T5组、T6组和T7组(P<0.05);在1.4%添加水平中,T2组的总胆固醇含量显著低于T3组和T4组(P<0.05),但T3组和T4组之间差异不显著(P>0.05);在1.8%添加水平中,T5组的总胆固醇含量显著低于T6组和T7组(P<0.05),但T6组和T7组之间差异不显著(P>0.05)。T1组甘油三酯含量为13.93mmol/L,显著高于其它各组(P<0.05);在1.4%和1.8%两个磷添加水平中,磷酸二氢钠添加组(T2组、T5组)的甘油三酯含量显著低于磷酸氢二钠(T3组、T6组)和磷酸钠(T4组、T7组)组(P<0.05)。
     黑鲷幼鱼血清、肝脏、肌肉中的AKP活力都以T1组为最高,且1.4%和1.8%两个磷添加水平中的变化趋势一致,都以磷酸二氢钠、磷酸氢二钠、磷酸钠顺序递增,但差异显著性因组织而各异。血清中的AKP活力各组之间差异不显著(P>0.05)。在1.4%添加水平的肝脏中,T4组显著高于T2组和T3组(P<0.05),T2组和T3组之间差异不显著(P>0.05);而在1.8%添加水平的肝脏中,T7显著高于T5组(P<0.05),T6组与T5组、T7组之间差异都不显著(P>0.05)。在1.4%磷添加水平的肌肉中,AKP活力差异显著性同肝脏;而在1.8%添加水平的肌肉AKP活力中各组之间差异显著(P<0.05)。
     以特定生长率、脊椎骨磷含量、血液碱性磷酸酶等为指标,无论是在1.4%还是在1.8%磷添加水平中,不同磷源对黑鲷幼鱼的影响顺序为:磷酸二氢钠>磷酸氢二钠>磷酸钠。
Phosphorus is an essential nutrient for aquatic animals, it plays an important role in the metabolism of carbohydrate, lipid and amino acids, as well as various metabolic processes involving buffers in body fluids. Although animals can absorb it from natural water, food is the main source of phosphorus because of its low concentration in water as well as low absorption rate of phosphorus from the water.
     This trial was conducted to research the effect of various phosphorus sources on growth performance, body composition, tissue phosphorus content, biochemical indices and phosphorus apparent digestibility in juvenile black sea bream (Sparus macrocephalus). The fish were reared in seawater (salinity,26~29‰) at a temperature of 28±1℃. Dissolved oxygen during the experiment was above 5 mg·l-1.
     The black sea bream juveniles were randomly allotted to seven groups with three replicate. Each replicate consisted of 25 fish with mean weight of 13.32±0.11g. One group was fed basal diet (T1), which contained 0.72% total phosphorus; T2-T7 groups were fed experimental diets with three phosphorus sources (mono-sodium phosphate, di-sodium phosphate, tri-sodium phosphate) in 1.4% and 1.8% total phosphorus. The faeces samples were collected in the last three weeks. After 8 weeks fed, fish were killed to collect the carcass, liver, muscle, vertebra, skin, scales and plasma samples, and then analyzed the collected samples for body composition, phosphorus content and biochemical indices.
     The results showed that the supplementation of different phosphorus sources could improve the growth performance of black sea bream. At the 1.4% phosphorus level, survival rate and special growth rate were highest with the mono-sodium phosphate (T2), then di-sodium phosphate (T3), tri-sodium phosphate (T4) was the lowest (P>0.05); however at the 1.8% phosphorus level, survival rate of T2 was 94.67%, lower than 97.33% of the T3 and T4, but there was no significant difference between each other(P>0.05). Weight gain ratio (WGR) of T2 and T3 were significantly higher than T1 and T4 (P<0.05); WGR of all treatment of the 1.8% phosphorus level were significantly higher than T1 (P<0.05), however there were no significant differences for each other (P>0.05). The basal diet group (T1) had a highest intraperitoneal fat ratio (IPF) 3.0%, it significantly higher than experimental diets except T4 (P<0.05); Both at the 1.4% and 1.8% phosphorus level, IPF range in mono-sodium phosphate, di-sodium phosphate, tri-sodium phosphate. IPF of T4 was significantly higher than T2 and T3 (P<0.05) at 1.4% phosphorus level, while there are no significant differences between each other at 1.8% phosphorus level (P>0.05). Hepotasomatic index (HSI) of T1 was 1.91, and significantly higher than c phosphorus treatments except T4 (P<0.05); at 1.4% phosphorus level, HSI of T2 was significantly lower than T3 and T4 (P<0.05), while there was no significant difference between T3 and T4 (P>0.05). Feed index of T1 was 1.70, and significantly higher than other treatments except T4 (P<0.05); Feed index of T2 and T3 were significantly higher than T4 (P<0.05), there were no significant differences for each other treatment at the 1.8% phosphorus level (P>0.05). There were no significant differences to the body composition of juvenile black sea bream by added diets (P>0.05).
     Lipid in muscle of T1 was significantly more than T2, T3, T5, T6 and T7 (P<0.05), while it was no significant difference with T4(P>0.05). Liver lipid of T1 is 25.90%, and significantly higher than all the treatments (P<0.05). Lipid of T2 was 17.78%, and lower than T4 (P<0.05), while there was no significant difference with T3 (P>0.05). There were no significant differences between each others at the 1.8% phosphorus level (P>0.05).
     Ash, phosphorus, calcium and Ca/P of vertebra, skin and scale turn the same tendency. Ash, phosphorus, calcium and Ca/P of vertebra, skin and scale of T1 were lower than other treatments because of low phosphorus content in diet (P<0.05). It was range in mono-sodium phosphate, di-sodium phosphate, tri-sodium phosphate both at 1.4% and 1.8% phosphorus level.
     Apparent digestibility (AD) of dry matter had no significant difference between each experimental diet groups (P>0.05). Apparent digestibility of protein of T2 was significantly higher than T4 (P<0.05), while it was no significant difference with T3 (P>0.05); there was no significant difference between each treatment at 1.8% phosphorus level (P>0.05). Lipid digestibility of T1 was 88.21%, it significantly higher than other groups (P<0.05); apparent digestibility of lipid of T4 was significantly lower than T2 and T3 (P<0.05), while there were no significant differences between each other at 1.8% phosphorus level (P>0.05). Apparent digestibility of phosphorus of T1 is 90.30%, it was the highest among all the treatments and significantly higher than T4 (P>0.05), however it no significant difference with other treatments (P>0.05). Apparent digestibility of phosphorus was range in mono-sodium phosphate, di-sodium phosphate, tri-sodium phosphate both at 1.4% and 1.8% phosphorus level, while there were no significant differences between each others (P>0.05).
     Glucose content of serum of T1 was significantly higher than all the treatments (P<0.05). The glucose content of serum was range in mono-sodium phosphate, di-sodium phosphate, tri-sodium phosphate both at 1.4% and 1.8% phosphorus level. There were no significant different between in T2, T3 and T4, as well as T5 and T6 (P>0.05), while T7 was significant difference from with T5 and T6 (P<0.05). Total Cholesterol (T-CHO) of T1 was 8.70mmol, and significantly higher than T2, T5, T6and T7(P<0.05). T-CHO of T2 was significantly lower than T3 and T4 at 1.4% phosphorus level (P<0.05), while there was no significant difference between T3 and T4 (P>0.05). T-CHO of T5 was significantly lower than T6 and T7 at 1.4% phosphorus level (P<0.05), while there was no significant difference between T6 and T7 (P>0.05). TG (Triglyceride) of T1 was 13.93mmol/L, and significantly higher than other treatments (P<0.05). TG of serum of the mono-sodium phosphate was significantly lower than the di-sodium phosphate and tri-sodium phosphate both at 1.4% and 1.8% phosphorus level (P<0.05).
     Alkaline Phosphatase (AKP) of serum, liver, muscle of T1 was the highest among all the treatments. AKP of serum turns no significant difference (P>0.05). AKP of T4 in liver was significantly higher than T2 and T3 at 1.4% phosphorus level (P<0.05), however there was no significant difference between T2 and T3 (P>0.05). AKP of liver of T7 was significantly higher than T5 (P>0.05), while there were no significant differences between T6 and T5, as well as T7 (P>0.05). AKP of muscle was the same like liver at the 1.4% phosphorus level, while there were no significant differences between each treatment at the 1.8% phosphorus level (P>0.05).
     SGR, phosphorus content in vertebra and AKP of serum were evaluated as index in black sea bream. Effect of phosphorus sources in black sea bream range in mono-sodium phosphate, di-sodium phosphate, tri-sodium phosphate wherever at 1.4% or at 1.8% phosphorus level.
引文
Andrews J W, T Murai, C Campbell. Effects of dietary calcium and phosphorus on growth, food conversion, bone ash and hematocrit levels of catfish[J]. Journal of Nutrition,1973,103:766-771.
    Avila E M, Basantes S P, Ferraris R P. Cholecalciferol modulates plasma phosphate but not plasma vitamin D levels and intestinal phosphate absorption in rainbow trout(Onchorhynchus mykiss)[J]. Gen Comp Endocrinol,1999,114:460-469.
    Baeverfjord G, Asgard T, Shearer K D. Development and detection of phosphorus deficiency in Atlantic salmon (Salmo salar L) parr and post-smolts [J]. Aqua Nutr,1998,4:1-11.
    Borlongon I G, Statoh S. Dietary phosphorus requirement of juvenile milkfish (Chanos chanos)[J]. Aquaculture Research,2001,32:26-32.
    Boyd C E. Phosphorus dynamics in ponds[J]. Proc Annu Conf South Assoc Game Comm.1971,25:418-426.
    Brown Michael L, Francisco Jaramillo Jr, Delbert M Gatlin Ⅲ. Dietary phosphorus requirement of juvenile sunshine bass[J]. Aquaculture,1993,113:355-363.
    Cain K D, Garling D L. Pretreatment of soybean meal with phytase for salmonid diets to reduce phosphorus concentrations in hatchery effluents[J]. Prog Fish-Cult, 1995,57:114-119.
    Chan Chi-Bun, Leung Po-Ki, Wise Helen, et al. Signal transduction mechanism of the seabream growth hormone secretagogue receptor[J]. FEBS Letters,2004,577: 147-153.
    Chang C F, M F Lee, G R Chen. Estradiol-17b associated with the sex reversal in protandrous black porgy, Acanthopagrus schlegeli[J]. Exp Zoology,1994,268: 53-58.
    Cowey C B, J R Sargent. Nutrition in Fish Physiology[M]. New York:Academic Press,1979,3:1-69.
    Dougall D S, Woods L C, Douglass L W, Soares J H. Dietary phosphorus requirement of juvenile striped bass(Morone saxatilis)[J]. World Aquac Soc,1996,27:82-91.
    Ekelund A, Sporndly R, Valk H, et al. Influence of feeding various phosphorus sources on apparent digestibility of phosphorus in dairy cows[J]. Animal Feed Science and Technology,2003,109:95-104.
    Eya J C, Lovell R T. Availability phosphorus requirements of food-size channel catfish(Ictalurus punctatus) fed practical diets in ponds[J]. Aquaculture,1997, 154:283-291.
    Eya J C, Lovell R T. Net absorption of dietary phosphorus from various inorganic sources and effect of fungal phytase on net absorption of plant phosphorus by channel catfish(Ictalurus punctatus)[J]. Journal of the world aquaculture society, 1997,28(4):386-391.
    Eya J C, Lovell R T. Available phosphorus requirements of food-size channel catfish (Ictalurus punctatus) fed practical diets in ponds [J]. Aquaculture,1997,154: 285-291.
    Gross A, Boyd C E, Lovell R T, et al. Phosphorus budgets for channel catfish ponds receiving diets with different phosphorus concentrations[J]. Journal of the world aquaculture society,1998,29(1):31-39.
    Hu S H, Yen J L, Lin K J, et al. Sexual conversion and natural spawning of 2 year old cultured black porgy, Acanthopagrus schlegeli[J]. Bulletin of Taiwan Fisheries Research Institute,1981,33:715-722.
    Jackson L, Li S M H, Robinson E H. Use of microbial phytase in channel catfish (Ictalurus punctatus) diets to improve utilization of phytate phosphorus[J]. World Aquaculture Society,1996,27:309-313.
    Ketola H G, Richmond M E. Requirement of rainbow trout for dietary phosphorus and its relationship to the amount discharged in hatchery effluents [J]. Am Fish Soc, 1994,123:587-594.
    Ketola H G. Requirement of Atlantic salmon for dietary phosphorus [J]. Trans Am Fish Soc,1975,3:548-551.
    Kim J D, Kim K S, Song J S, et al. Optimum level of dietary monocalcium phosphate based on growth and phosphorus excretion of mirror carp (Cyprinus carpio) [J]. Aquaculture,1998,161:337-344.
    Kinoshita Y. Studies on the sexuality of genus Sparus (Teleostei)[J]. Journal of the Scientific of Hiroshima University,1939(B),1(7):25-37.
    Lall S P. The minerals in Fish Nutrition,3rd ed[M]. San Diego:Academic Press,2002: 259-308.
    Larsson D, Bjornsson B T, Sundell K. Physiological concentrations of 24, 25-dihydroxyvitamin D3 rapidly decrease the in vitro intestinal calcium uptake in the Atlantic cod (Gadus morhua) [J]. Gen Comp Endocrinol,1995,100: 211-217.
    Lovell T. Dietary phosphorus requirement of channel catfish (Ictalurus punctatus)[J].Trans Am Fish Soc,1978, (107):617-621.
    Ma J J, Xu Z R, Shao Q J, et al. Effect of dietary supplemental L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea bream, Sparus macrocephalus [J]. Aquaculture Nutrition,2008,14:464-471.
    Mai Kangsen, Zhang Chunxiao, Ai Qinghui, et al. Dietary phosphorus requirement of large yellow croaker(Pseudosciaena crocea)[J]. Aquaculture,2006,251: 346-353.
    Niu J, Liu Y J, Tian L X, et al. Effect of dietary phosphorus sources and varying levels of supplemental phosphorus on survival, growth and body composition of postlarval shrimp (Litopenaeus vannamei)[J]. Aquaculture nutrition,2008,14: 472-479.
    Nose T, Arai S. Recent advances on studies on mineral Nutrition of fish in Japan [J]. Aquaculture,1976:584-590.
    Ogino C, Takeda H. Requirements of rainbow trout for dietary calcium and phosphorus [J]. Bull Jap Soc Sci Fish,1978,44:1019-1022.
    Oliva Teles A, Pimentel Rodrigues A. Phosphorus requirement of European sea bass (Dicentrarchus labrax L) juveniles [J]. Aquaculture Research,2004,35: 636-642.
    Pan Q, Chen X Y, Li F, et al. Response of juvenile Litopenaeus vannamei to varying levels of calcium phosphate monobasic supplemented to a practical diet[J]. Aquaculture,2005,248:97-102.
    Peng S M, Chen L Q, Qin J G, et al. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli [J]. Aquaculture,2008,276: 154-161.
    Pimentel-Rodrigues A, Oliva Teles A. Phosphorus requirements of gilthead sea bream (Sparus aurata L) juveniles [J]. Aquaculture Research,2001,32:157-161.
    Pimentel-Rodrigues A, Oliva-Teles A. Phosphorus availability of inorganic phosphates and fish meals in European sea bass (Dicentrarchus labrax L) juveniles[J]. Aquaculture,2007,267:300-307.
    Robinson E H, Bomascus D, Brown P B, Linton T L. Dietary calcium and phosphorus requirements of Oreochromis aureus reared in calcium-free water [J].Aquaculture, 1987,64:267-276.
    Rodehutscord M, Pfeffer E. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout(Oncorhynchus mykiss)[J]. Aquaculture,1995,433:143-147.
    Rodehutscord M. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 200 g to supplements of dibasic sodium phosphate in a semi-purified diet [J]. Journal of Nutrition,1996,126:324-331.
    Roy P K, Lall S P. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L)[J]. Aquaculture,2003,221:451-468.
    Sajjadi M, Carter C G.. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar L)[J]. Aquaculture Nutrition,2004,10:135-142.
    Sakamoto S, Yone Y. Effect of dietary calcium/phosphorus ratio upon growth feed efficiency and blood serum Ca and P level in red sea bream [J]. Bull Jap Soc Sci Fish,1973,39:343-348.
    Sakamoto S, Yone Y. Effects of dietary phosphorus on chemical composition of red sea bream [J]. Bull Jap Soc Sci Fish,1978,44:227-229.
    Sales J, Britz P J, Viljoen J. Dietary phosphorus leaching and apparent phosphorus digestibility from different inorganic phosphorus sources for South African abalone (Haliotis midae L)[J]. Aquaculture Nutrition,2003,9:169-174.
    Sanchez C C, Palacios CAM, Perez G M, et al. Phosphorus and calcium requirements in the diet of the American cichlid Cichlasonia urophthalmus(Gunther)[J]. Aquaculture Nutrition,2000,6:1-9.
    Sarker P K, Fukada H, Masumoto T. Phosphorus availability from inorganic phosphorus sources in yellowtail (Seriola quinqueradiata Temminck and Schlegel) [J]. Aquaculture,2009,289:113-117.
    Schafer A, Koppe W M, Meyer-Burgdorff K H, et al. Effects of microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal[J]. Water Science Technology,1995,31:149-155.
    Shao Q J, MaJ J, Xu Z R, et al. Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus [J]. Aquaculture,2008,277:92-100.
    Shearer K D, Hardy R W. Phosphorus deficiency in rainbow trout fed a diet containing deboned fillet scrap [J]. Prog Fish-Cult,1987,49:192-197.
    Skonberg D I, Yogev L Hardy, R W Dong, et al. Metabolic response to dietary phosphorus intake in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture,1997, 157:11-24.
    Srivastav A K, Srivastav S K, Sasayama Y, et al. Vitamin D metabolites affect serum calcium and phosphate in freshwater catfish (Heteropneustes fossilis) [J]. Zool Sci,1997a,4:743-746.
    Srivastav A K, Tiwari P R, Srivastav S K, et al. Vitamin D3-induced calcemic and phosphatemic responses in the freshwater mud eel (Amphipnous cuchia) maintained in different calcium environments [J]. Braz Med Biol Res,1997b,30: 1343-1348.
    Sugiura J G, Dong F M, Hardy R W. Dietary microbial phytase supplementation and the utilization of phosphorus, trace-minerals and protein by rainbow trout {Oncorhynchus mykiss (Walbaum)} fed soybean meal-based diets [J]. Aquaculture Research,2001,32:583-592.
    Sugiura S H, Hardy R W, Roberts R J. The pathology of phosphorus deficiency in fish—a review[J]. Fish Disease,2004,27:255-265.
    Swarup K, Das V K, Norman A W. Dose-dependent vitamin D3 and 1.25-dihdroxyvitaminD3-induced hypercalcemia and hyperphosphatemia in male cyprinoid(Cyprinus carpio)[J]. Comp Biochemistry Physiology,1991,100A: 445-447.
    Takeuchi M, Nakazoe J. Effect of dietary phosphorus on lipid content and its composition in carp[J]. Bull Jap Soc Sci Fish,1981,47:347-352.
    Tan B P, Mai K S, Liu F, et al. Response of juvenile abalone, Haliotis discus hannai, to dietary calcium, phosphorus and calcium/phosphorus ratio[J]. Aquaculture, 2001,198:141-158.
    Uyan Orhan, Koshio Shunsuke, Ishikawa Manabu, et al. Effects of dietary phosphorus and phospholipid level on growth, and phosphorus deficiency signs in juvenile Japanese flounder(Paralichthys olivaceus)[J]. Aquaculture,2007,267:44-54.
    Velasco M, Lawrence A L, Neill W H. Effects of dietary phosphorus level and inorganic source on survival and growth of Penaeus vannamei postlarvae in zero-water exchange culture tanks[J]. Aquat Living Resource,1998,11:29-33.
    Vielma J, Koskela J, Ruohonen K. Growth, bone mineralization, and heat and low oxygen tolerance in European whitefish (Coregonus lavaretus L) fed with graded levels of phosphorus[J]. Aquaculture,2002,212:321-333.
    Wang Q, Liu Q, Li J. Tissue distribution and elimination of oxytetracycline in perch(Lateolabras janopicus) and black seabream(Sparus macrocephalus) following oral administration[J]. Aquaculture,2004,237:31-40.
    Watanabe T, Murakami A, Takeuchi L, et al. Requirement of chum salmon held in freshwater for dietary phosphorus[J]. Bull Jap Sci Fish,1980,46:361-367.
    Wilson R P, Robinson E H, Gatlin D M, et al. Dietary phosphorus requirement of channel catfish[J]. Nutrition,1982,112:1197-1202.
    Yang S D, Lin T S, Liou C H, et al. Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of young Spinibarbus hollandi (Oshima)[J]. Aquaculture Research,2003,34:661-666.
    Yang S D, Lin T S, Liu F G, et al. Influence of dietary phosphorus levels on growth, metabolic response and body composition of juvenile silver perch (Bidyanus bidyanus)[J]. Aquaculture,2006,253:591-601.
    Yone Y, Toshima N. The utilization of phosphorus in fish meal by carp and black sea bream[J]. Bull Jap Soc Sci Fish,1979,45:753-756.
    Zhang Chunxiao, Mai Kangsen, Ai Qinghui, et al. Dietary phosphorus requirement of juvenile Japanese seabass (Lateolabrax japonicus)[J]. Aquaculture,2006,255: 201-209.
    Zhang J Z, Wang L L, Zhou F, et al. Dietary Protein Requirement of Juvenile Black Sea Bream, Sparus macrocephalus[J]. Journal of the World Aquaculture Society, 2009:In Press.
    Zhang X D, Wu T X, Cai L S, et al. Effects of a-tocopheryl acetate supplementation in preslaughter diet on antioxidant enzyme activities and fillet quality of commercial-size Sparus macrocephalus [J]. Journal of Zhejiang University Science B,2007,8(9):680-685.
    Zhou F, Shao Q J, Xu Z R, et al. Quantitative L-lysine requirement of juvenile black sea bream(Sparus macrocephalus)[J]. Aquaculture Nutrition,2009:In Press.
    Zhou Q C, Liu Y J, Mai K S,et al. Effect of Dietary Phosphorus Levels on Growth, Body Composition, Muscle and Bone Mineral Concentrations for Orange-Spotted Grouper Epinephebs coioides Reared in Floating Cages[J]. Journal of the world aquaculture society,2004,35(4):427-435.
    陈冰,潘庆,郑卫川,等.不同磷源对奥尼罗非鱼幼鱼生长性能的影响[J].饲料工业,2007,28(10):26-28.
    陈建明,王友慧,叶金云,等.黑鲷对10种饵料原料的表观消化率[J].饲料博 览,2004,11:44-46.
    陈建明,叶金云,,潘茜,等.翘嘴鲌鱼种对磷的需求量[J].水生生物学报,2007,31(2):99-104.
    陈四清,季文娟,吕用琦,等.肌醇对黑鲷幼鱼营养作用的研究[J].海洋科学,1999,5:13-15.
    陈四清,季文娟,潘生弟.黑鲷幼鱼对Zn、Cu的营养需要[J].中国水产科学,1998,5(2):52-56.
    单保党,何大仁.黑鲷化学感觉发育和摄食关系[J].厦门大学学报(自然科学版),1995,34(5):835-839.
    邓利,林浩然.腹腔注射LHRH-A对黑鲷生长激素及其受体的影响[J].深圳大学学报(理工版),2003c,20(2):60-65.
    邓利,张为民,林浩然.饥饿对黑鲷血清生长激素、甲状腺激素以及白肌和肝脏脂肪、蛋白质含量的影响[J].动物学研究,2003d,24(2):94-98.
    邓利,张为民,林浩然.盐度变化对黑鲷生长激素及其受体的影响[J].热带海洋学报,2003b,22(6):9-14.
    邓利,张为民,林浩然,等.黑鲷生长激素及其受体的季节变化[J].水产学报,2001,25(3):203-208.
    邓利,张为民,郑汉其,等.定量测定黑鲷生长激素受体mRNA的液相杂交/RNase保护法[J].中国实验动物学报,2003a,11(1):7-11.
    高淳仁,李岩,徐学良.黑鲷幼鱼对饵料蛋白质、脂肪、糖类需求量的研究[J].齐鲁渔业,1993,6:35-37.
    胡王龙.饲料磷对黑鲷幼鱼生长和组织生化指标的影响[D].2005,浙江大学硕士学位论文.
    季文娟.黑鲷幼鱼饲料蛋白源氨基酸平衡的研究[J].中国水产科学,2000,7(3):37-40.
    季文娟.饲料中不同脂肪源对黑鲷幼鱼生长和鱼体脂肪酸组成的影响[J].海洋水产研究,1999,20(1):69-74.
    江锦花.重金属在黑鲷5种组织器官中的积累、分布及环境效应[J].中国水产,2005,7:69-71.
    李纯,李军,薛钦昭.黑鲷精子的超低温保存研究[J].海洋科学,2001,25(11): 1-4.
    李军,徐世宏,薛玉平.日粮水平对黑鲷幼鱼氮收支的影响[J].海洋与湖沼,1998,29(4):368-373.
    李军,薛玉平,徐长安.温度、日粮水平和体重对黑绸幼鱼排泄能的影响[J].海洋科学集刊,1999,41:114-120.
    李军.黑绸幼鱼鱼体的比能值及生化组成的研究[J].海洋科学集刊,1997,38:155-161.
    刘镜恪,雷霁霖.活饵料中n-3高度不饱和脂肪酸对黑鲷仔稚鱼生长和存活的影响[J].海洋水产研究,1998,19(2):14-18.
    刘镜恪,雷霁霖.活饵料中Vc对黑鲷仔稚鱼生长影响的初步研究[J].中国水产科学,1997,49(4):90-92.
    刘镜恪,王可玲,王新成,等.黑鲷幼鱼饲料中最适宜蛋白质含量及动、植物蛋白比的研究[J].海洋与湖沼,1995,26(4):445-448.
    刘镜恪.黑鲷的营养需要及配合饲料研究[J].海洋湖沼通报,1996,3:49-53.
    刘绪生,梁冰,张树义.黑鲷DMRT1基因cDNA的克隆、组织表达谱及在性别逆转前后性腺中的表达[J].动物学研究,2004,25(2):158-161.
    龙章强,彭士明,陈立侨,等.饥饿与再投喂对黑鲷幼鱼体质量变化、生化组成及肝脏消化酶的影响[J].中国水产科学,2008,15(4):606-614.
    马爱军,马英杰,姚善诚.黑鲷消化系统的胚后发育研究[J].海洋与湖沼,2000,31(3):282-287.
    马晶晶.n-3高不饱和脂肪酸对黑鲷幼鱼生长和脂肪酸代谢的影响[D].2008,浙江大学博士学位论文.
    马燕梅,梅景良,林树根,等.黑鲷消化酶活性的初步研究[J].福建农林大学学报(自然科学版),2004,33(2):219-222.
    彭士明,陈立侨,侯俊利,等.氧化鱼油饲料中添加VE对黑鲷幼鱼体脂含量及肝脏抗氧化酶活性的影响[J].上海水产大学学报,2008,17(3):298-304.
    彭士明,陈立侨,叶金云,等.饲料蛋白能量比对黑鲷幼鱼生长和体成分的影响[J].中国水产科学,2005,12(4):465-470.
    彭士明,陈立侨,叶金云,等.饲料中添加氧化鱼油对黑鲷幼鱼生长的影响[J].水产学报,2007,31(suppl):109-115.
    施兆鸿,黄旭雄.海水中Ca2+,Mg2+,K+含量对黑鲷胚胎及早期仔鱼发育的影响[J].海洋科学,1995,5:33—38.
    施兆鸿,周一红.鱼生长素对黑鲷稚鱼生长的影响[J].1996,11(11):13—16.
    孙耀,邓冰,张波,等.日粮水平和饵料种类对黑鲷能量收支的影响[J].海洋水产研究,2002,23(1):5—10.
    孙耀,张波,陈超,等.黑鲷的生长和生态转换效率及其主要影响因素[J].海洋水产研究,1999,20(2):7-11.
    孙耀.温度对黑鲷(Sparus macrocephalus)能量收支的影响[J].生态学报,2001,21(2):186—190.
    王蕾蕾.黑鲷幼鱼适宜蛋白需求量的研究[D].2007,浙江大学硕士学位论文.
    王秀英,饵料维生素C对黑鲷仔鱼生长和体组成生化指标的影响[D].2003,浙江大学硕士学位论文.
    徐开达,周永东,王伟定,等.舟山海域黑鲷标志放流试验[J].上海水产大学学报,2008,17(1):93—97.
    杨雨虹,郭庆,陈松波,等.鲤鱼对不同磷源磷生物学利用率的研究[J].东北农业大学学报,2006,37(4):484—488.
    杨雨虹,郭庆,韩英,等.鲤鱼饲料中不同来源的磷表观消化率的测定[J].东北农业大学学报,2005,36(6):762—766.
    张波,孙耀,唐启升.黑鲷的胃排空率[J].应用生态学报,2000,11(2):287-289.
    赵朝阳,周洪琪,陈建明,等.花[鱼骨]对饲料中磷的营养需求[J].水产学报,2008,32(4):614—620.
    赵朝阳,周洪琪,徐跑,等.花[鱼骨]对饲料中不同无机磷源的利用率[J].上海水产大学学报,2008,17(2):199—203.
    周萌,曹俊明,吴建开.军曹鱼幼鱼对饲料中磷需要量的研究[J].动物营养学报,2004,17:62.
    朱德芬,黑鲷人工养殖技术讲座(第一讲黑鲷生物学特性及增养殖概况)[J].水产养殖,1996,1:30—32.
    卓立应.黑鲷幼鱼饲料中适宜蛋白能量比的研究[D].2006,浙江大学硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700