四种不同生境鱼类脂肪酸去饱和酶和延长酶基因cDNA全序列的克隆与分子进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用RT-PCR和RACE方法克隆得到草鱼(Ctenopharyngodon idellus)、鳜鱼(Siniperca chuatsi)/日本鳗鲡(Anguilla japonica)和斜带石斑鱼(Epinephelus coioides)肝脏中控制高不饱和脂肪酸(HUFA)合成的脂肪酸去饱和酶(fatty acid desaturase, FAD和脂肪酸延长酶(fatty acid elongase, ELO)基因cDNA全序列。FAD基因编码444至445个氨基酸,与其他鱼类序列有较高同源性(至少67%),主要的序列差异集中在N端和C端的多肽序列上。推测的FAD氨基酸序列含有脊椎动物Δ6/Δ5 FAD全部的特征结构区,包括保守的多个结构域:3个组氨酸簇,2个跨膜区域和1个含亚铁血红素结合基序的类似细胞色素b5结构域。ELO基因编码291至294个氨基酸,与其他鱼类序列有较高同源性(至少65%),主要的序列差异集中在C端的多肽序列上。推测的ELO氨基酸序列包括脊椎动物ELOVL5的所有特征结构功能区:单一的氧化还原中心组氨酸簇、1个内质网停留信号和4个ELO共有的保守区域等。使用4种不同的方法(NJ、MP、ML、BI)构建系统进化树结果显示,基于FAD和ELO的一致树类似,大致可以分为4支:食草性和杂食性淡水鱼聚为一支;溯河洄游型鱼为一支;降河洄游鱼单独为一支;海水鱼和食肉性淡水鱼聚为一支。多个鱼类FAD和ELO基因全长cDNA序列的获得为进一步研究鱼类HUFA合成能力及调控机理奠定基础。
Full-length cDNAs of fatty acid desaturase (FAD) and fatty acid elongase (ELO), which were involved in the biosynthesis of highly unsaturated fatty acids (HUFA), were isolated from grass carp(Ctenopharyngodon idellus), mandarin fish (Siniperca chuatsi), Japanese eel (Anguilla japonica), and orange-spotted grouper (Epinephelus coioides), based on RT-PCR and RACE methods. The open reading frames of four FAD genes encode peptides of 444 and 445 amino acids, along with those from other fish species, are similar and shared at least 67% sequence identity with each other, with most of the sequence variation residing in the N-and C-terminal region of the polypeptide. The deduced amino acid sequences is highly conserved that contains all the characteristics of vertebrateΔ6/Δ5 FAD, including three histidine boxes, two membrane-spaning domains, and one cytochrome b5-like domain with the typical heme-binding motif. The ORFs of four ELO genes encode peptides of 291 and 294 amino acids, along with those from other fish species, are similar and shared at least 65% sequence identity with each other, with most of the sequence variation residing in the C-terminal region of the polypeptide. The deduced amino acid sequences contain all the characteristics of vertebrate ELOVL5, including single histidine box redox centre motif, one canonical ER retention signal and multiple transmembrane regions. The phylogenetic trees based on FAD/ELO ORFs, using four different methods (NJ, MP, ML, BI) show that the consensus trees are similar. The phylogenetic sequence analyses grouped the teleost fish into four distinct clusters with the mainly herbivorous and omnivorous freshwater fish, anadromous fish, catadromous fish, seawater fish and carnivorous freshwater fish. These results will help the following study of the HUFA biosynthesis pathway in teleost fish.
引文
[1]李观贵,梁旭方,郁颖,et al.,斜带石斑鱼脂肪酸去饱和酶和延长酶基因全长cDNA序列的克隆与分析.热带海洋学报[J],2009.28(6):95-102.
    [2]郁颖,梁旭方,李观贵,et al.,日本鳗鲡脂肪酸去饱和酶和延长酶基因的克隆与分析.水生态学杂志[J], 2009.2(5):56-62.
    [3]王秀英,邵庆均&黄磊,海水鱼苗对饵料中HUFA需要的研究进展.饲料工业[J],2003.24(7):40-43.
    [4]TOCHER D R, ZHENG X Z, SCHLECHTRIEM C, et al., Highly unsaturated fatty acid synthesis in marine fish:Cloning, functional characterization, and nutritional regulation of fatty acyl Delta 6 desaturase of Atlantic cod (Gadus morhua L.). Lipids[J],2006.41(11):1003-1016.
    [5]王裕玉,杨雨虹,水生生物对高不饱和脂肪酸的营养需求.中国饲料[J],2008.18:31-33.
    [6]刘兴旺,谭北平,麦康森,et al.,饲料中不同水平n23 HUFA对军曹鱼生长及脂肪酸组成的影响.水生生物学报[J],2007.31(3):190-195.
    [7]JAYA-RAM A, KUAH M K, LIM P S, et al., Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture[J], 2008.277(3-4):275-281.
    [8]ALMANSA E, P REZ M, CEJAS J, et al., Influence of broodstock gilthead seabream (Sparus aurata L.) dietary fatty acids on egg quality and egg fatty acid composition throughout the spawning season Aquaculture[J],1999. 170(3-4):323-336.
    [9]ZAKERI M, KOCHANIAN P, MARAMMAZI J G, et al., Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock, eggs and larvae in yellowfin sea bream, Acanthopagrus latus. Aquaculture[J],2011.310(3-4):388-394.
    [10]KOVEN W, VAN ANHOLT R, LUTZKY S, et al., The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change. Aquaculture[J],2003.228(1-4):307-320.
    [11]VILLALTA M, ESTEVEZ A, BRANSDEN M P, et al., The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture[J],2005.249(1-4):353-365.
    [12]JOHN SARGENT, LESLEY MCEVOY, ALICIA ESTEVEZ, et al., Lipid nutrition of marine fish during early development:current status and future directions. Aquaculture[J],1999.179(1-4):217-229.
    [13]REGOST C, ARZEL J, ROBIN J, et al., Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima)-1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture[J],2003.217(1-4):465-482.
    [14]BELL J, TOCHER D, FARNDALE B, et al., Growth, mortality, tissue histopathology and fatty acid compositions, eicosanoid production and response to stress, in juvenile turbot fed diets rich in y-linolenic acid in combination with eicosapentaenoic acid or docosahexaenoic acid Prostaglandins, Leukotrienes and Essential Fatty Acids[J],1998.58(5):353-364.
    [15]TAKEUCHI T, A review of feed development for early life stages of marine finfish in Japan. Aquaculture[J],2001.200(1-2):203-222.
    [16]FURUITA H, KONISHI K&TAKEUCHI T, Effect of different levels of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplii on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus. Aquaculture[J],1999.170(1):59-69.
    [17]RODR GUEZ C, P REZ J, BAD A P, et al., The n-3 highly unsaturated fatty acids requirements of gilthead seabream (Sparus aurata L.) larvae when using an appropriate DHA/EPA ratio in the diet. Aquaculture[J],1998.169(1-2):9-23.
    [18]SARGENT J, TACON A, Development of farmed fish:a nutritionally necessary alternative to meat. Proc Nutr Soc[J],1999.58(6):377-383.
    [19]VAGNER M, SANTIGOSA E, Characterization and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts:A review. Aquaculture[J],2010.
    [20]HUANG S S Y,OO A N, HIGGS D A, et al., Effect of dietary canola oil level on the growth performance and fatty acid composition of juvenile red sea bream, Pagrus major. Aquaculture[J],2007.271(1-4):420-431.
    [21]HASTINGS N, AGABA M K, TOCHER D R, et al., Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from alpha-linolenic acid in Atlantic salmon (Salmo salar). Mar Biotechnol[J], 2004.6(5):463-474.
    [22]MONROIG O, ZHENG X Z, MORAIS S, et al., Multiple genes for functional Delta 6 fatty acyl desaturases (Fad) in Atlantic salmon (Salmo salar L.):Gene and cDNA characterization, functional expression, tissue distribution and nutritional regulation. Bba-Mol Cell Biol L[J],2010.1801(9):1072-1081.
    [23]ZHENG X, DING Z, XU Y, et al., Physiological roles of fatty acyl desaturases and elongases in marine fish:Characterisation of cDNAs of fatty acyl Delta 6 desaturase and elovl5 elongase of cobia (Rachycentron canadum). Aquaculture[J],2009.290(1-2):122-131.
    [24]GONZALEZ-ROVIRA A, MOURENTE G, ZHENG X Z, et al., Molecular and functional characterization and expression analysis of a Delta 6 fatty acyl desaturase cDNA of European Sea Bass (Dicentrarchus labrax L.). Aquaculture[J],2009.298(1-2):90-100.
    [25]马晶晶,n_3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响[D].2008.杭州浙江大学.
    [26]何丽君,朱葆华&潘克厚,膜整合脂肪酸去饱和酶系统进化分析.安徽农学通报[J],2007.13(11):35-37.
    [27]HUANG Y S, CHAUDHARY S, THURMOND J, et al., Cloning of D12-and D5-desaturases from Mortierella alpina and recombinant production of glinolenic acid in Saccharomyces cerevisiae. Lipids[J],1999.34:649-659.
    [28]NAPIER J, HEY S, LACEY D, et al., Identification of a Caenorhabditis elegans D6 fatty acid-desaturase by heterologous expression in Saccharomyces cereviciae. Biochem.J. [J],1998.330:611-614.
    [29]AKI T, SHIMADA Y, INAGAKI K, et al., Molecular cloning and functional characterisation of rat D6 fatty acid desaturase. Biochem. Biophys. Res. Commun. [J],1999.255:575-579.
    [30]CHO H, NAKAMURA M&CLARKE S, Cloning expression and nutritional regulation of the human D6 desaturase J. Biol. Chem[J],1999.274:471-477.
    [31]MICHAELSON L, LAZARUS C, GRIFFITHS G, et al., Isolation of a D5 fatty acid desaturase gene from Mortierella alpina. J. Biol. Chem.[J],1998.273: 19055-19059.
    [32]MICHAELSON L, NAPIER J, LEWIS M, et al., Functional identification of a fatty acid D5 desaturase gene from Caenorhabditis elegans. FEBSLett[J],1998. 439:215-218.
    [33]LEONARD A, BOBIK E, DORADO J, et al., Cloning of a human cDNA encoding a novel enzyme involved in the elongation of long-chain polyunsaturated fatty acids. Biochem J[J],2000.350(Pt3):765-770.
    [34]CHO H, NAKAMURA M&CLARKE S, Cloning expression and nutritional regulation of the human D5 desaturase. J. Biol. Chem. [J],1999.274:37335-37339.
    [35]HASTINGS N, AGABA M, TOCHER D, et al., A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. P Natl Acad Sci USA[J],2001. 98(25):14304-14309.
    [36]SEILIEZ I, PANSERAT S, CORRAZE G, et al., Cloning and nutritional regulation of a Delta 6-desaturase-like enzyme in the marine teleost gilthead seabream (Sparus aurata). Comp Biochem Phys B[J],2003.135(3):449-460.
    [37]ZHENG X Z, TOCHER D R, DICKSON C A, et al., Highly unsaturated fatty acid synthesis in vertebrates:New insights with the cloning and characterization of a Delta 6 desaturase of Atlantic salmon. Lipids[J],2005. 40(1):13-24.
    [38]SEILIEZ I, PANSERAT S, KAUSHIK S, et al., Cloning, tissue distribution and nutritional regulation of a Delta 6-desaturase-like enzyme in rainbow trout. Comp Biochem Phys B[J],2001.130(1):83-93.
    [39]ZHENG X, TORSTENSEN B, TOCHER D R, et al., Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Bba-Mol Cell Biol L[J],2005.1734(1):13-24.
    [40]ULMANN L, BOUZIANNE, M., MIMOUNI, V., BELLEVILLE, J., POISSON, J.P., Relationship between rat liver microsomal △6- and △5-desaturase activities and fatty acid composition:comparative effects of coconut and salmon oils during protein restriction. J. Nutr. Biochem.[J],1992.3: 188-193.
    [41]CAO J, BLOND J, JUANEDA P, et al., Effects of low levels of dietary fish oils on fatty acid desaturation and tissue fatty acids in obese and lean rats. Lipids[J], 1995.30:825-832.
    [42]HAZEL J R, Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol.[J],1995(246):460-470.
    [43]DENIC V, WEISSMAN J, A molecular caliper mechanism for determining very long-chain fatty acid length. Cell[J],2007.130(4):663-677.
    [44]GUILLOU H, ZADRAVEC D, MARTIN P, et al., the key roles of elongases and desaturases in mammalian fatty acid metabolism:Insights from transgenic mice. Progress in Lipid Research [J],2010.49:186-199
    [45]TVRDIK P, WESTERBERG R, SILVE S, et al., Role of a newmammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol [J],2000.149(707-718).
    [46]WANG Y, BOTOLIN D, CHRISTIAN B, et al., Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J Lipid Res[J],2005. 46(4):706-715.
    [47]TAMURA K, MAKINO A, HULLIN-MATSUDA F, et al., Novel Lipogenic Enzyme ELOVL7 Is Involved in Prostate Cancer Growth through Saturated Long-Chain Fatty Acid Metabolism. Cancer Res[J],2009.69(20):8133-8140.
    [48]KITAZAWA H, MIYAMOTO Y, SHIMAMURA K, et al., Development of a High-Density Assay for Long-Chain Fatty Acyl-CoA Elongases. Lipids[J], 2009.44(8):765-773.
    [49]AGBAGA M, BRUSH R, MANDAL M, et al., Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. P Natl Acad Sci USA[J],2008.105(35):12843-12848.
    [50]PARKER-BARNES J, T DAS, E BOBIK, et al., Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc. Natl. Acad. Sci.[J],2000.97:8284-8289.
    [51]BEAUDOIN F, MICHAELSON L, HEY S, et al., Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc. Natl. Acad. Sci.USA.[J],2000.97:6421-6426.
    [52]AGABA M, TOCHER D, ZHENG X, et al., Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comp Biochem Phys B[J],2005.142(3):342-352.
    [53]AGABA M, TOCHER D, DICKSON C, et al., A zebrafish cDNA encoding a multifunctional enzyme involved in the elongation of polyunsaturated, monounsaturated and saturated fatty acids. Mar. Biotechnol[J],2004.6: 251-261.
    [54]MEYER A, KIRSCH H, DOMERGUE F, et al., Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res[J],2004.45(10):1899-1909.
    [55]曹俊明,田丽霞,陈竹,et al.,饲料中不同脂肪酸对草鱼生长和组织营养成分组成的影响.华南理工大学学报(自然科学版)[J],1996.24:149-154.
    [56]吉红,曹艳姿,刘品,et al.,饲料中HUFA影响草鱼脂质代谢的研究.水生生物学报[J],2009.33(5):881-889.
    [57]刘玮,徐萍,任本根,et al.,不同脂肪源饲料对草鱼稚鱼生长的影响.水产学报[J],1995.19(4):362-365.
    [58]DU Z, LIU Y, TIAN L, et al., Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). AquacultNutr[J],2005.11(2):139-146.
    [59]DU Z, CLOUET P, HUANG L, et al., Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation. Aquacult Nutr[J],2008. 14(1):77-92.
    [60]梁旭方,鳜鱼人工饲料的研究.水产科技情报[J],2002.29(3):64-67.
    [61]李明锋,鳜鱼生物学研究进展现代渔业信息[J],2010.25(7):16-21.
    [62]梁旭方,日本鳗鲡人工育苗及仔鱼饲料研究.水产科学[J],2005.24(4):24-26.
    [63]肖利,吴惠仙,薛俊增,et al.,日本鳗鲡繁殖生物学研究概述.上海海洋大学学报[J],2010.19(3):321-326.
    [64]BAE J, KIM D, YOO K, et al., Effects of Dietary Arachidonic Acid (20:4n-6) Levels on Growth Performance and Fatty Acid Composition of Juvenile Eel, Anguillajaponica. AsianAustral JAnim[J],2010.23(4):508-514.
    [65]FURUITA H, UNUMA T, NOMURA K, et al., Lipid and fatty acid composition of eggs producing larvae with high survival rate in the Japanese eel. J Fish Biol[J],2006.69(4):1178-1189.
    [66]OZAKI Y, KOGA H, TAKAHASHI T, et al., Lipid content and fatty acid composition of muscle, liver, ovary and eggs of captive-reared and wild silver Japanese eel Anguilla japonica during artificial maturation. Fisheries Sci[J], 2008.74(2):362-371.
    [67]FURUITA H, HORI K, SUZUKI, et al., Effect of n-3 and n-6 fatty acids in broodstock diet on reproduction and fatty acid composition of broodstock and eggs in the Japanese eel Anguilla japonica. Aquaculture[J],2007.267(1-4):55-61.
    [68]LUO Z, LIU Y J, MAI K S, et al., Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages. Aquacult Int[J], 2005.13(3):257-269.
    [69]WU F C, TING Y Y&CHEN H Y, Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabancus. J Nutr[J],2002.132(1):72-79.
    [70]YOSHII K, TAKAKUWA F, NGUYEN H P, et al., Effect of dietary lipid level on growth performance and feed utilization of juvenile kelp grouper Epinephelus bruneus. Fisheries Sci[J],2010.76(1):139-145.
    [71]TAMURA K, DUDLEY J, NEI M, et al., MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol[J],2007.24(8): 1596-1599.
    [72]SWOFFORD D, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4, S. Sinauer Associates, Massachusetts, Editor.2001.
    [73]JP H, F R, MRBAYES:Bayesian inference of phylogeny. Bioinfo [J],2001.17: 754-755.
    [74]POSADA D, CRANDALL K, Modeltest: testing the model of DNA substitution. Bioinfo [J],1998.14:817-818.
    [75]COWEY C, SARGENT J, Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry[J],1977.57(4):269-273.
    [76]LI Y Y, HU C B, ZHENG Y J, et al., The effects of dietary fatty acids on liver fatty acid composition and Delta(6)-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comp Biochem Phys B[J],2008.151(2): 183-190.
    [77]ZHENG X, SEILIEZ I, HASTINGS N, et al., Characterization and comparison of fatty acyl Delta 6 desaturase cDNAs from freshwater and marine teleost fish species. Comp Biochem Phys B[J],2004.139(2):269-279.
    [78]LOS D A, MURATA N, Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta[J],1998.1394:3-15.
    [79]LEAVER M J, VILLENEUVE L A N, OBACH A, et al., Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). Bmc Genomics[J],2008.9:
    [80]GEAY F, CULI E S I, CORPOREAU C, et al., Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet. Comp Biochem Phys B[J],2010.156(4):237-243.
    [81]LI Y Y, MONROIG O, ZHANG L A, et al., Vertebrate fatty acyl desaturase with Delta 4 activity. P Natl Acad Sci USA[J],2010.107(39):16840-16845.
    [82]TAKENO S, SAKURADANI E, MURATA S, et al., Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids[J],2005.40(1):25-30.
    [83]WYNN J P, RATLEDGE C, Evidence that the rate-limiting step far the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiol-Uk[J],2000.146:2325-2331.
    [84]INAGAKI K, AKI T, FUKUDA Y, et al., Identification and expression of a rat fatty acid elongase involved the biosynthesis of C18 fatty acids. Biosci Biotechnol Biochem J[J],2002.66:613-621.
    [85]PEREIRA S, LEONARD A, HUANG Y-S, et al., Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid.. Biochem J [J],2004.384: 357-366.
    [86]MORAIS S, MONROIG O, ZHENG X Z, et al., Highly Unsaturated Fatty Acid Synthesis in Atlantic Salmon:Characterization of ELOVL5-and ELOVL2-like Elongases. Mar Biotechnol[J],2009.11(5):627-639.
    [87]NAKAMURA M T, NARA T Y, Gene regulation of mammalian desaturases. Biochem Soc T[J],2002.30:1076-1079.
    [88]MATSUZAKA T, SHIMANO H, YAHAGI N, et al., Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPAR alpha. J Lipid Res[J],2002.43(1):107-114.
    [89]NARA T Y, HE W S, TANG C G, et al., The E-box like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Bioph Res Co[J],2002.296(1):111-117.
    [90]MOON Y A, HAMMER R E&HORTON J D, Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res[J],2009.50(3): 412-423.
    [91]QIN Y, DALEN K T, GUSTAFSSON J A, et al., Regulation of hepatic fatty acid elongase 5 by LXR alpha-SREBP-1c. Bba-Mol Cell Biol L[J],2009. 1791(2):140-147.
    [92]STRAUSBERG R L, FEINGOLD E A, GROUSE L H, et al., Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. P Natl Acad Sci USA[J],2002.99(26):16899-16903.
    [93]SAYANOVA O, SMITH M, LAPINSKAS P, et al., Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci U S A[J],1997.94(8):4211-4216.
    [94]ZOLFAGHARI R, CIFELLI C J, BANTA M D, et al., Fatty acid Delta(5)-desaturase mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adult rats. Arch Biochem Biophys[J],2001.391(1):8-15.
    [95]MOHD-YUSOF N Y, MONROIG O, MOHD-ADNAN A, et al., Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass, Lates calcarifer. Fish Physiol Biochem[J],2010.36(4):827-843.
    [96]TAN S H, CHUNG H H&SHU-CHIEN A C, Distinct developmental expression of two elongase family members in zebrafish. Biochem Bioph Res Co[J],2010.393(3):397-403.
    [97]GREEN C D, OZGUDEN-AKKOC C G, WANG Y, et al., Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res[J],2010.51(7):1871-1877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700