国产300MW汽轮机转子寿命分配与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据我国目前的能源结构,大容量火电机组参与调峰将是今后长期的任务,对两班制运行的调峰机组,加快启停速度是电网调峰的客观需要,也是减少启停热损失、提高运行经济性的合理要求;而加快机组启停速度势必增大设备的寿命损耗,成为两班制调峰运行的不安全因素。为此我们可以通过两方面的努力达到电网调峰对汽轮机启停的要求:第一是对设备作较大的改进,使其在结构上具备适应快速、频繁启停的机动能力;第二是选择合理的启停方式,通过改进操作程序,在加快启停速度的同时,控制各项指标在安全范围之内,实现优化启停。
     本文从现场汽轮机转子寿命管理的实际需要出发,通过对汽轮机优化启停的评价、启停过程中最佳温升率的选择、国产300MW汽轮机转子寿命管理系统的等若干问题的研究,从热应力的角度阐述了对国产300MW汽轮机进行启停优化的可能性以及加强现场寿命管理的手段。具体进行了如下内容的研究:
     1.论文首先分析了国内外汽轮机转子寿命研究的背景。在此基础上,研究了目前汽轮机转子的寿命研究中存在的问题(包括低周疲劳和高周疲劳的迭加问题、高温蠕变和低周疲劳的交互作用和低周疲劳的可靠性分析与设计)。同时,分析了转子寿命管理的发展方向,以此说明该选题的重要性。
     2.通过分析转子温度场的计算、应力计算、转子寿命和转子剩余寿命估算方法,论文从转子寿命计算和启停最优化准则两个方面研究了汽轮机转子的寿命管理。
     3.针对某机组冷态启动、初始温度300℃时的热态启动两种情况的11种工况,论文对启停过程中的最佳温升率进行了研究,并分析了温升率对启停时间、应力裕度、寿命损耗率的影响,分析了温升率对应力值和寿命损耗率的影响规律。
     4.论文分析了阳逻电厂优化引进型300MW机组结构(特别是转子结构和高中压缸轴端汽封结构)。根据该电厂#2机组的启动曲线、转子结构和变工况参数,计算了300MW汽轮机高压转子前轴封段应力,研究了300MW汽轮机转子寿命分配与管理。然后分析了AGC变负荷对高压转子安全性的影响。最后提出了减少汽轮机转子寿命损耗的措施。
According to the recent energy structure of our country, it's long-term task that large capacity thermal power units have to be used in peak regulation. To two-shift operation units, accelerating the speed of startup or shutdown is the objective demand of electric network peak regulation and the reasonable requirement of decreasing thermal loss when startup or shutdown, increase operation economical efficiency, but it can also increase the unit's life loss and become the dangerous factor of two-shift operation units. Therefore we can improve the peak regulation through two methods: the first is improving the equipment mostly in order to adapt the acceleration and startup or shutdown frequently; the second is choosing reasonable startup or shutdown style, control every target in safe range at the same time of acceleration through improving operational procedure.
    This paper studied the appraisement of steam turbine optimized startup or shutdown, the choice of optimal temperature rising rate and the research of life management system of 300MW steam turbine rotor based on the actual requirement of in site rotor life management, it also illustrated the possibility of optimizing to startup or shutdown and the methods of strengthen local life management. Mainly:
    1. This paper analyzed the background of rotor life research, and studied the problem in life management recently (including nestification of low-cycle and high-cycle fatigue loss, interaction of high temperature creep and low-cycle fatigue, reliability analysis and design of low-cycle fatigue), and analyzed the develop direction of life management in order to illustrate the importance of this topic.
    2. This paper studied the life management from rotor life calculation and optimum criterion by analyzing the calculation of rotor temperature field, stress, rotor life and rest life.
    3. Aimed at the cold start and the hot start with initial temperature 300 C in 11 operation modes, this paper studied the optimal temperature rising rate and calculate respectively, and analyzed the temperature rising rate impact on the startup or shutdown time, the stress margin and the life loss rate. It also analyzed the impact of the temperature rising rate on the stress value and life loss rate.
    4. This paper analyzed the structure (especially the rotors and the gland sealing system) of a 300MW unit in YangLuo power plant. Based on the #2 unit startup curve in this plant, the construction of the rotors and the parameters off-design condition, this paper calculated the stress of the gland sealing part of the high pressure rotor, studied the life distribution and management, and analyzed AGC varying duty impact to rotor safety. At last, this paper illustrated the measures of increasing rotor life loss.
引文
[1] 张克纯,顾金芳,吕永鑫.AGC负荷变化率对汽轮机寿命的影响.华东电力,2003第7期,p27~30
    [2] 赵江杰.汽轮机的寿命及其管理.大氮肥,1999(4):p275~276
    [3] 高建军.330MW汽轮机寿命运行管理.内蒙古电力技术,1999(5):p45~46
    [4] 杨继明,卢绪祥,陈玉林等.材料硬度值下降对汽轮机转子寿命消耗计算的影响.热能动力工程,2003(4):p372~374
    [5] 张保衔.大容量火电机组调峰运行的寿命管理.水电部出版社
    [6] 董聪 等.用于疲劳寿命预测的概率型线性累积损伤准则.西北工业大学学报,1993.11
    [7] 童小燕.疲劳寿命预测能量方法的试验验证及其参数系统分析.西北工业大学学报1993.11
    [8] 廖敏.随机载荷谱下裂纹统计特性研究.西北工业大学学报,1993.11
    [9] 裴业英 等.汽轮机转子寿命的监测与管理.热力发电,1995.1
    [10] 杨寿敏.汽轮机转子热应力的简易计算.热力发电,1987.5
    [11] M.F.O'CONNOR and D.C TIMMERMAN, Extending the useful life of Industrial Steam Turbine. Power Engineering, 1990.8
    [12] 徐自力等.延长汽轮机使用寿命的措施.汽轮机技术,1995.5
    [13] 程鹏 等.调峰机组疲劳一蠕变寿命评估的新特点.汽轮机技术,1994
    [14] 何光新.在CrMoV钢中疲劳和蠕变的相互作用.汽轮机技术,1995.6
    [15] 何光新,疲劳和蠕变作用下的裂纹扩展.动力工程,1995.10
    [16] 程鹏 等.汽轮机转子疲劳寿命评估工程处理方法的适用性.汽轮机技术,1995.3
    [17] Robert. G.Presnak and Rock H.Yee. Sargent Fc.Lundy, Life extension: the Benefits are Real, Dec. 1993, Power Engineering
    [18] 王金瑞 等.30Cr2MoV转子钢的低周循环疲劳特性.机械工程材料,1987.5
    [19] 武汉阳逻电厂.N300—16.7/538/538型汽轮机运行规程.1995.1
    [20] 黄树红.汽轮机转子低周疲芳寿命的可靠性设计.汽轮机技术,1991.6
    [21] 张光荣等.低周疲劳与蠕变交互作用下汽轮机寿命的计算方法.机械工程学报,1989.3
    [22] 杨昆 等.汽温非线性变化时汽轮机转子温度和热应力的解析计算.华北电力学院学报,1989.6
    
    
    [23] 王莉君.国外对汽轮发电机组材质老化的动态研究.热力发电,1988年2月
    [24] 叶春 等.汽轮机寿命管理特征温度测点的选择.汽轮机技术,1994.4
    [25] 揭晓东.汽轮机转子裂纹扩展速度的边界元计算.热力发电,1989.5
    [26] 舒宗惠.汽轮机转子寿命消耗的实用控制.热力发电,1989.5
    [27] 陈庚 等.汽轮机转子热应力及疲劳寿命的在线管理.汽轮机技术,1993.3
    [28] 赵彤军.汽轮机高温转子寿命预测方法及应用.汽轮机拄术,1991.1
    [29] 杜秉乾.汽轮机运行寿命的分配设计.热力发电,1989.5
    [30] 崔叔存.汽轮机热弹性应力集中及转子寿命问题.热力发电,1989.5
    [31] 庄贺庆.汽轮机转子变物性应力集中及转子寿命问题.热力发电,1989.5
    [32] 关于汽轮机高温转子的寿命.热力发电译丛,1990.3
    [33] 徐鸿.计算转子表面热应力的方法.华北电力学院学报,1988.1
    [34] 魏先英.300MW汽轮机冷热态启动寿命损耗分析.发电设备,1993,10~11
    [35] 朱凯舟.汽轮机转子热应力集中的边界元分析和研究.热力发电,1989.5
    [36] 安江英 等.关于汽轮机转子寿命监测中的若干问题.华北电力学院学报,1996.10
    [37] 周顺深.藕变断裂韧性对CrMoV钢蠕变疲劳交互作用下裂纹开裂和扩展的影响.金属学报,1987.6
    [38] 刘浩 等.老化火电设备的剩余寿命预测法.汽轮机技术,1992.2
    [39] 汪洋.日本汽轮机科学研究.上海发电设备成套研究所,汽轮机技术,1993.3
    [40] 刘尚慈.金属断裂与失效分析.水利电力出版社
    [41] 苏丽萍 译.蠕变损伤对Cr-Mo-V钢疲劳寿命的影响.国外发电设备,1996.3
    [42] John R.Scheibel, An expert system-based, on-line rotor crack monitor for utility system turbines, American Power Conferrence, 1989
    [43] Hammous T.J.Teo.H.K Turbine-generator shaft torgue fatigue life predicted by frequency domain and time domain methods following severe disturbance on the system supply, Electrical Mechanical System, 1994
    [44] Warming system prolong steam-turbine life, accerate startup; Power Engineering, 1994.8
    [45] Better maintenance, R&D extend steam generator life; Power Engineering, 1992.10
    [46] Life optimization is critical to extending power plant life Power Engineering, 1991.2
    [47] Fossil power plant applications of expert systems an EPRI perspective; American
    
    Power Conference, 1989
    [48] Ostergren, Symposium on Creep-Fratigue Interaction, New York, 1976
    [49] W J Plumbridge, R H Priest, E G Ellison. Inter. Conf. On Mechanical Behavior of Materials. Raleigh; 1979, (2)
    [50] 丁有宇,汽轮机强度的计算.机械工业出版社.1990
    [51] R.C. Spencer, D.P. Timo, Starting and Loading of Large Steam Turbines, American Power Conference, 1974
    [52] H.O. Fuchs, R.I. Stephens, metal Fatigue in Engineering, 1980
    [53] S.S. Manson, Thermal Stress and Low Cycle Fatigue, 1966
    [54] L.F.Jr. Coffin, Fatigue at High Temperature, ASTM, STP520, 1972
    [55] C. Thomes, R.A.T. Dawson, The Effect of Dwell Period and Cycle Type on High Strain Fatigue Properties at 500℃~550℃, International Conference on Engineering Aspects of Creep, 1980vol 1
    [56] Rice.J.R., On the Structure of Stress-Strain Relations for Time-Dependant Plastic Deformation in Metals, J. of App. Mech., Vol. 37, Trans. ASME, Series E, Vol.92.No.3, Sept. 1970
    [57] Leckie F A, Creep rapture of structure, Proc.R.Soc.A340.1974
    [58] Young, C.M., Cady, E.M., Subgrain Formation and Subgrain-Boundary Strengthening in Iron-Based Materials, J. of the Iron and Steel Institute, Vol. 211. Part 9, Sept. 1973
    [59] S. Murakami, A Constitutive Equation of Creep Based on the Concept of a Creep hardening Surface, Int. J. Solids Structure vol. 10, No. 7, 1980
    [60] J.D. Parker and B. Wishire. Friction Stress Measurements During High Temperature Creep of Polycrystalline Copper, Metal. Sci. 1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700