火电站中压主汽阀阀壳热疲劳损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火力发电机组中使用大量的阀门,但工程实际中阀门壳体的失效时有发生,对火电机组的安全、稳定和经济运行带来极大影响。
     本论文首先通过专项工业调查,获得了有关电站阀壳热疲劳开裂的翔实数据。调查发现,阀门壳体失效是具有普遍性的问题,热疲劳是阀门失效的主要原因;裂纹出现的时间、存在的部位具有统计上的规律性,与机组的运行工况、服役历程、阀壳的制造质量和缺陷有着密切的关系。其次采用有限元方法,分析了与电站运行工况相对应的阀壳温度场和应力场,联合各工况下阀壳有限元机械应力的计算结果,绘制了与机组一次完整启停相对应的组合应力时程图。
     本文所研究的阀门壳体是大型铸造件,表面不可避免地存在凹坑或凸起等缺陷,在国内电站行业还缺乏对材料缺陷与疲劳寿命之间关系的定量研究。本文根据材料的典型缺陷和尺寸,建立材料的缺陷模型,从而实现了材料缺陷与疲劳寿命之间的定量化研究路线,进而首次编制出了电站阀门的疲劳载荷谱。随后,按照上述建立的缺陷模型,采用Neuber方法,获得了代表阀壳真实应力-应变循环的疲劳载荷。随后,针对每年的电站运行记录,编制了电站阀门壳体的年疲劳载荷块谱。所编制的疲劳载荷谱为阀门疲劳寿命的标准化设计提供了一种定量的参考。
     根据疲劳载荷谱,采用损伤的线性累积原则,估算出机组一个运行周期内阀门的疲劳寿命,并与工业调查结果进行对照。研究结果表明:所预测的裂纹萌生部位与实际工业调查结果相符合;所预测的疲劳寿命(15年)与工业调查结果(12~14年阀壳出现大量可见裂纹)也基本一致。研究还发现:事故工况是导致阀壳裂纹萌生的重要因素,事故工况导致的热疲劳损伤减少阀壳寿命34%以上。
     最后,论文研究了阀壳表面缺陷与疲劳寿命的定量关系。研究结果表明,在正常运行周期内,严重的表面缺陷将导致阀门寿命下降约30%,而轻微的表面缺陷对正常的阀门寿命影响很小。由于表面缺陷的影响,每年含5次事故运行周期的阀门寿命将减少约50%。这一研究结论为大型火电站阀门的设计、制造、检测、运行和维护提供了一种定量化的参考。
     本文所取得的研究结果对大型火电站阀门的设计、制造、运行检验和检修具有一定的参考价值;本文所提出的研究路线和方法可供电站其它厚壁汽室件的疲劳研究时参考与借鉴。
The valves are the most important components of the steam turbine and are used to control the steam flow. Failures of turbine valves frequently occurred in many power plants due to serve uneven temperature change and high pressure working environment. Thus, it brings great threat to the economic and safe services of thermal power plants.
     Recently, the author has done an industry inspection on the Chinese-made turbine valves in power plants located on Hubei Provinces, China. It is reported that cracks are the main cause to the failure of valves. Since 2000, many turbine valves are found with short cracks or even much long propagation cracks. In the inspection report, we collected data of crack locations and crack sizes in components of turbines. By analyzing the failure, the cracks are believed to result from cyclic stresses on the valve body during the turbine services. Therefore, thermal stress analysis and fatigue life estimation of the valve body are necessary. This is the original motivation of the study in this dissertation.
     Firstly, the geometrical model of the valve body is created using the CAD program UG. The interactive mesh generation algorithm included in Hyper mesh is used to realize the meshing of the computational domain and thereafter to build a three dimensional finite element model by using a Hyper mesh-ansys translator. The practical records of the turbine operation are used as input to FEA procedures. The properties of the valve material varying with temperature are considered by using material constant table and linear interpolation method. Therefore, five cases including cold-startup, hot-startup, and extremely-hot-startup, shutdown and emergence, are carefully studied in this study.
     The finite analysis of the temperature fields and thermal stress fields were carried out in this paper.The temperature results obtained by FEA show that temperature variety with time on the key nodes is sharper than that in elsewhere, then the key nodes are selected as the dangerous zone where the initial cracks are spotted. The thermal stress results obtained sequentially using ANSYS are shown that much higher stresses experienced on the wall near the intersections between the steam inlet or outlet and the main body of the valve during tur- bine cold-startup. A maximum circumferential stress of 293 MPa value experienced during emergence shutdown. Considering a complete turbine operation from startup to shutdown and summarizing the above analysis, the fatigue is mainly induced by the circumferential transient thermal stress variation at a key point (or 'dangerous' point) near the stiffening rib in the valve body.
     Since the valve was made of cast steel, the defect casting around the inner wall of the valve inevitably existed. Using the results of stress fields obtained above, the local stress-strain loops are obtained by using Neuber's method and hysteresis loop equation . The rain-fall method is used in the data transform process and three typical stress loops are used to define the loops of fatigue loading pattern for the valve.
     Following the analytical process, the cumulative fatigue damage is calculated according to the Miner's law, and the number of stress loops to produce failure is obtained for each fatigue load pattern. The results for fatigue with or without considering of emergence shutdown are obtained respectively. The steam turbine is assumed to have ten times cold-startups, 40 times extreme-hot-startups and 240 times warm-startups in one year, then the fatigue life to produce crack will be 22.8 years. On the other hands, the fatigue life will be reduced to about 15 years, provided that 5 accidents are added to the yearly operation process. It is also found that, the thermal fatigue damage of the valve induced by emergence shutdown increase as much as twenty times than that during normal turbine operations. On the other hand, the effect of surface defects or defect casting is quantitative studied. The results for turbine normal process show that, the severe surface defects will reduce the life of the valve about 30% while tiny defects almost do not affect the fatigue life. In contrast to this result,the result for turbine process including 5 accidents per year show that, the severe surface defects will reduce the life of the valve more than one time. The above conclusions provide information for adjustment of turbine operation and for maintance and inspection of steam valves in power plants.
     Although this dissertation is mainly focused on fatigue life prediction of regulating valves on the intermediate-pressure section of the steam turbine, it takes a reference for study on thermal fatigue of other thick-wall steam room components in China-made thermal power plant in the future.
引文
[1]Thomas R S.Valve management program puts cost-consciousness first.Power,1997,141(4):63-64.
    [2]JSME.Pump and Pipes/Valves Ⅺ.Piping and Valves Used for Thermal Power Plant:2.Valves/Piping Supports.Thermal and Nuclear Power,2006,57(9):697-714.
    [3]#12
    [4]#12
    [5]张东文,孙裕昌.邯郸热电厂10机自动主汽门阀体补焊.河北电力技术,1999,18(4):25-28.
    [6]徐燕琼,张彤吴.攀钢电厂机组主汽门阀体裂纹处理.四川电力技术,1998,21(6):33-34.
    [7]中国动力工程学会.火力发电设备技术手册第二卷(汽轮机).北京:机械工业出版社,1989.
    [8]Engelke W,Bergmann D.Steam Turbine for Combined Cycle Power Plants.in:Proceedings of Cogeneration and Combined Cycle Plants-Design,Interconnection,and Turbine Applications,Boston,MA,USA,October,1990,69-78.
    [9]李荣夫.超临界汽轮机汽缸等铸钢件材料的选用.电站系统工程,2003,19(1):59-61.
    [10]李文华.亚临界600MW汽轮机材料国产化研究.东方电气评论,2005,19(3):149-153.
    [11]Berger C,Searlin R,Mayer K,et al.Steam Turbine Materials:High Temperature Forgings.in:Publishers K A,editor,Proceedings of 5th.Int.Conf.Materials for Advanced Power Engineering,part 1,Liege,Belgium,October,1994,47.
    [12]Mayer K,Hanus R,Kern T,et al.High temperature cast components for advance steam power plant,in:Publishers K A,editor,Proceedings of 6th.Int.Conf.Materials for Advanced Power Engineering,Liege,Belgium,October,1998,1022-1045.
    [13]Reinhold F,Karl H,Wagner H.Transformation of knowledge and technology from research and development to the commercial production of heavy steel castings and forgings for power engineering made of advanced creep resistant steels,[technical report],VOEST-ALPINE GIESSEREI LINZ GmbH,Linz,Austria and Saarschmiede GmbH Freiformschmiede,Volklingen,Germany,12,2000.http://www.vgb.org/.
    [14]Swanekamp R.Shut off valve problems with in-line diagnostics.Power,1998,105(3/4):56-60.
    [15]Hossam A G.Computer-aided RCM-based plant maintenance management system.Robotics and Computer Integrated Manufacturing,2003,19(1):449-458.
    [16]Mcelroy A,Fruchtman I.Use Statistical analysis to predict equipment reliability.Power,1991,10(1):39-46.
    [17]沈邱农,程钧培.我国超临界汽轮机研制的展望.上海汽轮机,2001,2(1):10-16.
    [18]Takuji F,Tetsuya Y,Shozo K,et al.Advanced Technology of Steam Turbine and Boiler for 1000MW High Temperature Power Plant.Thermal and Nuclear Power,1999,50(12):1604-1613.
    [19]Pauls P.Coal fired Power Plants.Thermal Turbine,2004,32(2):105-107.
    [20]Yasuhisa K.Future Aspect of Thermal and Nuclear Power Plant in Japan.Thermal and Nuclear Power,1999,50(1):4-10.
    [21]史进渊,杨宇,孙庆.超超临界汽轮机技术研究的新进展.动力工程,2003,23(2):2252-2257.
    [22]丁有宇,周宏利,徐铸.汽轮机强度计算.北京:水利电力出版社,1985.
    [23]Rosario D A,Tilley R M.Life assessment of critical boiler and turbine components using EPRI' s creep-fatigue pro-software,in:Proceedings of EPRI international conference on advances in power plant life assessment,Orlando,USA,October,2002.
    [24]Mercklin G.Long term creep rupture strength assessment:Development of the European Collaborative Creep Committee post assessment tests.International Journal of Pressure Vessels and Piping,2008,85(1/2):2-13.
    [25]Bagaviev A,Ulbrich A.Life assessment of turbine components bases on deterministic and probabilistic procedures.International Journal of Pressure Vessels and Piping,2004,81(11):855-859.
    [26]#12
    [27]Miroshnik R,Jeager A,Benhaim H.Probabilistic life assessment of chest valve under thermal stresses.Int.J.Pressure Vessels and Piping,1998,75(16):1-5.
    [28]史进渊,杨宇,孙庆.大型汽轮机阀门壳体寿命设计技术的研究.动力工程,2001,21(1):1003-1005.
    [29]张素心,刘岩,金永明.亚临界600MW汽轮机机组主汽门-调门阀门壳体热应力计算及分析.上海汽轮机,1998,8(4):6-11.
    [30]彭震中,丁祝顺,王璋奇.汽机调节阀阀体三维瞬态温度场及应力场分析.热能动力工程,2002,17(9):80-83.
    [31]孔宪仁,王本利,胡劲东.高温高压阀体蠕变的有限元分析.哈尔滨工业大学学报,1994,26(4):132-135.
    [32]平修二.熱応力と熱疲労.日刊工業新闻社,1974,10(1):242-260.
    [33]Tarun G,Hannu H.Dwell effects on high temperature fatigue behavior:Part Ⅰ.Materials & Design,2001,22(3):199-215.
    [34]Tarun G,Hannu H.Dwell effects on high temperature fatigue behavior:Part Ⅱ.Materials & Design,2001,22(3):217-236.
    [35]嵇明,陈琳.引进30万千瓦汽机主汽门-调节门阀门壳体应力分析,[技术报告],上海发电设备成套设计研究所,12,1987.
    [36]毛雪平.30Cr2MoV转子钢的低周疲劳特性实验研究:[硕士学位论文].河北保定:华北电力大学,1999.
    [37]王金瑞,李益民30Cr2MoV汽轮机钢的低循环疲劳特性.机械强度,1986,4(1):59-67.
    [38]Viswanathan R,Bakker W.Material for ultra-supercritical coal power plant-turbine materials:Part Ⅱ.Journal of Materials Engineering and Performance,2001,10(1):96-101.
    [39]王宏光,戴韧,刘岩.超临界汽轮机阀壳的温度场和应力场计算分析.上海理工大学学报,2007,29(1):75-78.
    [40]Rusin A.Assessment of operational risk of steam turbine valves.International Journal of Pressure Vessels and Piping,2004,81(4):373-379.
    [41]Heng C,Champomier F.Survey of conditions for cyclic loading in shell,valve and piping analyses.in:Proceedings of Proceedings of the International Conference on Pressure Vessel Technology,ICPVT,Montreal,Canada,1996,433-442.
    [42]徐灏.疲劳强度.北京:高等教育出版社,1988.
    [43]航空工业部科学技术委员会.应变疲劳分析手册.北京:科学出版社,1987.
    [44]Li B,Reis L,deFreitas M.Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction.Int.J.of Fatigue,2006,28(6):451-458.
    [45]Timo D P.Designing turbine components for low-cycle fatigue,in:Proceedings of International conference on thermal stresses and thermal fatigue,Orlando,USA,October,1971,453-469.
    [46]Spenser R,Timo D.Starting and loading of large steam turbine,in:Proceedings of the American Power Conference,Orlando,USA,October,1974,511-521.
    [47]Raman S,Padmanbhan K.A comparison of the room temperature behaviour of AISI 304LN stainless steel and Nimonic under strain cycling.Int.J.Fatigue,1995,17(4):271-277.
    [48]Naeem M,Singh R,Probert D.Implications of engine deterioration for a high-presure furbineblade's low-cycle fatigue(LCF) life consumption.Int.J.Fatigue,1999,21(4):831-847.
    [49]魏先英,余耀.主汽阀阀壳的低周疲劳曲线.上海汽轮机,1990,21(1):55-60.
    [50]吴富民,罗安民.LY12-CZ应变疲劳材质参数测定.西北工业大学学报,1984,3(1):91-105.
    [51]Ong T.An improved technique for the prediction of axial fatigue life from tensile data.Int.J.Fatigue,1993,15(3):213-219.
    [52]Muralidaharan U,Manson S.Modefied universal slopes equation for estimaton of fatigue characteristics.J.Engng.Mater.Tech.,1998,110(1):55-58.
    [53]Roessle M,Fatemi A.Strain-controlled fatigue properties of steels and some simple approximations.Int.J.Fatigue,2000,22(3):495-511.
    [54]Baumel A J,Seeger T.Metedals data for cyclic loading.Supplement I.Amsterdam:Elsevier Science Publishers,1990.
    [55]Kim K,Chen X,Han C,et al.Estimation methods for fatigue properties of steels under axial and torsional loading.Int.J.Fatigue,2002,24(3):783-793.
    [56]Park J,Song J.Detailed evalution of methods for estimation of fatigue properties.Int.J.Fatigue,1995,17(5):365-373.
    [57]Ong T.An evalution of existing methods for the prediction of axial fatigue life from tensile data.Int.J.Fatigue,1993,15(1):13-19.
    [58]陈忠兵.ZG15Cr1Mo1V低周疲劳曲线.湖北电力,2005,15(1):13-19.
    [59]Drucker D,Palgan L.On the stress-strain relations suitable for cyclic and other loading.J.App.Mechanics,1981,48(1):479-485.
    [60]Khalil M,T.H.Topper.Prediction of crack-opening stress levels for 1045 as-received steel under service loading spectra.International Journal of Fatigue,2003,25(2):149-157.
    [61]Sakane M,Ohnami M,Drucker C,et al.Notch effect in low-cycle fatigue at elevated temperature-Life prediction from crack initiation and propagation consideration.J.Engng.Technol.Trans.ASME,1986,108(4):279-284.
    [62]Ye D,Matsuoka S,al.Further investigation of Neuber's rule and the equivalent strain energy density (ESED) method.Int.J.Fatigue,2004,26(2):447-455.
    [63]Bentachfine S,Pluvinage G,al.Notch effect in low cycle fatigue.Int.J.Fatigue,2000,21(5):421-430.
    [64]Fuchs H,Stephens R.Metal Fatigue in Engineering.New York:John-Wiley&Sons Inc.,1980.
    [65]Peterson R.Stress concentration factors.New York:John-Wiley&Sons Inc.,1999.
    [66]Yao W,Xia K,Gu Y.On the fatigue notch factor,K_f.Int.J.Fatigue,1995,17(4):245-251.
    [67]Molski K,Glinka G.A method of elastic-plastic stress and strain calculation at a notch root.Material Science and Engineering,1981,50(1):93-100.
    [68]Glinka G.Energy density approach to calculation of inelastic strain-stress near notches and cracks.Engineering Fracture Mechanics,1985,22(1):485-508.
    [69]Glinka G.Calculation of inelastic notch-tip strain-stress histories under cyclic loading.Engineering Fracture Mechanics,1985,22(4):839-854.
    [70]Duprat D,Davy A,Boetsch R,et al.Fatigue damage calculation in stress concentrtion fields under varible uniaxial stress.Int.J.Fatigue,1996,18(1):245-254.
    [71]火力发电厂金属材料手册编委会.火力发电厂金属材料手册.北京:中国电力出版社,2000.
    [72]Bulloch J,Callagy A.Malfunctions of a steam turbine mechanical control system.Engineering Failure Analysis,1998,5(3):235-240.
    [73]Bulloch J,Younes C,Bernard P,et al.A detailed fitness-for-purpose assessment of turbine valve spindles.Engineering Failure Analysis,2006,13(5):747-766.
    [74]普罗特金,列依泽罗维奇[夏同棠译].单元发电机组汽轮机启动工况.北京:水利电力出版社,1985.
    [75]西安热工研究所.水和水蒸汽热力学性质图表.北京:水利电力出版社,1974.
    [76]Wagner W,Joachim H,Zschmar K.International Steam Tables(2nd Edition).Berlin,Germany:Springer,2008.
    [77]Palmer D,Fernandez-Prini R,Harvey A.Aqueous Systems at Elevated Temperatures and Pressures.London:Elsevier,Academic Press,July,2004.
    [78]Holmgren M.Freeware IF97 properties for water and steam,[technical report],Excel Engineering -Open source freeware engineering,12,2008.http://www.x-eng.com/.
    [79]胡先约,李远青.主汽门的寿命分析.汽轮机技术,1990,32(16):1-9.
    [80]Zhang D,Engeda A,Hardin J,et al.Experimental study of steam turbine control valves.J Mech Eng Sci,2004,218(C):493-507.
    [81]Hermanson K,Kern S,Picker G,et al.Predictions of external heat transfer for turbine vanes and blades with secondary flowfields.J Turbomach Trans ASME,2003,125(1):107-113.
    [82]Mazur Z,Urquiza G,Campose R.Improvement of the turbine main stop valves with flow simulation in erosion by solid particle impact CFD.Int J Rotat Mach,2004,10(1):65-73.
    [83]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2002.
    [84]徐芝纶.弹性力学(上册).北京:人民教育出版社,1983.
    [85]航空工业部科学技术委员会.应力集中系数手册.北京:高等教育出版社,1990.
    [86]Wu C H.Stress and Notch-Stress Concentration Induced by Slight Depressions and Protrusions.J.Appl.Mech.Trans.ASME,1993,60(2):992-997.
    [87]Bielecki M,Karcz M,Radulski W,et al.Thermo-mechanical coupling between the flow of steam and deformation of the valve during start-up of the 200MW turbine.TASK QUARTERLY,2001,5(2):125-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700