铬钒系微合金车轴钢晶粒粗化与变形抗力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料的变形抗力是指金属在一定的变形条件下进行塑性变形时,单位横截面积上抵抗此变形的能力,是表征金属和合金压力加工性能的一个基本量,是轧制力计算过程中的一个重要参数,也是制定合理的轧制工艺、设备能力校核的参数。晶粒粗化是车轴失效的主要原因之一,在热处理过程中,应当注意并防止奥氏体晶粒粗化。
     铬钒系微合金车轴钢是攀枝花钢铁研究院根据铁道部科学研究院最新提出的铁路货车车轴技术条件研发的一种性能优于LZ50车轴钢的新材质车轴钢。论文针对于晶粒粗化是造成车轴失效的主要原因之一设计了晶粒粗化实验;针对攀铬钒系微合金车轴钢连铸坯中存在的中心疏松、偏析等缺陷,必须在轧制过程中采用大的压下量使中心得到充分变形以消除铸坯中存在的缺陷问题以及采用大的压下量后是否影响轧制设备的正常运行问题设计了变形抗力实验。通过微合金车轴钢晶粒粗化试验,确定了微合金车轴钢的晶粒粗化温度,对于制订合理的车轴钢热处理工艺、防止车轴钢在热处理过程中发生晶粒粗化引起的性能恶化有重要意义。本文利用Gleeble-3500热模拟实验机进行的微合金车轴钢的变形抗力实验研究,对于了解新材质车轴钢的变形抗力特征、优化现场轧制工艺具有重要的参考意义。
     晶粒粗化实验结果表明微合金车轴钢奥氏体晶粒粗化温度在1150℃左右,比普通碳钢高约200℃,微合金元素钒形成的稳定的第二相粒子阻碍晶界的迁移,阻止奥氏体晶粒的长大,是晶粒粗化温度升高的主要原因。
     变形抗力热模拟实验结果表明,变形抗力随着变形速率、变形程度的增加而升高,随着变形温度的升高而下降;变形温度与变形抗力遵循在半对数坐标中的线性关系;变形速率与变形抗力遵循在双对数坐标中的线性关系。根据测试的变形抗力曲线特征,分析了变形温度和变形程度对再结晶行为的影响,结果表明高温低速变形条件下容易发生再结晶行为,而低温高速下不易发生;采用Mat lab软件进行了多元非线性模拟,得到的微合金车轴钢变形抗力数学模型。
     论文对铬钒系微合金车轴钢与40SiMn2、30MnTiB和42CrMo的变形抗力进行了对比分析,结果表明,在常用轧制温度范围内,相同变形条件下微合金车轴钢的变形抗力略低于对比钢种,能够满足轧制工艺和正常生产的要求。
Metal materials'deformation resistance, an elementary quatity of their plastic properties, is the capability to resist plastic deformation per unit cross-sectional area under certain deformation conditions. It is an important parameter of rolling force calculating, reasonable rolling process establishing and equipment checking. As a main cause of axle failure, austenitic grain coarsening should be paid enough attention during heat treatment.
     Cr-V micro-alloy axle steel, a new kind of axle steel, is developed by Panzhihua Iron & Steel Research Institute according to the axle technology of railway freight cars proposed by Ministry of Railways. Its mechanical properties are superior to those of axle steel LZ50. In this thesis, the grain coarsening experiment was designed based on its influence on axle failure. And the deformation resistance experiment was prepared to study whether heavy rolling reduction, able to eliminate center porosity, segregation and other defects of Cr-V micro-alloy axle steel casting billet, has negative effects on rolling equipment's normal operation. Appropriate coarsening temperature was determined through grain coarsening experiment, which is important to make reasonable heat treatment process and prevent performance degradation caused by grain coarsening during heat treatment. In this subject, the study on deformation resistance of micro-alloy axle steel, conducted on Gleeble-3500, has a reference significance for understanding the stress-strain curves'characteristics of new axle steel and optimizing onsite rolling process.
     The grain coarsening results show that austenite grain coarsening temperature of new axle steel is about 1150℃,200℃higher than ordinary steel. The stable second phase formed by Vanadium and other elements is the main reason for the increase of grain coarsening temperature.
     The deformation resistance results show that deformation resistance increases with the increase of deformation rate and extent, and decreases with the increase of deformation temperature; the deformation temperature and resistance follow a linear relationship in semi-logarithmic coordinate, so do the deformation rate and resistance in double logarithmic coordinate. Based on the characteristics of stress-strain curves, the effects of deformation temperature and extent on recrystallization were analyzed. It is found that recrystallization happens easily under high temperature and low deformation rate, but not under low temperature and high deformation rate. With mat lab software, multivariate non-linear simulation was carried out, and the mathematical model of Cr-V micro-alloy axle steel was obtained.
     A further study on deformation resistance was made among Cr-V micro-alloy axle steel,40SiMn2,30MnTiB and 42CrMo. The results show that under common rolling temperature and same deformation conditions, micro-alloy axle steel, whose deformation resistance is slightly lower than other steels', can completely meet the needs of rolling process and normal production.
引文
[1]曲宗实.火车轮轴的材料与工艺发展情况.大型铸锻件,1995,(1):14.
    [2]李桂仙.高速铁路车轴材质的优化选择.材料工程,2008,(2):34.
    [3]郑伟生.国外轮轴技术发展综述.国外铁道车辆,1998,(5):10.
    [4]周纪华,管克智.金属塑性变形抗力.北京:机械工业出版社,1989.
    [5]陈子坤,许加陆,周忠华.基于Gleeble-1500热/力模拟实验机的轧机轧制力的研究.江苏冶金,2008,36(2):50-52.
    [6]方淑芳.Gleeble-1500实验机的热模拟技术.攀钢科技,1995,18(2):41-44.
    [7]王鲁宁Gleeble-2000热模拟实验机在控制轧制过程模拟中的应用.本钢技术,1999,(3):4-6.
    [8]黄绪传GLEEBLE-3500实验机的热模拟技术.梅山科技,2006,(1):44-46.
    [9]郑芳,宋红梅Gleeble-3800热模拟实验机在宝钢的典型应用与功能开发.宝钢技术,2003,(5):31.
    [10]管克智,周纪华,朱其圣等.热轧金属塑性变形抗力研究.钢铁研究学报,1983,(2):123-138.
    [11]李正升,张关云,王培兴等.低碳锰铌钢两道次热变形的变形抗力.钢铁研究学报,1989,1(3):29-35.
    [12]孙本荣,赵佩祥,朱荣林等.控制轧制中板变形抗力的研究.钢铁,1986,21(4):30-35.
    [13]熊尚武,王国栋,张强.新变形抗力数学模型的建立与应用.钢铁,1993,28(5):21-26.
    [14]邵卫军,钟春生.用图形工具GRAFTOOL建立指数强化材料变形抗力模型的方法探讨.中国钼业,1997,21(增刊):62-64.
    [15]I.Schindler,E.Hadasik.A new model describing the hot stress-strain curves of HSLA steel at high deformation.Journal of Materials Processing Technology. Journal of Materials Processing Technology,2000,(106):131-135.
    [16]Siamak Serajzadeh,Ali Karimi Taheri.Prediction of flow stress at hot working condition.Mechanics Research Communications,2003,(30):87-93.
    [17]Siamak Serajzadeh.A mathematical model for evolution of flow stress during hot deformation.Materials Letters,2005,(59):3319-3324.
    [18]R.Ebrahimi,S.H.Zahiri,A.Najafizadeh.Mathematical modelling of the stress-strain curves of Ti-IF steel at high temperature. Journal of Materials Processing Technology,2006,(171):301-305.
    [19]Yong-Cheng Lin,Ming-Song Chen,Jun Zhang.Modeling of flow stress of 42Cr-Mo steel under hot compression. Materials Science and Engineering,2009,(A 499):88-92.
    [20]戴铁军,刘战英,刘相华等30MnSi钢金属塑性变形抗力的数学模型.塑性工程学报,2001,8(3):71.
    [21]周晓峰,刘战英20MnSiV钢变形抗力数学模型和连续转变曲线研究.塑性工程学报,2006,13(6):74-78.
    [22]汪水泽,李长生,刘相华等Fe-1.6%Si无取向硅钢热轧变形抗力数学模型.塑性工程学报,2008,15(4):126-130.
    [23]孙学义,宋红梅,林勤等.含铌高强结构钢的变形抗力数学模型.冶金研究,2005:338-341.
    [24]陈连生,狄国标,张洪波等.低碳含铌钛双相钢的塑性变形抗力模型.塑性报,2007,14(6):820.
    [25]Y.C.Lin,Ge Liu.A new mathematical model for predicting flow stress of typical high-strengthalloy steel at elevated high temperature. Computational Materials Science,2010,(48):54-58.
    [26]李慎升,米振莉唐荻等TWIP钢变形抗力数学模型及实验研究.热加工工艺技术与材料研究,2008,(8):99-100.
    [27]K.P.Rao,Y.K.D.V.Prasad.Neural network approach to flow stress evaluation in hot deformation.Journal of materials processing Technology,1995,(53):552-566.
    [28]Z.Y.Liu,W.-D.Wang,W.Gao.Prediction of the mechanical properties of hot roll-ed C-Mn steels using artificial neural networks.Journal of materials process-ing Technology,1996,(57):332-336.
    [29]高永生,张鹏,崔军等.应用人工神经网络预测50CrV4钢的变形抗力.钢铁,1998,33(4):27-30.
    [30]韩丽琦,臧勇,邹家祥等.基于人工神经网络的热轧碳钢变形抗力预报.北京科技大学学报,2001,23(2):131-133.
    [31]戴铁军,刘战英.模糊神经网络在30MnSi金属塑性变形抗力预报中的应用.钢铁研究,2001,(1):33-35.
    [32]Madakasira Prabhakar Phaniraj,Ashok Kumar Lahiri.The applicability of neural network model to predict flow stress for carbon steels.Journal of Materials Pro-cessing Technology,2003,(141):219-227.
    [33]Li Ping,Xue Kemin,Lu Yan et al.Neural network prediction of flow stress of Ti-15-3 alloy under hot compression.Journal of Materials Processing Technolo-gy,2004,(148):235-238.
    [34]Chen Ai-Ling,Wang Mu-Lan,Liu Kun. Prediction of the flow stress for 30MnSi steel using evolutionary least squares support vector machine and mathematical models.Proceedings of the IEEE International Conference on Industrial Technol-ogy,2005,(2005):963-968.
    [35]张洛明,孟令启,马金亮等.基于RBF神经网络的热轧碳钢变形抗力预测.郑州大学学报(理学版),2007,39(3):131-135.
    [36]Shashi Kumar,Sanjeev Kumar,Prakash.Prediction of flow stress for carbon steels using recurrent self-organizing neuron fuzzy networks. Expert Systems with Applacations,2007,(32):777-788.
    [37]崔忠圻.金属学与热处理.北京:机械工出版社,2000.
    [38]K. He,T.N.Baker. Effect of Zirconium additions on Austenite grain coarsening of C-Mn and microalloy steels. Materials Science and Engineering,1998,(A256): 111-119.
    [39]C.S.PANDE, A.K.RAJAGOPAL.UNIQUENESS AND SELF SIMILARITY OF SIZEDISTRIBUTIONS IN GRAIN GROWTH AND COARSENING. Acta mater,2001,(49):1805-1811.
    [40]Seung-Hyun Hong, Dong Nyung Lee.Grain coarsening in IF steel during strain annealing. Materials and Engineering,2001,(A357):75-85.
    [41]Ning Liu,Gencang Yang,Feng Liu et al.Grain refinement and grain coarsening of undercooled Fe-Co alloy. Materials Characterization,2006,(57):115-120.
    [42]J·Wyszkowski.Grain growth of austenite on rapid heating.iron and steel,1970,4.
    [43]徐罗平.机车车轴断裂失效分析.实验检测,2005,(03):20-21.
    [44]冉富,张文明,催宁林等.铁道车辆用LZW钢的质量控制.冶金标准化与质量,2001,39(3):51-53.
    [45]姜晋文,黄长春,高佐忠等.关于奥氏体本质晶粒度测试方法的讨论.中国金属学会第一届特殊钢年会论文,北京,1979.
    [46]伍千思.钢的奥氏体晶粒度显示方法.北京:冶金部情报标准研究所出版,1987.
    [47]李炯辉,施友方,高汉文.钢铁材料金相图普.上海:上海科学技术出版社,1981.
    [48]机械工业理化检验人员技术培训和资格鉴定委员会.金相检验.上海:上海科学普及出版社,2003.
    [49]张小红.阻止碳钢奥氏体晶粒长大的析出相研究.金属热处理,1990,(11):20.
    [50]J.Klemenc,M.Fajdiga.A neural-network approach to describe the scatter of cyclic stress-strain curves. Materials and Design,2010,(31):438-448.
    [51]柳得橹.洁净微合金钢的变形抗力与组织性能研究[硕士学位论文].北京:北京科技大学,2003.
    [52]吕立华.轧制理论基础.重庆:重庆大学出版社.1991.
    [53]Kim J.R. Rasmussen.Full-range stress-strain curves for stainless steelalloys. Journal of Constructional Steel Research,2003,(59):47-61.
    [54]任勇,程晓茹.轧制过程数学模型.北京:冶金工业出版社,2008.
    [55]吴翊,李永乐,胡庆军.应用数理统计.北京:国防科技大学出版,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700