支原体小GTP结合蛋白类似片段(SGLP)与宿主细胞Rac1和Stat3相互作用及其功能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨细胞培养中支原体污染的种类及清除方法。方法检测实验室不同培养者培养的各细胞系污染支原体情况。首先设计支原体种属特异性的简并引物,针对其16s-23s基因间隔区序列,用来检测支原体阳性片段条带。根据简并引物扩增的片段测序明确为何种支原体污染。然后针对污染支原体的种类和滴度,采用方差分析方法,经过统计检验,探索一种合理的配方药物用于细胞培养,能够短期杀灭细胞培养中污染的支原体。对于药物对支原体的杀灭作用采用定量PCR的方法检测,对于药物对细胞的副作用,采用流式细胞数测细胞周期的方法作为指标来评估。对于细胞内支原体的污染,采用免疫荧光后激光共聚焦显微镜观察的方法来明确细胞内变化。结果1)设计的支原体属及莱氏无胆甾原体属简并引物及特异性引物可以快速的检测出有无支原体污染,根据条带对比可以初步明确为何种支原体污染,进一步明确还可以通过测序的金标准来明确。通过该方法可以快速的检测且准确性可靠。2)经方差分析各种药物浓度组合,筛选出具有抗支原体作用显著的几种组合。药物选自三种类型,分别为:截短侧耳素类,第三代喹诺酮类及以上,四环素类。分别配成A,B,C液。所述试剂由A液、B液等体积混合或A液、B液、C液等体积混合而成,其中,A液由半合成截短侧耳素衍生物和0.01M PBS混合而成,混合液中半合成截短侧耳素衍生物的质量-体积百分比浓度为0.5%—1.5%;B液由喹诺酮类衍生物和0.01M PBS混合而成,混合液中喹诺酮类衍生物质量-体积百分比浓度为0.5%—1.5%;C液由四环素类衍生物和0.01M PBS混合而成,混合后四环素类衍生物的质量-体积百分比浓度为0.25%—0.75%;3)该种配方组合不仅可以杀灭细胞外支原体污染,还可以杀灭潜藏于宿主细胞内的支原体。使用之后细胞内部微生物感染引起的自噬反应消失。4)该种配方组合在正常使用浓度下对实验用肿瘤细胞系无明显毒副作用。使用治疗浓度10倍以上的浓度处理细胞未见明显细胞周期变化。结论该发明的目的是提供一种用于清除细胞培养中支原体污染的试剂及其使用方法,能够系统的检测出支原体的种类并将清除,可以有效的清除支原体污染,并不会对细胞的本身代谢带来影响。
     目的探讨支原体对宿主肿瘤细胞的影响,鉴别一种毒力因子SGLP(smallGTPase-like protein fragment),并探索其与宿主细胞内分子相互作用的机制。方法首先通过生物信息学的方法,分析支原体基因组序列,寻找一些具有保守性的共有序列。在候选的序列中,通过查阅相关文献,确定SGLP为可能的突破口,即可能和Rac1以及Stat3相互作用的支原体蛋白。然后将目的片段的编码序列分别克隆至原核和真核表达载体。通过GST融合蛋白和GFP融合蛋白在原核和真核实验系统中的表达来研究目的蛋白片段和宿主分子Rac1和Stat3的相互作用。通过激光共聚焦显微镜观察目的蛋白分子和宿主细胞Rac1和Stat3在细胞内的共定位。通过Western blot研究该支原体蛋白片段对Rac1和Stat3活性的影响。通过转染突变型的Rac1质粒,改变宿主细胞内Rac1的活性,研究支原体蛋白片段对Stat3的激活是否依赖于Rac1的活性。通过Transwell实验和BrdU掺入实验,研究该支原体蛋白片段对宿主肿瘤细胞体外的迁移和增殖能力的影响。用流式检测支原体蛋白片段对细胞内活性氧生成水平的影响,并研究其效应是否依赖于Rac1。用染色质免疫共沉淀证实Stat3的可能靶基因是否包含Rab7。结果本实验证实所克隆的支原体保守蛋白Chromosomepartition protein Smc的N端240个氨基酸残基具有类似小GTP结合蛋白的序列特征(SGLP)。结果显示,SGLP是分子量约27KDa的蛋白片段,可以和宿主细胞Rac1以及Stat3相互作用。SGLP可以上调Rac1的活性和Stat3的磷酸化水平,且促进Stat3磷酸化的作用依赖于Rac1的活性。本实验还发现,SGLP可以促进肿瘤细胞体外的迁移和增殖能力。本实验还探索了SGLP激活Rac1和Stat3的下游效应。为进一步研究打下基础。结论支原体保守蛋白片段SGLP可以通过和Rac1以及Stat3的相互作用促进Rac1和Stat3的激活,从而促进宿主肿瘤细胞的迁移和增殖,以及产生一系列其他的影响。
Objective To evaluate the situation of mycoplasma contamination in cellcultures for laboratory research use, and to find a method to eliminate the mycoplasmacontamination in a short time. Method First, we designed the degenerate primer pairs foramplification of the16s-23s gene spacer region from mycoplasma genera. According to thelength of the amplified product, we preliminarily confirm which species the contaminant isresulted from. Then, based on the identified mycoplasma species and titers of the infection,we utilize ANOVA analysis to examine an appropriate formulation of three classes ofantimicrobials to eliminate the infection in a short time. The efficiency of theanti-mycoplasma effect was assessed by real-time PCR using a method based on SybrGreen. The side effects of the antimicrobials on host cell were indicated by alterations incell cycle measured by Flow cytometry. The alterations caused by intracellular mycoplasmainfection was visualized by fluorescence immunostaining followed by confocal microscopy.Results1) The designed degenerate primers for Mycoplasma and Acholeplasma canamplify these two genera of mycoplasma in2hours of amplification reaction. The speciesof the contaminants can be assessed preliminarily according to the length of the productfragment. The golden standard for identification can also be conducted after theamplification by sequencing.2) Based on the analysis of ANOVA, we figured out threetypes of antimicrobial dr gs that can be used to eliminate mycoplasma infection in cellscultures. The dr gs used were…, which are designated as A, B and C, respectively. Theformulation of the regime are: solution A was0.5%-1.5%m/v resolved with0.01M PBS;solution B was0.5%-1.5%m/v resolved with0.01M PBS; solution C was0.25%-0.75%m/v resolved with0.01M PBS.3) After administration of this formulation of antimicrobialdr gs, the intracellular mycoplasma as well as the extracellular mycoplasma can both be eliminated. The autophagy flux which are characterized by the LC3-II puncta recovered tonormal state after elimination of mycoplasma infection.4) This formulation did not causemuch prominent side effect to host cells. The cell cycle did not change significantlydetermined by Flow cytometry. Conclusion This innovation of a method for detection ofmycoplasma followed by specifically eliminating both extracellular and intracellularmycoplasma can be used in cell culture laboratory.
     Objective The author so ght to indentify a mycoplasmal virulence factor thatcan interact with host cellular molecules, by which mycoplasma may affect host tumor cellfunctions. And the author also endeavored to explore the molecular basis for thepathogenesis caused by mycoplasmal virulence factors. Method First, the author utilizedthe method based on bioinformatics to scrutinize mycoplasma genomes in searching forsome highly conserved sequences among mycoplasma species. Based on ample evidencesfrom papers about prokaryotic virulence factors, the author chose a small GTPase-likeprotein fragment (SGLP) of mycoplasma protein, chromosome partition protein Smc, as acandidate for research. The author cloned the SGLP sequence and inserted it into vectorsfor expression in E coli. and HeLa cells separately. The protein interactions between SGLPand Rac1/Stat3were assessed by GST pull-down assay and co-immunoprecipitation assay.The intracellular colocalization of SGLP with Rac1and Stat3was determined by confocalmicroscopy. Rac1activation was detected using Western blot analysis based on aGST-Pak1pull-down assay. Stat3phosphorylation was also detected using Western blotanalysis. The author transfected HeLa cells with dominant negative or constitutively activeRac1constructs to manipulate the cellular Rac1activity to investigate whetherSGLP-induced Stat3phosphorylation was dependent on Rac1activity. The effect of SGLPon HeLa cell migration was studied thro gh a Transwell assay, and the effect of SGLP onHeLa cell proliferation was also studied thro gh a BrdU incorporation assay determined byFlow cytometry. The ROS generation was tested by Flow cytometry after depletion of Rac1using siRNA. Chromatin immunoprecipitation assay was conducted to investigate whetherRab7was a Stat3target gene. Results1) SGLP can interacts with Rac1and Stat3;2)SGLP can upregulate Rac1activity and Stat3phosphorylation at705-tyrosine residues.3)SGLP-induced Stat3phosphorylation is dependent on Rac1activity.4) SGLP can promote tumor cell migration and has a pro-proliferative effect on tumor cells.4) studies aboutdownstream effects of SGLP imposed on host cells is preliminarily explored. ConclusionThe highly conserve mycoplasma protein fragment, SGLP, may induce activation of Rac1and Stat3thro gh interaction with Rac1and Stat3, which may be responsible for theobserve increase in tumor cell migration and proliferation. Studies about its ripples effectspave road for future studies in this field.
引文
[1] T.Y. Toruno, M.S. Music, S. Simi, M. Nicolaisen, S.A. Hogenhout, PhytoplasmaPMU1exists as linear chromosomal and circular extrachromosomal elements and hasenhanced expression in insect vectors compared with plant hosts, Mol Microbiol77(2010)1406-1415.
    [2] M. Himeno, Y. Neriya, N. Minato, C. Miura, K. S gawara, Y. Ishii, Y. Yamaji, S.Kakizawa, K. Oshima, S. Namba, Unique morphological changes in plant pathogenicphytoplasma-infected petunia flowers are related to transcriptional regulation of floralhomeotic genes in an organ-specific manner, Plant J67(2011)971-979.
    [3] L. Hayflick, R.M. Chanock, Mycoplasma Species of Man, Bacteriol Rev29(1965)185-221.
    [4] S. Rottem, Interaction of mycoplasmas with host cells, Physiol Rev83(2003)417-432.
    [5] S. Rottem, Y. Naot, Subversion and exploitation of host cells by mycoplasmas,Trends Microbiol6(1998)436-440.
    [6] J. Diao, Y. Ishitsuka, W.R. Bae, Single-molecule FRET study of SNARE-mediatedmembrane fusion, Biosci Rep31(2011)457-463.
    [7] A. Ivankin, I. Kuzmenko, D. Gidalevitz, Cholesterol mediates membrane curvatureduring fusion events, Phys Rev Lett108(2012)238103.
    [8] M. Tarshis, M. Salman, S. Rottem, Fusion of mycoplasmas: the formation of cellhybrids, FEMS Microbiol Lett66(1991)67-71.
    [9] M. Salman, M. Tarshis, S. Rottem, Small unilamellar vesicles are able to fuse withMycoplasma capricolum cells, Biochim Biophys Acta1063(1991)209-216.
    [10] J.A. Robertson, M. Alfa, E.S. Boatman, Morphology of the cells and colonies ofMycoplasma hominis, Sex Transm Dis10(1983)232-239.
    [11] J. Adan-Kubo, A. Uenoyama, T. Arata, M. Miyata, Morphology of isolated Gli349, aleg protein responsible for Mycoplasma mobile gliding via glass binding, revealed byrotary shadowing electron microscopy, J Bacteriol188(2006)2821-2828.
    [12] P.M. Furneri, G. Rappazzo, M.P. Musumarra, G. Tempera, L.S. Roccasalva, Geneticbasis of natural resistance to erythromycin in Mycoplasma hominis, J AntimicrobChemother45(2000)547-548.
    [13] B. Cao, C.J. Zhao, Y.D. Yin, F. Zhao, S.F. Song, L. Bai, J.Z. Zhang, Y.M. Liu, Y.Y.Zhang, H. Wang, C. Wang, High prevalence of macrolide resistance in Mycoplasmapneumoniae isolates from adult and adolescent patients with respiratory tract infectionin China, Clin Infect Dis51(2010)189-194.
    [14] C. Bebear, S. Pereyre, O. Peuchant, Mycoplasma pneumoniae: susceptibility andresistance to antibiotics, Future Microbiol6(2011)423-431.
    [15] S.E. Wilkowsky, M.A. Barbieri, P.D. Stahl, E.L. Isola, Regulation of Trypanosomacruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin,Rab5, and Rab7, Biochem Biophys Res Commun291(2002)516-521.
    [16] J.H. Brumell, M.A. Scidmore, Manipulation of rab GTPase function by intracellularbacterial pathogens, Microbiol Mol Biol Rev71(2007)636-652.
    [17] D.J. Klionsky, F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, K.Adeli, L. Agholme, M. Agnello, P. Agostinis, J.A. Aguirre-Ghiso, H.J. Ahn, O.Ait-Mohamed, S. Ait-Si-Ali, T. Akematsu, S. Akira, H.M. Al-Younes, M.A. Al-Zeer,M.L. Albert, R.L. Albin, J. Alegre-Abarrategui, M.F. Aleo, M. Alirezaei, A. Almasan,M. Almonte-Becerril, A. Amano, R. Amaravadi, S. Amarnath, A.O. Amer, N.Andrieu-Abadie, V. Anantharam, D.K. Ann, S. Anoopkumar-Dukie, H. Aoki, N.Apostolova, G. Arancia, J.P. Aris, K. Asanuma, N.Y. Asare, H. Ashida, V. Askanas,D.S. Askew, P. Auberger, M. Baba, S.K. Backues, E.H. Baehrecke, B.A. Bahr, X.Y.Bai, Y. Bailly, R. Baiocchi, G. Baldini, W. Balduini, A. Ballabio, B.A. Bamber, E.T.Bampton, G. Banhegyi, C.R. Bartholomew, D.C. Bassham, R.C. Bast, Jr., H. Batoko,B.H. Bay, I. Beau, D.M. Bechet, T.J. Begley, C. Behl, C. Behrends, S. Bekri, B.Bellaire, L.J. Bendall, L. Benetti, L. Berliocchi, H. Bernardi, F. Bernassola, S.Besteiro, I. Bhatia-Kissova, X. Bi, M. Biard-Piechaczyk, J.S. Blum, L.H. Boise, P.Bonaldo, D.L. Boone, B.C. Bornhauser, K.R. Bortoluci, I. Bossis, F. Bost, J.P.Bourquin, P. Boya, M. Boyer-Guittaut, P.V. Bozhkov, N.R. Brady, C. Brancolini, A.Brech, J.E. Brenman, A. Brennand, E.H. Bresnick, P. Brest, D. Bridges, M.L. Bristol,P.S. Brookes, E.J. Brown, J.H. Brumell, et al., Guidelines for the use andinterpretation of assays for monitoring autophagy, Autophagy8(2012)445-544.
    [18] R. Paddenberg, A. Weber, S. Wulf, H.G. Mannherz, Mycoplasma nucleases able toinduce internucleosomal DNA degradation in cultured cells possess manycharacteristics of eukaryotic apoptotic nucleases, Cell Death Differ5(1998)517-528.
    [19] S. Razin, D. Yogev, Y. Naot, Molecular biology and pathogenicity of mycoplasmas,Microbiol Mol Biol Rev62(1998)1094-1156.
    [20] S.R. Somarajan, T.R. Kannan, J.B. Baseman, Mycoplasma pneumoniae Mpn133is acytotoxic nuclease with a glutamic acid-, lysine-and serine-rich region essential forbinding and internalization but not enzymatic activity, Cell Microbiol12(2010)1821-1831.
    [21] M.R. Buim, M. Buzinhani, M. Yamaguti, R.C. Oliveira, E. Mettifogo, P.M. Ueno, J.Timenetsky, G.M. Santelli, A.J. Ferreira, Mycoplasma synoviae cell invasion:elucidation of the Mycoplasma pathogenesis in chicken, Comp Immunol MicrobiolInfect Dis34(2011)41-47.
    [22] K. Wennerberg, K.L. Rossman, C.J. Der, The Ras superfamily at a glance, J Cell Sci118(2005)843-846.
    [23] I.R. Vetter, A. Wittinghofer, The guanine nucleotide-binding switch in threedimensions, Science294(2001)1299-1304.
    [24] N.M. Alto, F. Shao, C.S. Lazar, R.L. Brost, G. Chua, S. Mattoo, S.A. McMahon, P.Ghosh, T.R. H ghes, C. Boone, J.E. Dixon, Identification of a bacterial type IIIeffector family with G protein mimicry functions, Cell124(2006)133-145.
    [25] R. Bulgin, B. Raymond, J.A. Garnett, G. Frankel, V.F. Crepin, C.N. Berger, A.Arbeloa, Bacterial guanine nucleotide exchange factors SopE-like and WxxxEeffectors, Infect Immun78(2010)1417-1425.
    [26] L.K. Jackson, P. Nawabi, C. Hentea, E.A. Roark, K. Haldar, The Salmonella virulenceprotein SifA is a G protein antagonist, Proc Natl Acad Sci U S A105(2008)14141-14146.
    [27] J.H. Ham, D.R. Majerczak, K. Nomura, C. Mecey, F. Uribe, S.Y. He, D. Mackey, D.L.Coplin, Multiple activities of the plant pathogen type III effector proteins WtsE andAvrE require WxxxE motifs, Mol Plant Microbe Interact22(2009)703-712.
    [28] U.B. Hagemann, J.M. Mason, K.M. Muller, K.M. Arndt, Selectional and mutationalscope of peptides sequestering the Jun-Fos coiled-coil domain, J Mol Biol381(2008)73-88.
    [29] J.M. Mason, M.A. Schmitz, K.M. Muller, K.M. Arndt, Semirational design of Jun-Foscoiled coils with increased affinity: Universal implications for leucine zipperprediction and design, Proc Natl Acad Sci U S A103(2006)8989-8994.
    [30] Y. Takai, T. Sasaki, T. Matozaki, Small GTP-binding proteins, Physiol Rev81(2001)153-208.
    [31] A.R. Simon, H.G. Vikis, S. Stewart, B.L. Fanburg, B.H. Cochran, K.L. Guan,Regulation of STAT3by direct binding to the Rac1GTPase, Science290(2000)144-147.
    [32] T.R. Faruqi, D. Gomez, X.R. Bustelo, D. Bar-Sagi, N.C. Reich, Rac1mediates STAT3activation by autocrine IL-6, Proc Natl Acad Sci U S A98(2001)9014-9019.
    [33] T. Kawashima, Y.C. Bao, Y. Nomura, Y. Moon, Y. Tonozuka, Y. Minoshima, T.Hatori, A. Tsuchiya, M. Kiyono, T. Nosaka, H. Nakajima, D.A. Williams, T. Kitamura,Rac1and a GTPase-activating protein, MgcRacGAP, are required for nucleartranslocation of STAT transcription factors, J Cell Biol175(2006)937-946.
    [34] Y. Tonozuka, Y. Minoshima, Y.C. Bao, Y. Moon, Y. Tsubono, T. Hatori, H. Nakajima,T. Nosaka, T. Kawashima, T. Kitamura, A GTPase-activating protein binds STAT3and is required for IL-6-induced STAT3activation and for differentiation of aleukemic cell line, Blood104(2004)3550-3557.
    [35] L. Moldovan, K. Mythreye, P.J. Goldschmidt-Clermont, L.L. Satterwhite, Reactiveoxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase andRac1, Cardiovasc Res71(2006)236-246.
    [36] S. Murthy, A. Adamcakova-Dodd, S.S. Perry, L.A. Tephly, R.M. Keller, N. Metwali,D.K. Meyerholz, Y. Wang, M. Glogauer, P.S. Thorne, A.B. Carter, Modulation ofreactive oxygen species by Rac1or catalase prevents asbestos-induced pulmonaryfibrosis, Am J Physiol Lung Cell Mol Physiol297(2009) L846-855.
    [37] X.F. Zhang, P. Forscher, Rac1modulates stimulus-evoked Ca(2+) release in neuronalgrowth cones via parallel effects on microtubule/endoplasmic reticulum dynamics andreactive oxygen species production, Mol Biol Cell20(2009)3700-3712.
    [38] S.P. Hauselmann, B.I. Rosc-Schluter, V. Lorenz, I. Plaisance, M. Brink, O. Pfister,G.M. Kuster, beta1-Integrin is up-regulated via Rac1-dependent reactive oxygenspecies as part of the hypertrophic cardiomyocyte response, Free Radic Biol Med51(2011)609-618.
    [39] S.C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B.B. Aggarwal, Upsides anddownsides of reactive oxygen species for cancer: the roles of reactive oxygen speciesin tumorigenesis, prevention, and therapy, Antioxid Redox Signal16(2012)1295-1322.
    [40] G. Millonig, I. Ganzleben, T. Peccerella, G. Casanovas, L. Brodziak-Jarosz, K.Breitkopf-Heinlein, T.P. Dick, H.K. Seitz, M.U. Muckenthaler, S. Mueller, Sustainedsubmicromolar H2O2levels induce hepcidin via signal transducer and activator oftranscription3(STAT3), J Biol Chem287(2012)37472-37482.
    [41] T.S. Teng, B. Lin, E. Manser, D.C. Ng, X. Cao, Stat3promotes directional cellmigration by regulating Rac1activity via its activator betaPIX, J Cell Sci122(2009)4150-4159.
    [42] R. Arulanandam, M. Geletu, H. Feracci, L. Raptis, Activated Rac1requires gp130forStat3activation, cell proliferation and migration, Exp Cell Res316(2010)875-886.
    [43] M. Debidda, L. Wang, H. Zang, V. Poli, Y. Zheng, A role of STAT3in RhoGTPase-regulated cell migration and proliferation, J Biol Chem280(2005)17275-17285.
    [44] S.L. Schwartz, C. Cao, O. Pylypenko, A. Rak, A. Wandinger-Ness, Rab GTPases at aglance, J Cell Sci120(2007)3905-3910.
    [45] S. Saxena, C. Bucci, J. Weis, A. Kruttgen, The small GTPase Rab7controls theendosomal trafficking and neuritogenic signaling of the nerve growth factor receptorTrkA, J Neurosci25(2005)10930-10940.
    [46] A.H. Bild, J. Turkson, R. Jove, Cytoplasmic transport of Stat3by receptor-mediatedendocytosis, EMBO J21(2002)3255-3263.
    [47] J. Azare, K. Leslie, H. Al-Ahmadie, W. Gerald, P.H. Weinreb, S.M. Violette, J.Bromberg, Constitutively activated Stat3induces tumorigenesis and enhances cellmotility of prostate epithelial cells thro gh integrin beta6, Mol Cell Biol27(2007)4444-4453.
    [1] S. Rottem, Interaction of mycoplasmas with host cells, Physiol Rev83(2003)417-432.
    [2] A. Skapski, M.C. Hygonenq, E. Sagne, S. Guiral, C. Citti, E. Baranowski, Genome-scale analysis of Mycoplasma agalactiae loci involved in interaction with host cells,PLoS One6(2011) e25291.
    [3] P.M. Ueno, J. Timenetsky, V.E. Centonze, J.J. Wewer, M. Cagle, M.A. Stein, M.Krishnan, J.B. Baseman, Interaction of Mycoplasma genitalium with host cells:evidence for nuclear localization, Microbiology154(2008)3033-3041.
    [4] C.M. Garner, L.M. Hubbold, P.R. Chakraborti, Mycoplasma detection in cell cultures:a comparison of four methods, Br J Biomed Sci57(2000)295-301.
    [5] L. Young, J. Sung, G. Stacey, J.R. Masters, Detection of Mycoplasma in cell cultures,Nat Protoc5(2010)929-934.
    [6] Y. Sasaki, J. Ishikawa, A. Yamashita, K. Oshima, T. Kenri, K. Furuya, C. Yoshino, A.Horino, T. Shiba, T. Sasaki, M. Hattori, The complete genomic sequence ofMycoplasma penetrans, an intracellular bacterial pathogen in humans, Nucleic AcidsRes30(2002)5293-5300.
    [7] R.G. Vancini, M. Benchimol, Entry and intracellular location of Mycoplasma hominisin Trichomonas vaginalis, Arch Microbiol189(2008)7-18.
    [8] M. Tarshis, A. Yavlovich, A. Katzenell, I. Ginsburg, S. Rottem, Intracellular locationand survival of Mycoplasma penetrans within HeLa cells, Curr Microbiol49(2004)136-140.
    [9] H. Chen, S. Yu, M. Hu, X. Han, D. Chen, X. Qiu, C. Ding, Identification of biofilmformation by Mycoplasma gallisepticum, Vet Microbiol161(2012)96-103.
    [10] W.L. Simmons, J.R. Bolland, J.M. Daubenspeck, K. Dybvig, A stochastic mechanismfor biofilm formation by Mycoplasma pulmonis, J Bacteriol189(2007)1905-1913.
    [11] L. McAuliffe, R.J. Ellis, K. Miles, R.D. Ayling, R.A. Nicholas, Biofilm formation bymycoplasma species and its role in environmental persistence and survival,Microbiology152(2006)913-922.
    [12] J.D. Kornspan, M. Tarshis, S. Rottem, Adhesion and biofilm formation of Mycoplasmapneumoniae on an abiotic surface, Arch Microbiol193(2011)833-836.
    [13] B. Henrich, M. Schmitt, N. Bergmann, K. Zanger, R. Kubitz, D. Haussinger, K. Pfeffer,Mycoplasma salivarium detected in a microbial community with Candida glabrata inthe biofilm of an occluded biliary stent, J Med Microbiol59(2010)239-241.
    [14] W.L. Simmons, K. Dybvig, Biofilms protect Mycoplasma pulmonis cells from lyticeffects of complement and gramicidin, Infect Immun75(2007)3696-3699.
    [15] B. Zhu, F. Xu, J. Li, J. Shuai, X. Li, W. Fang, Porcine circovirus type2explores theautophagic machinery for replication in PK-15cells, Virus Res163(2012)476-485.
    [16] H. Yamaguchi, I. Nakagawa, A. Yamamoto, A. Amano, T. Noda, T. Yoshimori, Aninitial step of GAS-containing autophagosome-like vacuoles formation requires Rab7,PLoS Pathog5(2009) e1000670.
    [17] J.H. Brumell, M.A. Scidmore, Manipulation of rab GTPase function by intracellularbacterial pathogens, Microbiol Mol Biol Rev71(2007)636-652.
    [18] P.A. Vanlandingham, B.P. Ceresa, Rab7regulates late endocytic traffickingdownstream of multivesicular body biogenesis and cargo sequestration, J Biol Chem284(2009)12110-12124.
    [19] T.E. Hansen, T. Johansen, Following autophagy step by step, BMC Biol9(2011)39.
    [20] J. Lee, S. Giordano, J. Zhang, Autophagy, mitochondria and oxidative stress: cross-talkand redox signalling, Biochem J441(2012)523-540.
    [21] D.J. Klionsky, F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, K.Adeli, L. Agholme, M. Agnello, P. Agostinis, J.A. Aguirre-Ghiso, H.J. Ahn, O.Ait-Mohamed, S. Ait-Si-Ali, T. Akematsu, S. Akira, H.M. Al-Younes, M.A. Al-Zeer,M.L. Albert, R.L. Albin, J. Alegre-Abarrategui, M.F. Aleo, M. Alirezaei, A. Almasan,M. Almonte-Becerril, A. Amano, R. Amaravadi, S. Amarnath, A.O. Amer, N.Andrieu-Abadie, V. Anantharam, D.K. Ann, S. Anoopkumar-Dukie, H. Aoki, N.Apostolova, G. Arancia, J.P. Aris, K. Asanuma, N.Y. Asare, H. Ashida, V. Askanas, D.S.Askew, P. Auberger, M. Baba, S.K. Backues, E.H. Baehrecke, B.A. Bahr, X.Y. Bai, Y.Bailly, R. Baiocchi, G. Baldini, W. Balduini, A. Ballabio, B.A. Bamber, E.T. Bampton,G. Banhegyi, C.R. Bartholomew, D.C. Bassham, R.C. Bast, Jr., H. Batoko, B.H. Bay, I.Beau, D.M. Bechet, T.J. Begley, C. Behl, C. Behrends, S. Bekri, B. Bellaire, L.J.Bendall, L. Benetti, L. Berliocchi, H. Bernardi, F. Bernassola, S. Besteiro, I.Bhatia-Kissova, X. Bi, M. Biard-Piechaczyk, J.S. Blum, L.H. Boise, P. Bonaldo, D.L.Boone, B.C. Bornhauser, K.R. Bortoluci, I. Bossis, F. Bost, J.P. Bourquin, P. Boya, M.Boyer-Guittaut, P.V. Bozhkov, N.R. Brady, C. Brancolini, A. Brech, J.E. Brenman, A.Brennand, E.H. Bresnick, P. Brest, D. Bridges, M.L. Bristol, P.S. Brookes, E.J. Brown,J.H. Brumell, et al., Guidelines for the use and interpretation of assays for monitoringautophagy, Autophagy8(2012)445-544.
    [22] T.O. Berg, M. Fengsrud, P.E. Stromha g, T. Berg, P.O. Seglen, Isolation andcharacterization of rat liver amphisomes. Evidence for fusion of autophagosomes withboth early and late endosomes, J Biol Chem273(1998)21883-21892.
    [23] M.G. Gutierrez, D.B. Munafo, W. Beron, M.I. Colombo, Rab7is required for thenormal progression of the autophagic pathway in mammalian cells, J Cell Sci117(2004)2687-2697.
    [24] T.L. Thurston, M.P. Wandel, N. von Muhlinen, A. Foeglein, F. Randow, Galectin8targets damaged vesicles for autophagy to defend cells against bacterial invasion,Nature482(2012)414-418.
    [25] S. Pfeffer, Membrane domains in the secretory and endocytic pathways, Cell112(2003)507-517.
    [26] T. Wang, Z. Ming, W. Xiaochun, W. Hong, Rab7: role of its protein interactioncascades in endo-lysosomal traffic, Cell Signal23(2011)516-521.
    [27] S.E. Wilkowsky, M.A. Barbieri, P.D. Stahl, E.L. Isola, Regulation of Trypanosomacruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin,Rab5, and Rab7, Biochem Biophys Res Commun291(2002)516-521.
    [28] B.B. Finlay, P. Cossart, Exploitation of mammalian host cell functions by bacterialpathogens, Science276(1997)718-725.
    [29] F. Garcia-del Portillo, B.B. Finlay, The varied lifestyles of intracellular pathogenswithin eukaryotic vacuolar compartments, Trends Microbiol3(1995)373-380.
    [30] A.P. Sinai, K.A. Joiner, Safe haven: the cell biology of nonfusogenic pathogenvacuoles, Annu Rev Microbiol51(1997)415-462.
    [31] S.R. Pfeffer, Rab GTPases: specifying and deciphering organelle identity and function,Trends Cell Biol11(2001)487-491.
    [32] R. Behnia, S. Munro, Organelle identity and the signposts for membrane traffic, Nature438(2005)597-604.
    [33] M. Zerial, H. McBride, Rab proteins as membrane organizers, Nat Rev Mol Cell Biol2(2001)107-117.
    [34] M.C. Seabra, C. Wasmeier, Controlling the location and activation of Rab GTPases,Curr Opin Cell Biol16(2004)451-457.
    [35] C. Bebear, S. Pereyre, O. Peuchant, Mycoplasma pneumoniae: susceptibility andresistance to antibiotics, Future Microbiol6(2011)423-431.
    [36] B. Cao, C.J. Zhao, Y.D. Yin, F. Zhao, S.F. Song, L. Bai, J.Z. Zhang, Y.M. Liu, Y.Y.Zhang, H. Wang, C. Wang, High prevalence of macrolide resistance in Mycoplasmapneumoniae isolates from adult and adolescent patients with respiratory tract infectionin China, Clin Infect Dis51(2010)189-194.
    [37] P.M. Furneri, G. Rappazzo, M.P. Musumarra, G. Tempera, L.S. Roccasalva, Geneticbasis of natural resistance to erythromycin in Mycoplasma hominis, J AntimicrobChemother45(2000)547-548.
    [38] L.J. Leeson, J.F. Weidenheimer, Stability of tetracycline and riboflavin, J Pharm Sci58(1969)355-357.
    [39] Y. Wu, R. Fassihi, Stability of metronidazole, tetracycline HCl and famotidine aloneand in combination, Int J Pharm290(2005)1-13.
    [40] R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, Efficient adsorption and visible-lightphotocatalytic degradation of tetracycline hydrochloride using mesoporous BiOImicrospheres, J Hazard Mater209-210(2012)137-145.
    [41] R.J. Grouls, E.W. Ackerman, H.H. Korsten, L.J. Hellebrekers, D.D. Breimer, Partitioncoefficients (n-octanol/water) of N-butyl-p-aminobenzoate and other local anestheticsmeasured by reversed-phase high-performance liquid chromatography, J ChromatogrB Biomed Sci Appl694(1997)421-425.
    [42] J. Ishizaki, K. Yokogawa, E. Nakashima, F. Ichimura, Prediction of changes in theclinical pharmacokinetics of basic dr gs on the basis of octanol-water partitioncoefficients, J Pharm Pharmacol49(1997)762-767.
    [43] J. Ishizaki, K. Yokogawa, E. Nakashima, F. Ichimura, Relationships between thehepatic intrinsic clearance or blood cell-plasma partition coefficient in the rabbit andthe lipophilicity of basic dr gs, J Pharm Pharmacol49(1997)768-772.
    [44] I. Odano, M. Ohkubo, M. Takahashi, Quantification of cerebral blood flow andpartition coefficient using iodine-123-iodoamphetamine, J Nucl Med38(1997)1248-1253.
    [45] P.D. Leeson, B. Springthorpe, The influence of dr g-like concepts on decision-makingin medicinal chemistry, Nat Rev Dr g Discov6(2007)881-890.
    [46] P. Gaurivaud, A. Persson, D.L. Grand, J. Westberg, M. Solsona, K.E. Johansson, F.Poumarat, Variability of a glucose phosphotransferase system permease inMycoplasma mycoides subsp. mycoides Small Colony, Microbiology150(2004)4009-4022.
    [47] M. Hopfe, B. Henrich, OppA, the substrate-binding subunit of the oligopeptidepermease, is the major Ecto-ATPase of Mycoplasma hominis, J Bacteriol186(2004)1021-1928.
    [48] K. Huang, G. Kapadia, P.P. Zhu, A. Peterkofsky, O. Herzberg, A promiscuous bindingsurface: crystal structure of the IIA domain of the glucose-specific permease fromMycoplasma capricolum, Structure6(1998)697-710.
    [1] J.G. Sinkovics, Molecular biology of oncogenic inflammatory processes. I.Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions withoutpathogens, and microRNA/DNA interactions (Review), Int J Oncol40(2012)305-349.
    [2] S. Zhang, S. Tsai, S.C. Lo, Alteration of gene expression profiles duringmycoplasma-induced malignant cell transformation, BMC Cancer6(2006)116.
    [3] S. Tsai, D.J. Wear, J.W. Shih, S.C. Lo, Mycoplasmas and oncogenesis: persistentinfection and multistage malignant transformation, Proc Natl Acad Sci U S A92(1995)10197-10201.
    [4] S. Rottem, Interaction of mycoplasmas with host cells, Physiol Rev83(2003)417-432.
    [5] S.Y. Choi, J.W. Lim, T. Shimizu, K. Kuwano, J.M. Kim, H. Kim, Reactive oxygenspecies mediate Jak2/Stat3activation and IL-8expression in pulmonary epithelial cellsstimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae,Inflamm Res61(2012)493-501.
    [6] G. Rawadi, J.L. Z gaza, B. Lemercier, J.C. Marvaud, M. Popoff, J. Bertoglio, S.Roman-Roman, Involvement of small GTPases in Mycoplasma fermentans membranelipoproteins-mediated activation of macrophages, J Biol Chem274(1999)30794-30798.
    [7] Y. Takai, T. Sasaki, T. Matozaki, Small GTP-binding proteins, Physiol Rev81(2001)153-208.
    [8] A.R. Simon, H.G. Vikis, S. Stewart, B.L. Fanburg, B.H. Cochran, K.L. Guan,Regulation of STAT3by direct binding to the Rac1GTPase, Science290(2000)144-147.
    [9] S.C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B.B. Aggarwal, Upsides anddownsides of reactive oxygen species for cancer: the roles of reactive oxygen speciesin tumorigenesis, prevention, and therapy, Antioxid Redox Signal16(2012)1295-1322.
    [10] G. Millonig, I. Ganzleben, T. Peccerella, G. Casanovas, L. Brodziak-Jarosz, K.Breitkopf-Heinlein, T.P. Dick, H.K. Seitz, M.U. Muckenthaler, S. Mueller, Sustainedsubmicromolar H2O2levels induce hepcidin via signal transducer and activator oftranscription3(STAT3), J Biol Chem287(2012)37472-37482.
    [11] Y. Tonozuka, Y. Minoshima, Y.C. Bao, Y. Moon, Y. Tsubono, T. Hatori, H. Nakajima,T. Nosaka, T. Kawashima, T. Kitamura, A GTPase-activating protein binds STAT3and is required for IL-6-induced STAT3activation and for differentiation of aleukemic cell line, Blood104(2004)3550-3557.
    [12] T. Kawashima, Y.C. Bao, Y. Nomura, Y. Moon, Y. Tonozuka, Y. Minoshima, T.Hatori, A. Tsuchiya, M. Kiyono, T. Nosaka, H. Nakajima, D.A. Williams, T. Kitamura,Rac1and a GTPase-activating protein, MgcRacGAP, are required for nucleartranslocation of STAT transcription factors, J Cell Biol175(2006)937-946.
    [13] T.S. Teng, B. Lin, E. Manser, D.C. Ng, X. Cao, Stat3promotes directional cellmigration by regulating Rac1activity via its activator betaPIX, J Cell Sci122(2009)4150-4159.
    [14] M. Debidda, L. Wang, H. Zang, V. Poli, Y. Zheng, A role of STAT3in RhoGTPase-regulated cell migration and proliferation, J Biol Chem280(2005)17275-17285.
    [15] J. Azare, K. Leslie, H. Al-Ahmadie, W. Gerald, P.H. Weinreb, S.M. Violette, J.Bromberg, Constitutively activated Stat3induces tumorigenesis and enhances cellmotility of prostate epithelial cells thro gh integrin beta6, Mol Cell Biol27(2007)4444-4453.
    [16] N.M. Alto, F. Shao, C.S. Lazar, R.L. Brost, G. Chua, S. Mattoo, S.A. McMahon, P.Ghosh, T.R. H ghes, C. Boone, J.E. Dixon, Identification of a bacterial type IIIeffector family with G protein mimicry functions, Cell124(2006)133-145.
    [17] U.B. Hagemann, J.M. Mason, K.M. Muller, K.M. Arndt, Selectional and mutationalscope of peptides sequestering the Jun-Fos coiled-coil domain, J Mol Biol381(2008)73-88.
    [18] F.S. Fay, K.L. Taneja, S. Shenoy, L. Lifshitz, R.H. Singer, Quantitative digital analysisof diffuse and concentrated nuclear distributions of nascent transcripts, SC35andpoly(A), Exp Cell Res231(1997)27-37.
    [19] M. Hachet-Haas, N. Converset, O. Marchal, H. Matthes, S. Gioria, J.L. Galzi, S. Lecat,FRET and colocalization analyzer--a method to validate measurements of sensitizedemission FRET acquired by confocal microscopy and available as an ImageJ Pl g-in,Microsc Res Tech69(2006)941-956.
    [20] P.B. Sehgal, Paradigm shifts in the cell biology of STAT signaling, Semin Cell DevBiol19(2008)329-340.
    [21] C. Albertinazzi, A. Cattelino, I. de Curtis, Rac GTPases localize at sites of actinreorganization during dynamic remodeling of the cytoskeleton of normal embryonicfibroblasts, J Cell Sci112(Pt21)(1999)3821-3831.
    [22] M.V. Hoang, J.A. Nagy, D.R. Senger, Active Rac1improves pathologic VEGFneovessel architecture and reduces vascular leak: mechanistic similarities withangiopoietin-1, Blood117(2011)1751-1760.
    [23] R. Bulgin, B. Raymond, J.A. Garnett, G. Frankel, V.F. Crepin, C.N. Berger, A.Arbeloa, Bacterial guanine nucleotide exchange factors SopE-like and WxxxEeffectors, Infect Immun78(2010)1417-1425.
    [24] L.K. Jackson, P. Nawabi, C. Hentea, E.A. Roark, K. Haldar, The Salmonella virulenceprotein SifA is a G protein antagonist, Proc Natl Acad Sci U S A105(2008)14141-14146.
    [25] I. Migeotte, T. Omelchenko, A. Hall, K.V. Anderson, Rac1-dependent collective cellmigration is required for specification of the anterior-posterior body axis of the mouse,PLoS Biol8(2010) e1000442.
    [26] W.L. Yen, D.J. Klionsky, How to live long and prosper: autophagy, mitochondria, andaging, Physiology (Bethesda)23(2008)248-262.
    [27] J. Lee, S. Giordano, J. Zhang, Autophagy, mitochondria and oxidative stress:cross-talk and redox signalling, Biochem J441(2012)523-540.
    [28] L. Moldovan, K. Mythreye, P.J. Goldschmidt-Clermont, L.L. Satterwhite, Reactiveoxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase andRac1, Cardiovasc Res71(2006)236-246.
    [29] S. Galli, M.I. Labato, E. Bal de Kier Joffe, M.C. Carreras, J.J. Poderoso, Decreasedmitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistenttumoral proliferation to embryonic behavior, Cancer Res63(2003)6370-6377.
    [30] A.R. Simon, U. Rai, B.L. Fanburg, B.H. Cochran, Activation of the JAK-STATpathway by reactive oxygen species, Am J Physiol275(1998) C1640-1652.
    [31] E. Panieri, V. Gogvadze, E. Norberg, R. Venkatesh, S. Orrenius, B. Zhivotovsky,Reactive oxygen species generated in different compartments induce cell death,survival, or senescence, Free Radic Biol Med57(2013)176-187.
    [32] X. Chai, M.F. Zhao,[Reactive oxygen species and bone marrow hematopoietic stemcell senescence], Zhongguo Shi Yan Xue Ye Xue Za Zhi20(2012)1518-1521.
    [33] A.E. Handayaningsih, M. Takahashi, H. Fukuoka, G. Iguchi, H. Nishizawa, M.Yamamoto, K. Suda, Y. Takahashi, IGF-I enhances cellular senescence via thereactive oxygen species-p53pathway, Biochem Biophys Res Commun425(2012)478-484.
    [34] M. Pogany, U. von Rad, S. Grun, A. Dongo, A. Pintye, P. Simoneau, G. Bahnweg, L.Kiss, B. Barna, J. Durner, Dual roles of reactive oxygen species and NADPH oxidaseRBOHD in an Arabidopsis-Alternaria pathosystem, Plant Physiol151(2009)1459-1475.
    [35] J.M. Lluis, F. Buricchi, P. Chiar gi, A. Morales, J.C. Fernandez-Checa, Dual role ofmitochondrial reactive oxygen species in hypoxia signaling: activation of nuclearfactor-{kappa}B via c-SRC and oxidant-dependent cell death, Cancer Res67(2007)7368-7377.
    [36] C. Bailly, H. El-Maarouf-Bouteau, F. Corbineau, From intracellular signalingnetworks to cell death: the dual role of reactive oxygen species in seed physiology, CR Biol331(2008)806-814.
    [37] D. Charvin, P. Vanhoutte, C. Pages, E. Borrelli, J. Caboche, Unraveling a role fordopamine in Huntington's disease: the dual role of reactive oxygen species and D2receptor stimulation, Proc Natl Acad Sci U S A102(2005)12218-12223.
    [38] S. Yoon, S.U. Woo, J.H. Kang, K. Kim, M.H. Kwon, S. Park, H.J. Shin, H.S. Gwak,Y.J. Chwae, STAT3transcriptional factor activated by reactive oxygen speciesinduces IL6in starvation-induced autophagy of cancer cells, Autophagy6(2010)1125-1138.
    [39] M.G. Gutierrez, D.B. Munafo, W. Beron, M.I. Colombo, Rab7is required for thenormal progression of the autophagic pathway in mammalian cells, J Cell Sci117(2004)2687-2697.
    [40] S. Saxena, C. Bucci, J. Weis, A. Kruttgen, The small GTPase Rab7controls theendosomal trafficking and neuritogenic signaling of the nerve growth factor receptorTrkA, J Neurosci25(2005)10930-10940.
    [41] P.A. Vanlandingham, B.P. Ceresa, Rab7regulates late endocytic traffickingdownstream of multivesicular body biogenesis and cargo sequestration, J Biol Chem284(2009)12110-12124.
    [42] H. Yamaguchi, I. Nakagawa, A. Yamamoto, A. Amano, T. Noda, T. Yoshimori, Aninitial step of GAS-containing autophagosome-like vacuoles formation requires Rab7,PLoS Pathog5(2009) e1000670.
    [43] A. Sakurai, F. Maruyama, J. Funao, T. Nozawa, C. Aikawa, N. Okahashi, S. Shintani,S. Hamada, T. Ooshima, I. Nakagawa, Specific behavior of intracellular Streptococcuspyogenes that has undergone autophagic degradation is associated with bacterialstreptolysin O and host small G proteins Rab5and Rab7, J Biol Chem285(2010)22666-22675.
    [44] P.W. Denny, S. Lewis, J.E. Tempero, D. Goulding, A.C. Ivens, M.C. Field, D.F. Smith,Leishmania RAB7: characterisation of terminal endocytic stages in an intracellularparasite, Mol Biochem Parasitol123(2002)105-113.
    [45] J.H. Brumell, M.A. Scidmore, Manipulation of rab GTPase function by intracellularbacterial pathogens, Microbiol Mol Biol Rev71(2007)636-652.
    [46] A. Pelchen-Matthews, G. Raposo, M. Marsh, Endosomes, exosomes and Trojanviruses, Trends Microbiol12(2004)310-316.
    [47] S.J. Gould, A.M. Booth, J.E. Hildreth, The Trojan exosome hypothesis, Proc NatlAcad Sci U S A100(2003)10592-10597.
    [1] S. Tsai, D.J. Wear, J.W. Shih, S.C. Lo, Mycoplasmas and oncogenesis: persistentinfection and multistage malignant transformation, Proc Natl Acad Sci U S A92(1995)10197-10201.
    [2] G. Negroni, The role of mycoplasmas and viruses in human leukemia, Proc R SocMed59(1966)662-663.
    [3] R.J. Fallon, N.R. Grist, D.R. Inman, R.M. Lemcke, G. Negroni, D.A. Woods, FurtherSutdies of Agents Isolated from Tissue Cultures Inoculated with Human LeukaemicBone-marrow, Br Med J2(1965)388-391.
    [4] L. Dmochowski, D.A. Dreyer, C.E. Grey, R. Hales, P.L. Langford, F. Pipes, L. Recher,G. Seman, J.A. Shively, C.C. Shullenberger, J.G. Sinkovics, H.G. Taylor, C.F. Tessmer,T. Yumoto, Studies on the submicroscopic morphology of structures resemblingmycoplasma and virus particles in mice and men, Ann N Y Acad Sci143(1967)578-607.
    [5] S.C. Lo, J.W. Shih, P.B. Newton,3rd, D.M. Wong, M.M. Hayes, J.R. Benish, D.J.Wear, R.Y. Wang, Virus-like infectious agent (VLIA) is a novel pathogenicmycoplasma: Mycoplasma incognitus, Am J Trop Med Hyg41(1989)586-600.
    [6] S. Huang, J.Y. Li, J. Wu, L. Meng, C.C. Shou, Mycoplasma infections and differenthuman carcinomas, World J Gastroenterol7(2001)266-269.
    [7] P.J. Chan, I.M. Seraj, T.H. Kal gdan, A. King, Prevalence of mycoplasma conservedDNA in malignant ovarian cancer detected using sensitive PCR-ELISA, GynecolOncol63(1996)258-260.
    [8] S. Zhang, S. Tsai, S.C. Lo, Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation, BMC Cancer6(2006)116.
    [9] M. Malartre, D. Ayaz, F.F. Amador, M.D. Martin-Bermudo, The guanine exchangefactor vav controls axon growth and guidance during Drosophila development, JNeurosci30(2010)2257-2267.
    [10] J.G. Sinkovics, Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions withoutpathogens, and microRNA/DNA interactions (Review), Int J Oncol40(2012)305-349.
    [11] S. Razin, D. Yogev, Y. Naot, Molecular biology and pathogenicity of mycoplasmas,Microbiol Mol Biol Rev62(1998)1094-1156.
    [12] J. Hegermann, S. Halbedel, R. Dumke, J. Regula, R.R. Gabdoulline, F. Mayer, J.Stulke, R. Herrmann, The acidic, glutamine-rich Mpn474protein of Mycoplasmapneumoniae is surface exposed and covers the complete cell, Microbiology154(2008)1185-1192.
    [13] S. Rottem, Interaction of mycoplasmas with host cells, Physiol Rev83(2003)417-432.
    [14] S. Rottem, Y. Naot, Subversion and exploitation of host cells by mycoplasmas, TrendsMicrobiol6(1998)436-440.
    [15] J. Maniloff, The minimal cell genome:"on being the right size", Proc Natl Acad Sci US A93(1996)10004-10006.
    [16] L. McAuliffe, R.J. Ellis, K. Miles, R.D. Ayling, R.A. Nicholas, Biofilm formation bymycoplasma species and its role in environmental persistence and survival,Microbiology152(2006)913-922.
    [17] W.L. Simmons, K. Dybvig, Biofilms protect Mycoplasma pulmonis cells from lyticeffects of complement and gramicidin, Infect Immun75(2007)3696-3699.
    [18] R.M. Donlan, J.W. Costerton, Biofilms: survival mechanisms of clinically relevantmicroorganisms, Clin Microbiol Rev15(2002)167-193.
    [19] T.F. Mah, G.A. O'Toole, Mechanisms of biofilm resistance to antimicrobial agents,Trends Microbiol9(2001)34-39.
    [20] R. Jahn, T. Lang, T.C. Sudhof, Membrane fusion, Cell112(2003)519-533.
    [21] M. Salman, I. Deutsch, M. Tarshis, Y. Naot, S. Rottem, Membrane lipids ofMycoplasma fermentans, FEMS Microbiol Lett123(1994)255-260.
    [22] M. Tarshis, M. Salman, S. Rottem, Cholesterol is required for the fusion of singleunilamellar vesicles with Mycoplasma capricolum, Biophys J64(1993)709-715.
    [23] D.S. Dimitrov, G. Franzoso, M. Salman, R. Blumenthal, M. Tarshis, M.F. Barile, S.Rottem, Mycoplasma fermentans (incognitus strain) cells are able to fuse with Tlymphocytes, Clin Infect Dis17Suppl1(1993) S305-308.
    [24] F. Wagner, S. Rottem, H.D. Held, S. Uhlig, U. Zahringer, Ether lipids in the cellmembrane of Mycoplasma fermentans, Eur J Biochem267(2000)6276-6286.
    [25] K. Matsuda, J.L. Li, R. Harasawa, N. Yamamoto, Phosphocholine-containingglycoglycerolipids (GGPL-I and GGPL-III) are species-specific majorimmunodeterminants of Mycoplasma fermentans, Biochem Biophys Res Commun233(1997)644-649.
    [26] K. Matsuda, T. Kasama, I. Ishizuka, S. Handa, N. Yamamoto, T. Taki, Structure of anovel phosphocholine-containing glycoglycerolipid from Mycoplasma fermentans, JBiol Chem269(1994)33123-33128.
    [27] D.P. Siegel, Energetics of intermediates in membrane fusion: comparison of stalk andinverted micellar intermediate mechanisms, Biophys J65(1993)2124-2140.
    [28] N. Chejanovsky, O. Nussbaum, A. Loyter, R. Blumenthal, Fusion of enveloped viruseswith biological membranes. Fluorescence dequenching studies, Subcell Biochem13(1988)415-456.
    [29] J.A. Lucy, The fusion of biological membranes, Nature227(1970)815-817.
    [30] M.C. DeBey, R.F. Ross, Ciliostasis and loss of cilia induced by Mycoplasmahyopneumoniae in porcine tracheal organ cultures, Infect Immun62(1994)5312-5318.
    [31] M. Almagor, I. Kahane, C. Gilon, S. Yatziv, Protective effects of the glutathione redoxcycle and vitamin E on cultured fibroblasts infected by Mycoplasma pneumoniae,Infect Immun52(1986)240-244.
    [32] M. Salman, S. Rottem, The cell membrane of Mycoplasma penetrans: lipidcomposition and phospholipase A1activity, Biochim Biophys Acta1235(1995)369-377.
    [33] I. Rosenshine, B.B. Finlay, Exploitation of host signal transduction pathways andcytoskeletal functions by invasive bacteria, Bioessays15(1993)17-24.
    [34] K. Shibata, T. Sasaki, T. Watanabe, AIDS-associated mycoplasmas possessphospholipases C in the membrane, Infect Immun63(1995)4174-4177.
    [35] K. Shibata, M. Noda, Y. Sawa, T. Watanabe, Acid phosphatase purified fromMycoplasma fermentans has protein tyrosine phosphatase-like activity, Infect Immun62(1994)313-315.
    [36] R. Paddenberg, A. Weber, S. Wulf, H.G. Mannherz, Mycoplasma nucleases able toinduce internucleosomal DNA degradation in cultured cells possess manycharacteristics of eukaryotic apoptotic nucleases, Cell Death Differ5(1998)517-528.
    [37] R. Paddenberg, S. Wulf, A. Weber, P. Heimann, L.A. Beck, H.G. Mannherz,Internucleosomal DNA fragmentation in cultured cells under conditions reported toinduce apoptosis may be caused by mycoplasma endonucleases, Eur J Cell Biol71(1996)105-119.
    [38] H. Gong, F. Zolzer, G. von Recklinghausen, J. Rossler, S. Breit, W. Havers, T. Fotsis, L.Schweigerer, Arginine deiminase inhibits cell proliferation by arresting cell cycle andinducing apoptosis, Biochem Biophys Res Commun261(1999)10-14.
    [39] G. Ben-Menachem, A. Mousa, T. Brenner, F. Pinto, U. Zahringer, S. Rottem, Cholinedeficiency induced by Mycoplasma fermentans enhances apoptosis of rat astrocytes,FEMS Microbiol Lett201(2001)157-162.
    [40] G.J. McGarrity, V. Vanaman, J. Sarama, Cytogenetic effects of mycoplasmal infectionof cell cultures: a review, In Vitro20(1984)1-18.
    [41] I.A. Sokolova, A.T. Va ghan, N.N. Khodarev, Mycoplasma infection can sensitize hostcells to apoptosis thro gh contribution of apoptotic-like endonuclease(s), ImmunolCell Biol76(1998)526-534.
    [42] N.N. Khodarev, I.A. Sokolova, A.T. Va ghan, Mechanisms of induction of apoptoticDNA fragmentation, Int J Radiat Biol73(1998)455-467.
    [43] G. Rawadi, S. Roman-Roman, M. Castedo, V. Dutilleul, S. Susin, P. Marchetti, M.Geuskens, G. Kroemer, Effects of Mycoplasma fermentans on the myelomonocyticlineage. Different molecular entities with cytokine-inducing and cytocidal potential, JImmunol156(1996)670-678.
    [44] S.Y. Choi, J.W. Lim, T. Shimizu, K. Kuwano, J.M. Kim, H. Kim, Reactive oxygenspecies mediate Jak2/Stat3activation and IL-8expression in pulmonary epithelial cellsstimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae,Inflamm Res61(2012)493-501.
    [45] G. Rawadi, J.L. Z gaza, B. Lemercier, J.C. Marvaud, M. Popoff, J. Bertoglio, S.Roman-Roman, Involvement of small GTPases in Mycoplasma fermentans membranelipoproteins-mediated activation of macrophages, J Biol Chem274(1999)30794-30798.
    [46] K.M. Hallamaa, S.L. Tang, N. Ficorilli, G.F. Browning, Differential expression oflipoprotein genes in Mycoplasma pneumoniae after contact with human lung epithelialcells, and under oxidative and acidic stress, BMC Microbiol8(2008)124.
    [47] I. Chambaud, H. Wroblewski, A. Blanchard, Interactions between mycoplasmalipoproteins and the host immune system, Trends Microbiol7(1999)493-499.
    [48] O. Neyrolles, I. Chambaud, S. Ferris, M.C. Prevost, T. Sasaki, L. Montagnier, A.Blanchard, Phase variations of the Mycoplasma penetrans main surface lipoproteinincrease antigenic diversity, Infect Immun67(1999)1569-1578.
    [49] J. Yang, W.C. Hooper, D.J. Phillips, D.F. Talkington, Regulation of proinflammatorycytokines in human lung epithelial cells infected with Mycoplasma pneumoniae, InfectImmun70(2002)3649-3655.
    [50] D. Lieberman, S. Livnat, F. Schlaeffer, A. Porath, S. Horowitz, R. Levy, IL-1beta andIL-6in community-acquired pneumonia: bacteremic pneumococcal pneumonia versusMycoplasma pneumoniae pneumonia, Infection25(1997)90-94.
    [51] C.C. Hsieh, R.B. Tang, C.H. Tsai, W. Chen, Serum interleukin-6and tumor necrosisfactor-alpha concentrations in children with mycoplasma pneumonia, J MicrobiolImmunol Infect34(2001)109-112.
    [52] X. Hu, J. Chen, L. Wang, L.B. Ivashkiv, Crosstalk among Jak-STAT, Toll-like receptor,and ITAM-dependent pathways in macrophage activation, J Leukoc Biol82(2007)237-243.
    [53] H. Yu, D. Pardoll, R. Jove, STATs in cancer inflammation and immunity: a leading rolefor STAT3, Nat Rev Cancer9(2009)798-809.
    [54] G. Waris, J. Turkson, T. Hassanein, A. Siddiqui, Hepatitis C virus (HCV) constitutivelyactivates STAT-3via oxidative stress: role of STAT-3in HCV replication, J Virol79(2005)1569-1580.
    [55] C. Maziere, M.A. Conte, J.C. Maziere, Activation of JAK2by the oxidative stressgenerated with oxidized low-density lipoprotein, Free Radic Biol Med31(2001)1334-1340.
    [56] B. Schieffer, M. Luchtefeld, S. Braun, A. Hilfiker, D. Hilfiker-Kleiner, H. Drexler,Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling andcytokine induction, Circ Res87(2000)1195-1201.
    [57] G. Rawadi, S. Roman-Roman, Mycoplasma membrane lipoproteins inducedproinflammatory cytokines by a mechanism distinct from that of lipopolysaccharide,Infect Immun64(1996)637-643.
    [58] T.R. Faruqi, D. Gomez, X.R. Bustelo, D. Bar-Sagi, N.C. Reich, Rac1mediates STAT3activation by autocrine IL-6, Proc Natl Acad Sci U S A98(2001)9014-9019.
    [59] V. Marin, F.A. Montero-Julian, S. Gres, V. Boulay, P. Bongrand, C. Farnarier, G.Kaplanski, The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as anintermediate between acute and chronic inflammation: an experimental modelinvolving thrombin, J Immunol167(2001)3435-3442.
    [60] A.R. Simon, H.G. Vikis, S. Stewart, B.L. Fanburg, B.H. Cochran, K.L. Guan,Regulation of STAT3by direct binding to the Rac1GTPase, Science290(2000)144-147.
    [61] S.C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B.B. Aggarwal, Upsides anddownsides of reactive oxygen species for cancer: the roles of reactive oxygen speciesin tumorigenesis, prevention, and therapy, Antioxid Redox Signal16(2012)1295-1322.
    [62] G. Millonig, I. Ganzleben, T. Peccerella, G. Casanovas, L. Brodziak-Jarosz, K.Breitkopf-Heinlein, T.P. Dick, H.K. Seitz, M.U. Muckenthaler, S. Mueller, Sustainedsubmicromolar H2O2levels induce hepcidin via signal transducer and activator oftranscription3(STAT3), J Biol Chem287(2012)37472-37482.
    [63] T.S. Teng, B. Lin, E. Manser, D.C. Ng, X. Cao, Stat3promotes directional cellmigration by regulating Rac1activity via its activator betaPIX, J Cell Sci122(2009)4150-4159.
    [64] B.J. Quah, H.C. O'Neill, Mycoplasma contaminants present in exosome preparationsinduce polyclonal B cell responses, J Leukoc Biol82(2007)1070-1082.
    [65] G. Raposo, H.W. Nijman, W. Stoorvogel, R. Liejendekker, C.V. Harding, C.J. Melief,H.J. Geuze, B lymphocytes secrete antigen-presenting vesicles, J Exp Med183(1996)1161-1172.
    [66] C. Lasser, Exosomal RNA as biomarkers and the therapeutic potential of exosomevectors, Expert Opin Biol Ther12Suppl1(2012) S189-197.
    [67] K. Drazkowska, R. Tomecki, K. Stodus, K. Kowalska, M. Czarnocki-Cieciura, A.Dziembowski, The RNA exosome complex central channel controls both exonucleaseand endonuclease Dis3activities in vivo and in vitro, Nucleic Acids Res41(2013)3845-3858.
    [68] J. Bullerdiek, I. Flor, Exosome-delivered microRNAs of "chromosome19microRNAcluster" as immunomodulators in pregnancy and tumorigenesis, Mol Cytogenet5(2012)27.
    [69] G. Hu, H. Yao, A.D. Chaudhuri, M. Duan, S.V. Yelamanchili, H. Wen, P.D. Cheney,H.S. Fox, S. Buch, Exosome-mediated shuttling of microRNA-29regulates HIV Tatand morphine-mediated neuronal dysfunction, Cell Death Dis3(2012) e381.
    [70] A. Yavlovich, M. Tarshis, S. Rottem, Internalization and intracellular survival ofMycoplasma pneumoniae by non-phagocytic cells, FEMS Microbiol Lett233(2004)241-246.
    [71] M.A. Meseguer, A. Alvarez, M.T. Rejas, C. Sanchez, J.C. Perez-Diaz, F. Baquero,Mycoplasma pneumoniae: a reduced-genome intracellular bacterial pathogen, InfectGenet Evol3(2003)47-55.
    [72] C.L. McGowin, V.L. Popov, R.B. Pyles, Intracellular Mycoplasma genitalium infectionof human vaginal and cervical epithelial cells elicits distinct patterns of inflammatorycytokine secretion and provides a possible survival niche against macrophage-mediated killing, BMC Microbiol9(2009)139.
    [73] R.K. Plemper, Cell entry of enveloped viruses, Curr Opin Virol1(2011)92-100.
    [74] E. Fenouillet, R. Barbouche, I.M. Jones, Cell entry by enveloped viruses: redoxconsiderations for HIV and SARS-coronavirus, Antioxid Redox Signal9(2007)1009-1034.
    [75] J.E. Johnson, P.K. Vogt, Cell entry by non-enveloped viruses, Curr Top MicrobiolImmunol343(2010) v-vii.
    [76] K.S. Matlin, H. Reggio, A. Helenius, K. Simons, The entry of enveloped viruses intoan epithelial cell line, Prog Clin Biol Res91(1982)599-611.
    [77] S. Ohnishi, A. Yoshimura,[Infectious cell entry mechanism of enveloped viruses],Uirusu34(1984)11-24.
    [78] Z. Yang, C. Vild, J. Ju, X. Zhang, J. Liu, J. Shen, B. Zhao, W. Lan, F. Gong, M. Liu, C.Cao, Z. Xu, Structural basis of molecular recognition between ESCRT-III-like proteinVps60and AAA-ATPase regulator Vta1in the multivesicular body pathway, J BiolChem287(2012)43899-43908.
    [79] P.I. Hanson, A. Cashikar, Multivesicular body morphogenesis, Annu Rev Cell DevBiol28(2012)337-362.
    [80] R.B. Rountree, S.J. Mandl, J.M. Nachtwey, K. Dalpozzo, L. Do, J.R. Lombardo, P.L.Schoonmaker, K. Brinkmann, U. Dirmeier, R. Laus, A. Delcayre, Exosome targetingof tumor antigens expressed by cancer vaccines can improve antigen immunogenicityand therapeutic efficacy, Cancer Res71(2011)5235-5244.
    [81] G. Mignot, F. Chalmin, S. Ladoire, C. Rebe, F. Ghiringhelli, Tumor exosome-mediatedMDSC activation, Am J Pathol178(2011)1403-1404; author reply1404-1405.
    [82] J.S. Schorey, S. Bhatnagar, Exosome function: from tumor immunology to pathogenbiology, Traffic9(2008)871-881.
    [83] A. Hendrix, A.N. Hume, Exosome signaling in mammary gland development andcancer, Int J Dev Biol55(2011)879-887.
    [84] C. Marchini, F. Gabrielli, M. Iezzi, S. Zenobi, M. Montani, L. Pietrella, C. Kalogris, A.Rossini, V. Ciravolo, L. Castagnoli, E. Tagliabue, S.M. Pupa, P. Musiani, P. Monaci, S.Menard, A. Amici, The human splice variant Delta16HER2induces rapid tumor onsetin a reporter transgenic mouse, PLoS One6(2011) e18727.
    [85] L. Nikfarjam, P. Farzaneh, Prevention and detection of Mycoplasma contamination incell culture, Cell J13(2012)203-212.
    [86] K.K. To, K.H. Chan, Y.F. Fung, K.Y. Yuen, P.L. Ho, Azithromycin treatment failure inmacrolide-resistant Mycoplasma pneumoniae pneumonia, Eur Respir J36(2010)969-971.
    [87] J.S. Jensen, C.S. Bradshaw, S.N. Tabrizi, C.K. Fairley, R. Hamasuna, Azithromycintreatment failure in Mycoplasma genitalium-positive patients with nongonococcalurethritis is associated with induced macrolide resistance, Clin Infect Dis47(2008)1546-1553.
    [88] C.S. Bradshaw, M.Y. Chen, C.K. Fairley, Persistence of Mycoplasma genitaliumfollowing azithromycin therapy, PLoS One3(2008) e3618.
    [89]胡晓鹏.一种用于清除细胞培养中支原体污染的试剂及其使用方法[P].中国专利:2011101713977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700