二噻吩并稠环D-A型聚合物的设计、合成及其光电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会,能源危机已经成为人类面临的主要问题之一。随着工业和农业的发展,人们对于能源的需求量越来越大,能源问题使得人们迫切需要将视线转向新能源。在众多的新能源技术中,太阳电池技术占据着无法替代的位置。有机太阳电池则更是突显出了那些致力于发现新能源的人们的才智。聚合物太阳电池生产成本较为低廉,且可以以卷对卷方式大规模生产,鉴于此,聚合物太阳电池受到科学家们越来越多的关注。在材料学家看来,合成具有合适的能级、较宽的太阳光谱吸收范围和高空穴迁移的聚合物给体材料仍然是研究聚合物太阳电池的重中之重。
     本论文首先对明星聚合物给体材料进行了综述,基于这些材料的太阳能光电转换效率均超过了5%。为了更好理解聚合物结构与性能之间的关系,我们综述了超过150个聚合物给体材料。同时,对于这些聚合物进行了合理的分类,从而便于发现其中的规律与变化。
     基于噻吩的杂环化合物在有机太阳电池中的研究极为活跃,其既可以作为给电子单元,更可以作为受电子单元。在第三章中,我们通过在二噻吩并蒽上引入烷基链来改善单体的溶解性,并基于二噻吩并蒽设计且合成了两个D-A型窄带隙聚合物PADT-DPP和PADT-FDPP。这两个聚合物都有较宽的紫外可见光吸收,相应的光学带隙分别为1.44eV和1.50eV,利用他们制得的聚合物太阳电池器件的能量转换效率分别为3.44%和0.29%。原子力显微镜表明聚合物PADT-FDPP与PC71BM相分离不理想,所得的光电性能并不能让人满意。但当在制备器件的过程中加入1,8-二碘辛烷后,聚合物PADT-FDPP光电效率显著提升到2.62%,而聚合物PADT-DPP的光电转换效率则变化不大。
     通过部分优化的合成路线,本论文在第四章成功合成了二噻吩[3',2':3,4;2'',3'':5,6]苯并[1,2-c][1,2,5]噻二唑(DTBT)这个化合物,这是一个大平面结构、具有中等吸电子能力的电子接受单元。通过与不同的给电子单元组合,制备了四个中等带隙的D-A型交替共聚物。电化学测试表明,这四个聚合物具有几乎相同的HOMO能级。在这些聚合物中,聚合物DTBT-Th3溶液在室温甚至加热的条件下都存在较强的分子内聚集作用,且这种聚集作用对于光电子器件是有利的,使用氯苯作为加工溶剂时,基于聚合物DTBT-Th3的太阳电池效率高达6.81%。同时基于DTBT-Th4的场效应晶体管获得了最高的的空穴迁移率(0.74cm2/Vs)。聚合物DTBT-Th4, DTBT-TT, DTBT-Th5制备的光伏器件效果相对低一些,性能差异的原因通过相分离结构进行了探讨。
     以同分异构现象作为研究出发点,设计并合成了一种DTBT的同分异构体iso-DTBT(二噻吩[2',3':3,4;2'',3'':5,6]苯并[1,2-c][1,2,5]噻二唑),成功合成了其与联三噻吩和联四噻吩组成的交替共聚物iso-DTBT-Th3和iso-DTBT-Th4。这两个聚合物表现出与第四章同类聚合物完全不一样的吸收行为与能级,且器件结果表明iso-DTBT-Th3和iso-DTBT-Th4的光伏性能并不理想。为了理解造成这种差异的原因,使用了功能密度泛函和原子力显微镜进行了对比研究。
     另外,本论文还设计合成了另一大平面杂环:二噻吩[3,2-a:2’,3’-c]并吩嗪(DTQ),并制备了其与联三噻吩和联四噻吩组成的交替共聚物DTQT-Th3和DTQ-Th4。这两个聚合物表现出极弱的分子内电荷转移,基于他们制得的太阳电池的光电转换效率仅为1.87%和0.60%。
One of the main problems of the world facing today is the energy crisis. With thedevelopment of industry and agriculture, the world has consumed a great amount of energy.Among the numerous new energy technologies, solar cells occupy the irreplaceable position.Organic solar cells underline the ingenuity of those engaged in finding new sources of energy.Due to a low cost and roll-to-roll printing process, polymer solar cells have attracted muchattention. From the view of material scientists, the development of polymer donors withsuitable energy level, a broad absorption spectrum to solar light, and high carrier mobilityrepresents the “Holy Grail”.
     First, we summarized star polymer donors whose power conversion efficience were above5%, and more than150polymers could be included. Based on these analysis, the relationshipbetween structure and properties were discussed.
     Aromatic heterocyles based on thiophene are very important to construct many polymerdonors. In chapter3, two polymers based on anthradithiophene (ADT) were designed andsyntheszied. We introduced the alkyl chains into the ADT unit to improve the solubility.Polymers PADT-DPP and PADT-FDPP exhibited broad absorption bands and their opticalband gaps are1.44and1.50eV, respectively. In polymer solar cells, PADT-DPP andPADT-FDPP showed power conversion efficiency (PCE) of3.44%and0.29%, respectively.Atomic force microscopy revealed that the poor efficiency of PADT-FDPP should be relatedto the large two-phase separation in its active layer. If1,8-diiodooctane(DIO)was used as thesolvent additive, the PCE of PADT-DPP remained almost unchanged due to very limitedmorphology variation. However, the addition of DIO could remarkably elevate the PCE ofPADT-FDPP to2.62%because of the greatly improved morphology.
     In chapter4, dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT), a largecoplanar acceptor, was successfully synthesized. Combined with four selected donors, fourmedium-bandgap polymers were obtained. Cyclic voltammetry revealed the polymers hadsimilar HOMO levels. Polymer DTBT-Th3in a solution showed very strong interchainaggregation at room temperature or elevated temperature, which could be benefit foroptoelectronic devices. Using cholrobenzene as the processing solvent, the best efficiency of6.81%was achieved for the DTBT-Th3-based polymer solar cells. The organic field-effecttransistors of DTBT-Th4gave the highest hole mobility of0.74cm2/Vs. Relatively, polymersDTBT-Th4, DTBT-TT, and DTBT-Th5did not show ideal photovoltaic performances. Theirmorphologies in blend films as measured by atomic force microscopy helped us to understand the existing difference.
     Isomerism can result in great influenece on the opotoelectronic property, thus an isormer ofDTBT, named as iso-DTBT, was sysnthesized for comparison study. We selected terthiopheneand quarterthiophene as the electron-donating units, from which two alternating copolymersiso-DTBT-Th3and iso-DBBT-Th4were prepared. To our surprise, polymers iso-DTBT-Th3and iso-DBBT-Th4showed totally different behaviors in absorption and energy level. Inpolymer solar cells, only poor photovoltaic performances could be exhibited. In order tounderstand these differences, we selected Density Functional Theory and atomic forcemicroscopy for further studies.
     In addition, another large coplanar heterocycle, dithieno[3,2-a:2',3'-c]phenazine, wassynthesized. In combination with terthiophene and quarterthiophene, two alternatingcopolymers DTQ-Th3and DTQ-Th4were prepared. However, the two polymers showed weakintrachain charge transfer. In polymer solar cells, the two polymers displayed efficiencies of1.87%and0.60%, respectively.
引文
[1] http://discovery.163.com/special/nuclearshutdown/
    [2] http://baike.baidu.com/view/346275.htm#4_1
    [3] Glenis S., Tourillon G., Garnier F. Photoelectrochemical properties of thin films ofpolythiophene and derivatives: Doping level and structure effects [J]. Thin Solid Films,1984,122(1):9-17.
    [4] Tang C.W. Two layer organic photovoltaic cell [J]. Applied Physics Letters,1986,48(2):183-185.
    [5] Sariciftci N., Smilowitz L., Heeger A.J., et al. Photoinduced electron transfer from aconducting polymer to buckminsterfullerene [J]. Science,1992,258(5087):1474-1476.
    [6] Yu G., Gao J., Hummelen J., et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions [J]. Science-AAAS-Weekly PaperEdition,1995,270(5243):1789-1790.
    [7] He Z., Zhong C., Su S., et al. Enhanced power-conversion efficiency in polymer solar cellsusing an inverted device structure [J]. Nature Photonics,2012,6(9):591-595.
    [8] You J., Chen C.C., Hong Z., et al.10.2%Power Conversion Efficiency Polymer TandemSolar Cells Consisting of Two Identical Sub Cells [J]. Advanced Materials,2013,25(29):3973-3978.
    [9] http://finance.people.com.cn/n/2013/0124/c348883-20313254.html.
    [10] http://china.nikkeibp.com.cn/news/econ/61287-20120531.html
    [11] Günes S., Neugebauer H., Sariciftci N.S. Conjugated polymer-based organic solar cells[J]. Chemical reviews,2007,107(4):1324-1338.
    [12] Adebanjo O., Maharjan P.P., Adhikary P., et al. Triple junction polymer solar cells [J].Energy&Environmental Science,2013,6(11):3150-3170.
    [13] Li W., Furlan A., Hendriks K.H., et al. Efficient tandem and triple-junction polymer solarcells [J]. Journal of the American Chemical Society,2013,135(15):5529-5532.
    [14] J rgensen M., Norrman K., Krebs F.C. Stability/degradation of polymer solar cells [J].Solar Energy Materials and Solar Cells,2008,92(7):686-714.
    [15] Zimmermann B., Würfel U., Niggemann M. Longterm stability of efficient invertedP3HT: PCBM solar cells [J]. Solar Energy Materials and Solar Cells,2009,93(4):491-496.
    [16] Kim J.Y., Lee K., Coates N.E., et al. Efficient tandem polymer solar cells fabricated byall-solution processing [J]. Science,2007,317(5835):222-225.
    [17] Thompson B.C., Fréchet J.M. Polymer–fullerene composite solar cells [J]. AngewandteChemie International Edition,2008,47(1):58-77.
    [18] A.J. Heeger; N.S. Sariciftci曹镛译.半导性与金属性聚合物[M].2011.
    [19]王明.新型窄带隙聚合物太阳电池给体材料的设计合成与应用[D];华南理工大学,2012.
    [20] Maennig B., Drechsel J., Gebeyehu D., et al. Organic pin solar cells [J]. Applied PhysicsA,2004,79(1):1-14.
    [21] Roncali J. Molecular engineering of the band gap of π conjugated systems: Facingtechnological applications [J]. Macromolecular Rapid Communications,2007,28(17):1761-1775.
    [22] Frère P., Raimundo J.-M., Blanchard P., et al. Effect of local molecular structure on thechain-length dependence of the electronic properties of thiophene-based π-conjugatedsystems [J]. The Journal of organic chemistry,2003,68(19):7254-7265.
    [23] Havinga E., Ten Hoeve W., Wynberg H. A new class of small band gap organic polymerconductors [J]. Polymer Bulletin,1992,29(1-2):119-126.
    [24] Organic Photovoltaic as the key word from Web of Science in January2014.
    [25] Woo C.H., Holcombe T.W., Unruh D.A., et al. Phenyl vs alkyl polythiophene: a solar cellcomparison using a vinazene derivative as acceptor [J]. Chemistry of Materials,2010,22(5):1673-1679.
    [26] Gong X., Tong M., Brunetti F.G., et al. Bulk Heterojunction Solar Cells with LargeOpen-Circuit Voltage: Electron Transfer with Small Donor Acceptor Energy Offset [J].Advanced Materials,2011,23(20):2272-2277.
    [27] Shu Y., Lim Y.-F., Li Z., et al. A survey of electron-deficient pentacenes as acceptors inpolymer bulk heterojunction solar cells [J]. Chemical Science,2011,2(2):363-368.
    [28] Anthony J.E. Small-Molecule, Nonfullerene Acceptors for Polymer Bulk HeterojunctionOrganic Photovoltaics [J]. Chemistry of Materials,2010,23(3):583-590.
    [29] Ren G., Ahmed E., Jenekhe S.A. Non-Fullerene Acceptor-Based Bulk HeterojunctionPolymer Solar Cells: Engineering the Nanomorphology via Processing Additives [J].Advanced Energy Materials,2011,1(5):946-953.
    [30] Zhou T., Jia T., Kang B., et al. Nitrile-Substituted QA Derivatives: New AcceptorMaterials for Solution-Processable Organic Bulk Heterojunction Solar Cells [J].Advanced Energy Materials,2011,1(3):431-439.
    [31] Zhou Y., Ding L., Shi K., et al. A Non Fullerene Small Molecule as Efficient ElectronAcceptor in Organic Bulk Heterojunction Solar Cells [J]. Advanced Materials,2012,24(7):957-961.
    [32] Svensson M., Zhang F., Veenstra S.C., et al. High-performance polymer solar cells of analternating polyfluorene copolymer and a fullerene derivative [J]. Advanced Materials,2003,15(12):988-991.
    [33] Alghamdi A.A., Watters D.C., Yi H., et al. Selenophene vs. thiophene inbenzothiadiazole-based low energy gap donor-acceptor polymers for photovoltaicapplications [J]. Journal of Materials Chemistry A,2013,1(16):5165-5171.
    [34] Liu J., Choi H., Kim J.Y., et al. Highly crystalline and low bandgap donor polymers forefficient polymer solar cells [J]. Advanced Materials,2012,24(4):538-542.
    [35] Blouin N., Michaud A., Leclerc M. A low-bandgap poly (2,7-carbazole) derivative foruse in high-performance solar cells [J]. Advanced Materials,2007,19(17):2295-2300.
    [36] Park S.H., Roy A., BeaupréS., et al. Bulk heterojunction solar cells with internalquantum efficiency approaching100&percnt [J]. Nature photonics,2009,3(5):297-302.
    [37] Moon J.S., Jo J., Heeger A.J. Nanomorphology of PCDTBT: PC70BM bulkheterojunction solar cells [J]. Advanced Energy Materials,2012,2(3):304-308.
    [38] Fu Y., Cha H., Lee G.-Y., et al.3,6-Carbazole Incorporated into Poly [9,9-dioctylfluorene-alt-(bisthienyl) benzothiadiazole] s Improving the Power ConversionEfficiency [J]. Macromolecules,2012,45(7):3004-3009.
    [39] Wang E., Wang L., Lan L., et al. High-performance polymer heterojunction solar cells ofa polysilafluorene derivative [J]. Applied Physics Letters,2008,92(3):033307.
    [40] Ong K.H., Lim S.L., Tan H.S., et al. A Versatile Low Bandgap Polymer for Air Stable,High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells [J]. AdvancedMaterials,2011,23(11):1409-1413.
    [41] Huo L., Hou J., Zhang S., et al. A Polybenzo [1,2-b:4,5-b'] dithiophene Derivative withDeep HOMO Level and Its Application in High Performance Polymer Solar Cells [J].Angewandte Chemie International Edition,2010,49(8):1500-1503.
    [42] Qin R., Li W., Li C., et al. A planar copolymer for high efficiency polymer solar cells [J].Journal of the American Chemical Society,2009,131(41):14612-14613.
    [43] Mühlbacher D., Scharber M., Morana M., et al. High photovoltaic performance of alow-bandgap polymer [J]. Advanced Materials,2006,18(21):2884-2889.
    [44] Peet J., Kim J., Coates N.E., et al. Efficiency enhancement in low-bandgap polymer solarcells by processing with alkane dithiols [J]. Nature materials,2007,6(7):497-500.
    [45] Hou J., Chen H.-Y., Zhang S., et al. Synthesis, characterization, and photovoltaicproperties of a low band gap polymer based on silole-containing polythiophenes and2,1,3-benzothiadiazole [J]. Journal of the American Chemical Society,2008,130(48):16144-16145.
    [46] Coffin R.C., Peet J., Rogers J., et al. Streamlined microwave-assisted preparation ofnarrow-bandgap conjugated polymers for high-performance bulk heterojunction solarcells [J]. Nature chemistry,2009,1(8):657-661.
    [47] Chen Y.-C., Yu C.-Y., Fan Y.-L., et al. Low-bandgap conjugated polymer for highefficient photovoltaic applications [J]. Chemical Communications,2010,46(35):6503-6505.
    [48] Ashraf R.S., Schroeder B.C., Bronstein H.A., et al. The Influence of Polymer Purificationon Photovoltaic Device Performance of a Series of Indacenodithiophene Donor Polymers[J]. Advanced Materials,2013,25(14):2029-2034.
    [49] Chang C.Y., Cheng Y.J., Hung S.H., et al. Combination of molecular, morphological, andinterfacial engineering to achieve highly efficient and stable plastic solar cells [J].Advanced Materials,2012,24(4):549-553.
    [50] Yau C.P., Fei Z., Ashraf R.S., et al. Influence of the Electron Deficient Co-Monomer onthe Optoelectronic Properties and Photovoltaic Performance of Dithienogermole-basedCo-Polymers [J]. Advanced Functional Materials,2013,
    [51] Chang C.Y., Zuo L., Yip H.L., et al. A Versatile Fluoro Containing Low BandgapPolymer for Efficient Semitransparent and Tandem Polymer Solar Cells [J]. AdvancedFunctional Materials,2013,23(40):5084-5090.
    [52] Zhang Y., Chien S.-C., Chen K.-S., et al. Increased open circuit voltage in fluorinatedbenzothiadiazole-based alternating conjugated polymers [J]. Chemical Communications,2011,47(39):11026-11028.
    [53] Dou L., Chen C.-C., Yoshimura K., et al. Synthesis of5H-Dithieno [3,2-b:2',3'-d]pyran as an Electron-Rich Building Block for Donor-Acceptor Type Low-BandgapPolymers [J]. Macromolecules,2013,46(9):3384-3390.
    [54] Intemann J.J., Yao K., Yip H.-L., et al. Molecular Weight Effect on the Absorption,Charge Carrier Mobility, and Photovoltaic Performance of anIndacenodiselenophene-Based Ladder-Type Polymer [J]. Chemistry of Materials,2013,25(15):3188-3195.
    [55] Chueh C.-C., Yao K., Yip H.-L., et al. Non-halogenated solvents for environmentallyfriendly processing of high-performance bulk-heterojunction polymer solar cells [J].Energy&Environmental Science,2013,6(11):3241-3248.
    [56] Wang N., Chen Z., Wei W., et al. Fluorinated Benzothiadiazole-Based ConjugatedPolymers for High-Performance Polymer Solar Cells without Any Processing Additivesor Post-treatments [J]. Journal of the American Chemical Society,2013,135(45):17060-17068.
    [57] Zhou H., Yang L., Stuart A.C., et al. Development of fluorinated benzothiadiazole as astructural unit for a polymer solar cell of7%efficiency [J]. Angewandte Chemie,2011,123(13):3051-3054.
    [58] Chen Z., Cai P., Chen J., et al. Low Band Gap Conjugated Polymers with StrongInterchain Aggregation and Very High Hole Mobility Towards Highly Efficient ThickFilm Polymer Solar Cells [J]. Advanced Materials,2014,
    [59] Yan Wang X.X., Yong Lu, Ting Xiao, Xiaofeng Xu, Ni Zhao, Xiao Hu, Beng S. Ong, andSiu Choon Ng Substituent Effects on Physical and Photovoltaic Properties of5,6-Difluorobenzo[c][1,2,5]thiadiazole-Based D-A Polymers: Toward a Donor Designfor High Performance Polymer Solar Cells [J]. Macromolecules,2013,46(24):9587-9592.
    [60] Kim J.-H., Shin S.A., Park J.B., et al. Fluorinated Benzoselenadiazole-BasedLow-Band-Gap Polymers for High Efficiency Inverted Single and Tandem OrganicPhotovoltaic Cells [J]. Macromolecules,2014,
    [61] Zhou H., Yang L., Stoneking S., et al. A weak donor-strong acceptor strategy to designideal polymers for organic solar cells [J]. ACS applied materials&interfaces,2010,2(5):1377-1383.
    [62]Mataka S.; Takahashi K.; Ikezaki Y. E.A. Selective Formation of Benzo-andBenzobis(1,2,5)thiadiazole Skeleton in the Reaction of TetrasulfurTetranitride withNaphthalenols and Related Compounds [J]. Bulletin of the Chemical Society of Japan,1991,64(68-73.
    [63] Mataka S.; Takahashi K.; Ikezaki Y. E.A. reparation of1,2,3-Naphthalenetriamine,1,2,5,6-and1,2,7,8-Naphthalenetetramine, and5,6,7,8-Quinolinetetramine and-Isoquinolinetetramine by Reduction of the Fused1,2,5-Thiadiazole Ring [J]. Bulletin ofthe Chemical Society of Japan,1992,65(8):2221-2226.
    [64] Wang M., Hu X., Liu P., et al. Donor–acceptor conjugated polymer based on naphtho [1,2-c:5,6-c] bis [1,2,5] thiadiazole for high-performance polymer solar cells [J]. Journalof the American Chemical Society,2011,133(25):9638-9641.
    [65] Yang T., Wang M., Duan C., et al. Inverted polymer solar cells with8.4%efficiency byconjugated polyelectrolyte [J]. Energy&Environmental Science,2012,5(8):8208-8214.
    [66] Osaka I., Shimawaki M., Mori H., et al. Synthesis, characterization, and transistor andsolar cell applications of a naphthobisthiadiazole-based semiconducting polymer [J].Journal of the American Chemical Society,2012,134(7):3498-3507.
    [67] Osaka I., Kakara T., Takemura N., et al. Naphthodithiophene–NaphthobisthiadiazoleCopolymers for Solar Cells: Alkylation Drives the Polymer Backbone Flat and PromotesEfficiency [J]. Journal of the American Chemical Society,2013,135(24):8834-8837.
    [68] Wang M., Hu X., Liu L., et al. Design and Synthesis of Copolymers ofIndacenodithiophene and Naphtho [1,2-c:5,6-c] bis (1,2,5-thiadiazole) for PolymerSolar Cells [J]. Macromolecules,2013,46(10):3950-3958.
    [69] Dong Y., Hu X., Duan C., et al. A Series of New Medium Bandgap ConjugatedPolymers Based on Naphtho [1,2-c:5,6-c] bis (2-octyl-[1,2,3] triazole) for HighPerformance Polymer Solar Cells [J]. Advanced Materials,2013,25(27):3683-3688.
    [70] Seshadri V., Wu L., Sotzing G.A. Conjugated polymers via electrochemicalpolymerization of thieno [3,4-b] thiophene (T34bT) and3,4-ethylenedioxythiophene(EDOT)[J]. Langmuir,2003,19(22):9479-9485.
    [71] Liang Y., Feng D., Wu Y., et al. Highly efficient solar cell polymers developed viafine-tuning of structural and electronic properties [J]. Journal of the American ChemicalSociety,2009,131(22):7792-7799.
    [72] Saadeh H.A., Lu L., He F., et al. Polyselenopheno [3,4-b] selenophene for highlyefficient bulk heterojunction solar cells [J]. ACS Macro Letters,2012,1(3):361-365.
    [73] Huo L., Zhang S., Guo X., et al. Replacing alkoxy groups with alkylthienyl groups: afeasible approach to improve the properties of photovoltaic polymers [J]. AngewandteChemie,2011,123(41):9871-9876.
    [74] Liang Y., Xu Z., Xia J., et al. For the bright future-bulk heterojunction polymer solarcells with power conversion efficiency of7.4%[J]. Advanced Materials,2010,22(20):E135-E138.
    [75] He Z., Zhong C., Huang X., et al. Simultaneous enhancement of open circuit voltage,short circuit current density, and fill factor in polymer solar cells [J]. AdvancedMaterials,2011,23(40):4636-4643.
    [76] Kim J.-H., Song C.E., Kim B., et al. Thieno [3,2-b] thiophene-Substituted Benzo [1,2-b:4,5-b'] dithiophene as a Promising Building Block for Low Bandgap SemiconductingPolymers for High-Performance Single and Tandem Organic Photovoltaic Cells [J].Chemistry of Materials,2013,
    [77] He F., Wang W., Chen W., et al. Tetrathienoanthracene-based copolymers for efficientsolar cells [J]. Journal of the American Chemical Society,2011,133(10):3284-3287.
    [78] Liao S.H., Jhuo H.J., Cheng Y.S., et al. Fullerene Derivative Doped Zinc OxideNanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer(PTB7-Th) for High Performance [J]. Advanced Materials,2013,25(34):4766-4771.
    [79] Chen H.-Y., Hou J., Zhang S., et al. Polymer solar cells with enhanced open-circuitvoltage and efficiency [J]. Nature Photonics,2009,3(11):649-653.
    [80] Tamayo A.B., Walker B., Nguyen T.-Q. A low band gap, solution processableoligothiophene with a diketopyrrolopyrrole core for use in organic solar cells [J]. TheJournal of Physical Chemistry C,2008,112(30):11545-11551.
    [81] Hendriks K.H., Heintges G.H., Gevaerts V.S., et al. High Molecular Weight RegularAlternating Diketopyrrolopyrrole-based Terpolymers for Efficient Organic Solar Cells[J]. Angewandte Chemie International Edition,2013,52(32):8341-8344.
    [82] Li W., Hendriks K.H., Roelofs W., et al. Efficient small bandgap polymer solar cells withhigh fill factors for300nm thick films [J]. Advanced Materials,2013,25(23):3182-3186.
    [83] Li J., Zhao Y., Tan H.S., et al. A stable solution-processed polymer semiconductor withrecord high-mobility for printed transistors [J]. Scientific reports,2012,2(
    [84] Lee J., Han A.-R., Kim J., et al. Solution-processable ambipolardiketopyrrolopyrrole–selenophene polymer with unprecedentedly high hole and electronmobilities [J]. Journal of the American Chemical Society,2012,134(51):20713-20721.
    [85] Dou L., Chang W.H., Gao J., et al. A Selenium-Substituted Low-Bandgap Polymer withVersatile Photovoltaic Applications [J]. Advanced Materials,2013,25(6):825-831.
    [86] Kim J.-H., Song C.E., Kang I.-N., et al. A highly crystalline low band-gap polymerconsisting of perylene and diketopyrrolopyrrole for organic photovoltaic cells [J].Chemical Communications,2013,49(31):3248-3250.
    [87] Liu F., Wang C., Baral J.K., et al. Relating Chemical Structure to Device Performance viaMorphology Control in Diketopyrrolopyrrole-Based Low Band Gap Polymers [J].Journal of the American Chemical Society,2013,135(51):19248-19259.
    [88] Woo C.H., Beaujuge P.M., Holcombe T.W., et al. Incorporation of furan into lowband-gap polymers for efficient solar cells [J]. Journal of the American Chemical Society,2010,132(44):15547-15549.
    [89] Meager I., Ashraf R.S., Mollinger S., et al. Photocurrent enhancement fromdiketopyrrolopyrrole polymer solar cells through alkyl-chain branching pointmanipulation [J]. Journal of the American Chemical Society,2013,135(31):11537-11540.
    [90] Li Z., Tsang S.W., Du X., et al. Alternating Copolymers of Cyclopenta [2,1-b;3,4-b']dithiophene and Thieno [3,4-c] pyrrole-4,6-dione for High-Performance Polymer SolarCells [J]. Advanced Functional Materials,2011,21(17):3331-3336.
    [91] Chu T.-Y., Lu J., Beaupré S., et al. Bulk heterojunction solar cells using thieno [3,4-c]pyrrole-4,6-dione and dithieno [3,2-b:2',3'-d] silole copolymer with a powerconversion efficiency of7.3%[J]. Journal of the American Chemical Society,2011,133(12):4250-4253.
    [92] Amb C.M., Chen S., Graham K.R., et al. Dithienogermole as a fused electron donor inbulk heterojunction solar cells [J]. Journal of the American Chemical Society,2011,133(26):10062-10065.
    [93] Piliego C., Holcombe T.W., Douglas J.D., et al. Synthetic control of structural order inN-alkylthieno [3,4-c] pyrrole-4,6-dione-based polymers for efficient solar cells [J].Journal of the American Chemical Society,2010,132(22):7595-7597.
    [94] Cabanetos C.M., El Labban A., Bartelt J.A., et al. Linear Side Chains in Benzo [1,2-b:4,5-b'] dithiophene-Thieno [3,4-c] pyrrole-4,6-dione Polymers Direct Self-Assembly andSolar Cell Performance [J]. Journal of the American Chemical Society,2013,135(12):4656-4659.
    [95] Zou Y., Najari A., Berrouard P., et al. A thieno [3,4-c] pyrrole-4,6-dione-basedcopolymer for efficient solar cells [J]. Journal of the American Chemical Society,2010,132(15):5330-5331.
    [96] Najari A., BeaupréS., Berrouard P., et al. Synthesis and Characterization of New Thieno
    [3,4-c] pyrrole-4,6-dione Derivatives for Photovoltaic Applications [J]. AdvancedFunctional Materials,2011,21(4):718-728.
    [97] Yuan J., Zhai Z., Dong H., et al. Efficient Polymer Solar Cells with a High Open CircuitVoltage of1Volt [J]. Advanced Functional Materials,2013,23(7):885-892.
    [98] Shi S., Jiang P., Yu S., et al. Efficient polymer solar cells based on a broad bandgap D–Acopolymer of “zigzag” naphthodithiophene and thieno [3,4-c] pyrrole-4,6-dione [J].Journal of Materials Chemistry A,2013,1(5):1540-1543.
    [99] Su M.S., Kuo C.Y., Yuan M.C., et al. Improving device efficiency of polymer/fullerenebulk heterojunction solar cells through enhanced crystallinity and reduced grainboundaries induced by solvent additives [J]. Advanced Materials,2011,23(29):3315-3319.
    [100] Wang D.H., Pron A., Leclerc M., et al. Additive-Free Bulk-Heterojuction Solar Cellswith Enhanced Power Conversion Efficiency, Comprising a Newly DesignedSelenophene-Thienopyrrolodione Copolymer [J]. Advanced Functional Materials,2013,23(10):1297-1304.
    [101] Chen G.-Y., Cheng Y.-H., Chou Y.-J., et al. Crystalline conjugated polymer containingfused2,5-di (thiophen-2-yl) thieno [2,3-b] thiophene and thieno [3,4-c] pyrrole-4,6-dione units for bulk heterojunction solar cells [J]. Chemical Communications,2011,47(17):5064-5066.
    [102] Guo X., Zhou N., Lou S.J., et al. Polymer solar cells with enhanced fill factors [J].Nature Photonics,2013,7(10):825-833.
    [103] Yuan J., Zhai Z., Li J., et al. Correlation between structure and photovoltaicperformance of a series of furan bridged donor–acceptor conjugated polymers [J].Journal of Materials Chemistry A,2013,1(39):12128-12136.
    [104] Cui C., Fan X., Zhang M., et al. A-D-A copolymer of dithienosilole and a new acceptorunit of naphtho [2,3-c] thiophene-4,9-dione for efficient polymer solar cells [J].Chemical Communications,2011,47(40):11345-11347.
    [105] Zhou N., Guo X., Ortiz R.P., et al. Bithiophene imide and benzodithiophene copolymersfor efficient inverted polymer solar cells [J]. Advanced Materials,2012,24(17):2242-2248.
    [106] Qian D., Ma W., Li Z., et al. Molecular Design toward Efficient Polymer Solar Cellswith High Polymer Content [J]. Journal of the American Chemical Society,2013,135(23):8464-8467.
    [107] Kim D.H., Ayzner A.L., Appleton A.L., et al. Comparison of the photovoltaiccharacteristics and nanostructure of fullerenes blended with conjugated polymers withsiloxane-terminated and branched aliphatic side chains [J]. Chemistry of Materials,2013,25(3):431-440.
    [108] Wang E., Ma Z., Zhang Z., et al. An easily accessible isoindigo-based polymer forhigh-performance polymer solar cells [J]. Journal of the American Chemical Society,2011,133(36):14244-14247.
    [109] Zhuang W., Bolognesi M., Seri M., et al. Influence of Incorporating DifferentElectron-Rich Thiophene-Based Units on the Photovoltaic Properties ofIsoindigo-Based Conjugated Polymers: An Experimental and DFT Study [J].Macromolecules,2013,46(21):8488-8499.
    [110] Dang D., Chen W., Yang R., et al. Fluorine substitution enhanced photovoltaicperformance of a D-A1–D-A2copolymer [J]. Chemical Communications,2013,49(81):9335-9337.
    [111] Deng Y., Liu J., Wang J., et al. Dithienocarbazole and Isoindigo based Amorphous LowBandgap Conjugated Polymers for Efficient Polymer Solar Cells [J]. AdvancedMaterials,2014,26(3):471-476.
    [112] Yang Y., Wu R., Wang X., et al. Isoindigo fluorination to enhance photovoltaicperformance of donor–acceptor conjugated copolymers [J]. Chemical Communications,2014,50(4):439-441.
    [113] Li S., Yuan Z., Yuan J., et al. An Expanded Isoindigo Unit as a New Building Block forConjugated Polymer Leading to High-Performance Solar Cells [J]. Journal of MaterialsChemistry A,2014,
    [114] Wang E., Hou L., Wang Z., et al. An Easily Synthesized Blue Polymer for HighPerformance Polymer Solar Cells [J]. Advanced Materials,2010,22(46):5240-5244.
    [115] Zhang Y., Zou J., Yip H.-L., et al. Indacenodithiophene and quinoxaline-basedconjugated polymers for highly efficient polymer solar cells [J]. Chemistry of Materials,2011,23(9):2289-2291.
    [116] He Z., Zhang C., Xu X., et al. Largely enhanced efficiency with a PFN/Al bilayercathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgappolycarbazole donor [J]. Advanced Materials,2011,23(27):3086-3089.
    [117] Duan R., Ye L., Guo X., et al. Application of Two-Dimensional Conjugated Benzo [1,2-b:4,5-b'] dithiophene in Quinoxaline-Based Photovoltaic Polymers [J].Macromolecules,2012,45(7):3032-3038.
    [118] Kitazawa D., Watanabe N., Yamamoto S., et al. Quinoxaline-based pi-conjugated donorpolymer for highly efficient organic thin-film solar cells [J]. Applied Physics Letters,2009,95(5):3701.
    [119] Kim J.-H., Song C.E., Kim H.U., et al. High Open Circuit Voltage Solution-ProcessedTandem Organic Photovoltaic Cells Employing a Bottom Cell Using a New MediumBand Gap Semiconducting Polymer [J]. Chemistry of Materials,2013,25(13):2722-2732.
    [120] Chen H.-C., Chen Y.-H., Liu C.-C., et al. Prominent short-circuit currents of fluorinatedquinoxaline-based copolymer solar cells with a power conversion efficiency of8.0%[J].Chemistry of Materials,2012,24(24):4766-4772.
    [121] http://china.samsung.com.cn/News/MediaDetail/8434
    [122] Pan H., Li Y., Wu Y., et al. Synthesis and Thin-Film Transistor Performance of Poly (4,8-didodecylbenzo [1,2-b:4,5-b'] dithiophene)[J]. Chemistry of materials,2006,18(14):3237-3241.
    [123] Pan H., Li Y., Wu Y., et al. Low-temperature, solution-processed, high-mobility polymersemiconductors for thin-film transistors [J]. Journal of the American Chemical Society,2007,129(14):4112-4113.
    [124] Hou J., Park M.-H., Zhang S., et al. Bandgap and molecular energy level control ofconjugated polymer photovoltaic materials based on benzo [1,2-b:4,5-b'] dithiophene[J]. Macromolecules,2008,41(16):6012-6018.
    [125] Loser S., Bruns C.J., Miyauchi H., et al. A naphthodithiophene-diketopyrrolopyrroledonor molecule for efficient solution-processed solar cells [J]. Journal of the AmericanChemical Society,2011,133(21):8142-8145.
    [126] Okamoto T., Jiang Y., Qu F., et al. Synthesis and Characterization of Pentacene andAnthradithiophene-Fluorene Conjugated Copolymers Synthesized by Suzuki Reactions[J]. Macromolecules,2008,41(19):6977-6980.
    [127] Lim Y., Ihn S.-G., Bulliard X., et al. Controlling band gap and hole mobility ofphotovoltaic donor polymers with terpolymer system [J]. Polymer,2012,53(23):5275-5284.
    [128]袁履冰,高占先,陈宏博.有机化学[M].1999.
    [129] Huo L., Huang Y., Fan B., et al. Synthesis of a4,8-dialkoxy-benzo [1,2-b:4,5-b']difuran unit and its application in photovoltaic polymer [J]. Chemical Communications,2012,48(27):3318-3320.
    [130] Zhu Y., Xu X., Zhang L., et al. High efficiency inverted polymeric bulk-heterojunctionsolar cells with hydrophilic conjugated polymers as cathode interlayer on ITO [J]. Solarenergy materials and solar cells,2012,97(83-88.
    [131] Xu X., Han B., Chen J., et al.2,7-Carbazole-1,4-phenylene Copolymers with polarside chains for cathode modifications in polymer light-emitting diodes [J].Macromolecules,2011,44(11):4204-4212.
    [132] Mei Y., Loth M.A., Payne M., et al. High Mobility Field Effect Transistors withVersatile Processing from a Small Molecule Organic Semiconductor [J]. AdvancedMaterials,2013,25(31):4352-4357.
    [133] Fukuda K., Sekine T., Kobayashi Y., et al. Organic integrated circuits usingroom-temperature sintered silver nanoparticles as printed electrodes [J]. OrganicElectronics,2012,13(12):3296-3301.
    [134] Suresh C., Gadre S.R. Clar's aromatic sextet theory revisited via molecular electrostaticpotential topography [J]. The Journal of Organic Chemistry,1999,64(7):2505-2512.
    [135] Poater J., Visser R., Sola M., et al. Polycyclic benzenoids: why kinked is more stablethan straight [J]. The Journal of organic chemistry,2007,72(4):1134-1142.
    [136] Wex B., Kaafarani B.R., Schroeder R., et al. New organic semiconductors and theirdevice performance as a function of thiophene orientation [J]. Journal of MaterialsChemistry,2006,16(12):1121-1124.
    [137] Meyer A., Sigmund E., Luppertz F., et al. Syntheses and properties ofthienyl-substituted dithienophenazines [J]. Beilstein journal of organic chemistry,2010,6(1):1180-1187.
    [138] Barbarella G., Zambianchi M., Bongini A., et al. The deformability of the thiophenering: A key to the understanding of the conformational properties of oligo andpolythiophenes [J]. Advanced Materials,1993,5(11):834-838.
    [139] Fichou D. Structural order in conjugated oligothiophenes and its implications onopto-electronic devices [J]. Journal of Materials Chemistry,2000,10(3):571-588.
    [140] Anant P., Mangold H., Lucas N.T., et al. Synthesis and characterization of donoracceptor type4,4'-bis (2,1,3-benzothiadiazole)-based copolymers [J]. Polymer,2011,52(20):4442-4450.
    [141] Kono T., Kumaki D., Nishida J.-I., et al. High-performance and light-emitting n-typeorganic field-effect transistors based on dithienylbenzothiadiazole and relatedheterocycles [J]. Chemistry of materials,2007,19(6):1218-1220.
    [142] Stuart A.C., Tumbleston J.R., Zhou H., et al. Fluorine Substituents Reduce ChargeRecombination and Drive Structure and Morphology Development in Polymer SolarCells [J]. Journal of the American Chemical Society,2013,135(5):1806-1815.
    [143] Bouffard J., Swager T.M. Fluorescent conjugated polymers that incorporate substituted2,1,3-benzooxadiazole and2,1,3-benzothiadiazole units [J]. Macromolecules,2008,41(15):5559-5562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700