功能梯度梁的静动态力学行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁是工程应用中最为常见的结构形式。在航空航天、机械、土木工程等领域中,大多数承受荷载的构件可以抽象为梁或柱。功能梯度梁由于微观成分和性能呈连续性梯度变化,消除了两种材料之间的界面,从而具有高强度、高韧性、减少应力集中、耐高温等优良的力学性能,广泛应用于各个领域。本文研究了材料非线性功能梯度悬臂梁在载荷作用下的大变形问题,及双向功能梯度梁和指数梯度梁的振动自然频率。此外,还计算了弹性地基上非经典剪切梁的自然频率。
     本文共分为七章。第一章是引言部分,对课题研究的发展趋势进行概述。第二章至第六章为主体部分,给出了一些重要的结果和结论。最后部分是结论与对本课题的展望。本文取得的主要成果如下:
     (1)分析了材料非线性功能梯度悬臂梁自由端受到力偶作用时的大变形。对幂律硬化的功能梯度梁,确定了中性轴的位置。给出了非线性材料的功能梯度梁挠度和转角的显式表达式。分析了梯度变化的弹性模量和材料非线性参数对功能梯度梁变形的影响。结果表明随高度变化的弹性模量和材料非线性对梁的变形有重大的影响,且功能梯度梁比均质梁能承受更大载荷。为确定最佳的梯度分布,给出了具有较轻重量和较大刚度的优化设计。
     (2)利用大变形和小变形理论研究了非线性功能梯度悬臂梁自由端受集中力作用时的力学行为。假设弹性模量沿梁高度方向变化,分析了高度相关的弹性模量和非线性参数对功能梯度梁挠度和转角的影响。结果表明,不同梯度指数能改变梁的弯曲刚度,因此选择适当的梯度,功能梯度梁能比均质梁承受较大载荷。且功能梯度梁弯曲应力的分布与均质梁的应力分布完全不同。最大拉应力在梁内部位置取得而不是在表面。这些结论对线性和非线性梁的安全设计是非常有用的。
     (3)研究了双向功能梯度梁的自由振动。对材料性质沿轴向和高度方向变化的细长梁,用二维弹性理论推导出其控制方程。然后将它们转化为对应的Fredholm积分方程,得到了材料性质对称分布的简支梁弯曲振动的自然频率。讨论了梯度变化和转动惯量对自然频率的影响。结果表明自然频率对梯度变化敏感。转动惯量在确定自然频率上有重要作用。
     (4)分析了轴向非均匀梁的自由振动。对指数梯度梁在不同约束条件下,推导出封闭特征方程。当梯度指数为零时,这些特征方程或频率方程能退化为Euler-Bernoulli梁的经典形式。梯度对频谱有很强的影响,自然频率明显依赖梯度参数的变化和约束条件。对某一指数梯度梁,存在一个依赖梯度参数的临界频率。频率超过临界频率的传播波才能激起振动,否则振动不会产生。对某一梯度指数以小的改变,当自然频率超过临界频率,它会有突变。上述结论可作为分析轴向功能梯度梁自由振动的其它数值程序的一个参照。对某一梯度指数可寻求到最低自然频率,这能帮助工程人员对非均匀梁结构振动进行优化设计
     (5)计算了弹性地基上非经典剪切梁的自然频率。高层建筑的弯曲变形主要是平行楼板产生相对滑移引起的,因而可用剪切梁来模拟高层建筑。经典剪切梁不考虑弯矩的存在。由于建筑物墙-墙和墙-板间强相互作用的共同影响引起拉-压力耦合,这种力的耦合使建筑物产生原始弯矩,所以需要修正剪切梁理论。给出了修正剪切梁模型的理论分析。重点计算了在弹性基如泥土上和带有一集中质量的剪切梁的自然频率。取得了修正剪切梁自然频率的特征方程。阐明了平移和转动弹簧刚度、轴向压力和附带的质量对自然频率的影响。
Beams are one of the most common engineering structures. In the field of aerospace, mechanical and civil engineering, many components subjected to applied loading can be understood as beams or columns. Functionally graded materials (FGMs) possess continuously varying material properties. This feature can effectively remove abrupt stress jump when across the interface between two bonded dissimilar materials. Therefore, due to this feature they have been widely used in a variety of engineering fields. In this thesis, the mechanical behaviors of a non-linear functionally graded material cantilever beam subjected to an end force or moment are investigated by using large and small deformation theories. Free vibration of bidirectionally functionally graded beams and axially inhomogeneous beams is analyzed. In addition, the natural frequencies of nonclassical shear beams standing on an elastic foundation and carrying a mass is studied.
     This thesis is composed of seven chapters. Chapter one is the introduction, in which the development of relative subjects is outlined. Chapter two to six are the main chapters, and some novel results and conclusions are drawn. The final chapter gives a simple summary and expectation of future researches. Here, main results are emphasized as follows:
     (1) The analysis of the large deformation of a non-linear cantilever functionally graded beam is made. For an FGM beam of power-law hardening, the location of the neutral axis is determined. When subjected to an end moment, explicit expressions for deflection and rotation are derived for an FGB. The effects of the gradient distribution of Young's modulus and the material non-linearity parameter on the deflections of the FGB are analyzed. Our results show that depth-dependent Young's modulus and material non-linearity have a significant influence on the deflections of the beam, and an FGB can bear larger applied load than a homogeneous beam. Moreover, to determine a optimal gradient distribution, an optimum approach for choosing a beam with a lighter weight and larger stiffness is given.
     (2) The mechanical behaviors of a non-linear functionally-graded-material cantilever beam subjected to an end force are investigated by using large and small deformation theories. The Young's modulus is assumed to be depth-dependent. The effects of the depth-dependent Young's modulus and nonlinearity parameter on the deflections and rotations of the FGM beam are analyzed. Our results show that different gradient indexes may change bending stiffness of the beam so that the FGM beam may bear larger applied load than a homogeneous beam when choosing appropriate gradients. Moreover, the bending stress distribution in an FGM beam is completely different from that in a homogeneous beam. The bending stress arrives at the maximum tensile stress at an internal position rather than at the surface. Obtained results are useful in safety design of linear and non-linear beams.
     (3) The free vibration of bidirectionally functionally graded beams is studied. For a slender beam with axially varying and depth-dependent material properties, a governing equation is derived from two-dimensional elasticity theory. By converting it to a Fredholm integral equation, numerical results of the natural frequencies for free vibration are obtained for simply-supported beams with symmetrically-distributed material properties. The effects of gradient variation and rotary moment of inertia on the natural frequencies are discussed. It is found that the natural frequencies are sensitive to the gradient variation. Rotary inertia plays an important role in determining the natural frequencies.
     (4) Free vibration of axially inhomogeneous beams is analyzed. For exponentially graded beams with various end conditions, characteristic equations are derived in closed form. These characteristic or frequency equations can analytically reduce to the classical forms of Euler-Bernoulli beams if the gradient index disappears. The gradient has a strong influence on the frequency spectrum, and the natural frequencies noticeably depend on the variation of the gradient parameter and end support conditions. For certain beams with exponential gradients, there exists a critical frequency depending on the gradient parameter. Vibration can be only excited by propagating waves with frequencies in excess of the critical frequency, and otherwise vibration is prohibited. For some gradient index, the natural frequencies have an abrupt jump when across its critical frequencies. Obtained results can serve as a benchmark for other numerical procedures for analyzing transverse vibration of axially functionally graded beams. The minimal natural frequency can be sought for certain gradient index, and this helps engineers to optimally design vibrating inhomogeneous beam structures.
     (5) The natural frequencies of a shear beam standing on an elastic foundation and carrying a mass are obtained. Tall buildings may be modelled as shear beams since the corresponding bending is mainly induced by relative sliding of parallel floor slabs. The classical shear beams do not consider the presence of bending moment. Since the bending moment of buildings can be originated from tension-compression force couple due to combined effects of strong wall-to-wall and wall-to-slab interactions, a modified shear beam theory with consideration of bending moment is needed. The final chapter gives a theoretical analysis of a refined shear beam model. Emphasis is placed on the determination of the natural frequencies of a shear beam on an elastic base such as soil and carrying a mass. The characteristic equation for free vibration of a modified shear beam is obtained. The influences of translational and rotational spring stiffnesses, axially compressive loads and attached mass on the natural frequencies are illuminated.
引文
[1]新野正之,平井敏雄,渡边龙三.斜倾机能材料[J].日本复合材料学会志.1987,13(6):257-260.
    [2]Yamanouchi M, Koizumi M, Hirai T, et al. Proceedings of the International Symposium on Functionally Gradient Materials[M]. Sendai, Japan,1990.
    [3]Koizumi M. The Concept of FGM[J]. Cerzmic Trans.. Functionally Gradient Materials,1993,34:1-3.
    [4]M Koizumi, M Niino. OVerView of FGM research in Japan[J]. MRS Bull,1995, 20:19-21.
    [5]S. Suresh. Modeling and Design of Multi-layered and Graded Materials[J]. Prog. Mater. Sci.,1997,42:243-251.
    [6]Miyamoto Y., Kaysser W. A., Rabin B. H.,et al.. Functionally Graded Materials: Design, Processing and Applications[M]. Kluwer Academic Publishers, Dordrecht,1999.
    [7]Erdogan, F. Fracture mechanics of functionally g raded materials[J]. Compos. Engng,1995,5:753-770.
    [8]朱季平,张福豹.梯度功能材料的应用研究及发展趋势[J].装备制造技术,2011,9:135-138.
    [9]李永,宋健,张志民.梯度功能力学[M].北京:清华大学出版社,2003.
    [10]李健,陈体军,郝远,等.离心铸造法制备Al3Ti/Al原位自生功能梯度复合材料[J].热加工工艺,2007,36:31-34..
    [11]邹俭鹏,阮建明,周忠诚,等.功能梯度材料的设计与制备以及性能评价[J].粉末冶金材料科学与工程,2005,10:78-87.
    [12]陈波,熊华平,沈强,等.钎焊方法制备Ti/TiAl/Al系变密度功能梯度材料[J].材料工程,2011,2:56-59.
    [13]陈少平,刘泽峰,张楠,等FAPAS制备以微晶Ni3Al为中间层的金属基功能梯度材料[J].中国有色金属学报,2010,20:1214-1219.
    [14]Rdel J, Neubrand A. Proc. Conf. Functionally Graded Materials[J]. Tsukuba, Japan,1996,I.Shiota and Y. Miyamoto, eds, Elsevier, Amsterdam:9-14.
    [15]Lee Y D, Erdogen F. Residual/thermal stresses in functionally graded material and laminated themal barrier coatings[J]. International Journal of Fracture,1994, 69:145-165.
    [16]李世荣,范亮亮.功能梯度梁在热冲击下的动态响应[J].振动工程学报.2009,22:371-378.
    [17]Koizu M. FGM activities in Japan[J]. ComPosite:Part B,1997,28B:1-4
    [18]S.Suresh, A.Mortensen. Fundamentals of functionally graded materials[M]. London:IOM Communication Ltd,1993.
    [19]M. Seyyed, Hasheminejad, M. Rajabi. Acoustic resonance scattering from a submerged functionally graded cylindrical shell[J]. J. Sound. Vib.2007,302: 208-228.
    [20]杨保军,奚正平,汤慧萍等.梯度金属多孔材料孔结构研究[J].稀有金属材料与工程.2007,36;578-580
    [21]E. Magnucka-Blandzi. Axi-symmetrical deflection and buckling of circular porous-cellular plate [J]. Thin-Walled Structures,2008,46:333-337
    [22]杨博,丁皓江,陈伟球.功能梯度板柱面弯曲的弹性力学解[J].应用数学和力学,2008,29:905-910.
    [23]杨杰,沈惠申.热/机械载荷下功能梯度材料矩形厚板的弯曲行为[J].固体力学学报,2003,24(1):119-124.
    [24]沈惠申.功能梯度复合材料板壳结构的弯曲、屈曲和振动[J].力学进展,2004,34(1):53-60.
    [25]李清禄,李世荣.功能梯度材料梁在后屈曲构形附近的自由振动[J].振动与冲击.2011,30:76-78.
    [26]马连生,赵永刚,杨静宁.径向压力作用下功能梯度圆板的过屈曲[J].兰州理工大学学报,2006,32(4):158-161.
    [27]马连生,杨帆.前屈曲耦合变形时功能梯度圆板的屈曲行为[J].兰州理工大学学报,2010,36:164-167.
    [28]彭旭龙.功能梯度材料相关的几个动静态问题分析及结构优化[D]..中南大学博士论文,2010,6
    [29]程红梅,曹志远,仲政.不同功能梯度材料组分板件的跨尺度动力特性分析[J].中国矿业大学学报,2008,37:719-724.
    [30]程红梅,仲政.基于金相图片识别功能梯度材料参数的梯度分布函数[J].固体力学学报,2009,30:395-399.
    [31]Chakraborty S. Gopalakrishnan, J.N. Reddy. A new beam finite element for the analysis of functionally graded materials [J]. International Journal of Mechanical Sciences,2003,45:519-539.
    [32]S.A. Sina, H.M. Navazi, H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams[J]. Materials and Design,2009,30: 741-747.
    [33]Ravikiran Kadoli, Kashif Akhtar, N. Ganesan. Static analysis of functionally graded beams using higher order shear deformation theory[J]. Applied Mathematical Modelling,2008,32:2509-2525.
    [34]S.M. Hosseini, M. Akhlaghi and M. Shakeri. Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials. Engineering Computations [J]:International Journal for Computer-Aided Engineering and Software,2007,24:288-303.
    [35]Sankar B. V.. An Elasticity Solution for Functionally Graded Beams[J]. Comp. Sci. Tech.,2001,61:689-696.
    [36]Delale F, Erdogan F. The crack problem for a nonhomogeneous plane[J]. ASME Journal of Applied Mechanics 1983;50:609-14.
    [37]Y. Huang, X.-F. Li.Buckling analysis of non-uniform and axially graded columns with varying flexural rigidity[J]. Journal of Engineering Mechanics,2010,73-81.
    [38]R. Becquet, I. Elishakoff. Class of analytical closed-form polynomial soultions for clamped-guided inhomogeneous beams[J]. Chaos, solitons and fractals, 2001,12:1657-1678.
    [39]Lei Wua, Qi-shen Wanga, Isaac Elishakoff. Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode[J]. Journal of Sound and Vibration.2005,284:1190-1202.
    [40]李永.功能梯度材料悬臂粱受复杂载荷作用的分层剪切理论[J].宇航学报,2002,23:62-67.
    [41]Tanigawa Y, Motsumoto M, Akai T. Optimization problem of material composition for nonhomogeneous plate to minimize themal stresses when subiected to unsteady heat supply[J].Transactions of the Japan Society of Mechanical Engineers, Series A,1996,62(593):115-122.
    [42]Tanigawa Y, Oka N, Akai T, et al. One-dimensional transient thermal stress problem for nonhomogeneous hollow circular cylinder and its optimization of material composition for thermal stress relaxation [J]. JSME International Journal. Series A, Solid Mechanics and Material Engineering,1997,40(2):117-127.
    [43]Li Yang, Shi Zhifei. Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature [J]. Composite Structures,2009,87: 257-264.
    [44]程军,陈英,李禾.SiC/A1梯度功能材料热应变测试与有限元分析[J].机械强度,2008,30:488-492.
    [45]K. NIRMALA, P. C. UPADHYAY. Thermoelastic Stresses in Composite Beams with Functionally Graded Layer[J]. J. Reinf. Plast. Comp.,2005,24:1965-1977.
    [46]I.A. Karnovsky, O.I. Lebed. Formulas for Structural Dynamics:Tables, Graphs and Solutions[M]. McGraw-Hill, New York,2000.
    [47]S. M. Han, H. B. Benarory, T. Wei. Dynamic of transversely vibrating beams using four engineering theories[J]. J. Sound Vib.1999,225:935-988.
    [48]孙训方.材料力学[M].北京:高等教育出版社,2009.
    [49]刘鸿文.材料力学[M].北京:高等教育出版社,2007.
    [50]S.P.Timoshenko. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philos. Mag.1921,41:744-746.
    [51]S.P.Timoshenko. On the transverse vibrations of bars of uniform cross-section[J]. Philos. Mag.1922,43:125-131.
    [52]S.P.Timoshenko, J.N.Goodier. Theory of Elasticity,3rd edn[M]. New York: McGraw-Hill,1970
    [53]M. Levinson. A new rectangular beam theory[J]. J. Sound Vib.1981,74:81-87.
    [54]H. J. Barten. On the deflection of cantilever beam[J]. Q. Appl. Math.1944,2: 168-171
    [55]K. E. Bisshopp, D. C. Drucker. Large deflections of cantilever beams[J]. Q. Appl. Math.1945,3:272-275.
    [56]齐朝晖,陆佑方.大变形梁的动力学公式及本构关系[J].吉林工业大学学报,1994,24:24-29.
    [57]张晓今,黄炎.梁纯弯曲的大变形分析[J].国防科技大学学报,2000,22:7-11
    [58]刘锦阳,崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析[J].振动工程学报,2009,22:48-53.
    [59]Lewis G, Monasa F.. Large deflections of cantilever beams of nonlinear materials[J]. Comp. Stuct.1981,14:357-360.
    [60]Lewis G.., Monasa F.. Large deflections of cantilever beams of non-linear materials of teh Ludwick type subjected to an end moment[J]. Int. J. Non-Linear Mech.1982,17:1-6.
    [61]Kyungwoo Lee. Large deections of cantilever beams of non-linear elastic material under a combined loading[J]. International Journal of Non-Linear Mechanics.2002,37,439-443.
    [62]Baykara C., Guven U., Bayer I.. Large deflections of a cantilever beam of nonlinear bimodulus material subjected to an end moment [J]. J. Reinf. Plast. Comp.2005,14,1321-1326.
    [63]Shatnawi A., Al-Sadder S.. Exact large deflection analysis of nonprismatic cantilever beams of nonlinear bimodulus material subjected to tip moment[J]. J. Reinf. Plast. Comp.2007,26,1253-1268.
    [64]Brojan M., Videnic T., Kosel F.. Non-prismatic non-linearly elastic cantilever beams subjected to an end moment[J]. J. Reinf. Plast. Comp.2007,26, 1071-1082.
    [65]Brojan M., Videnic T., Kosel F.. Large deflections of nonlinearly elastic non-prismatic cantilever beams made from materials obeying the generalized Ludwick constitutive law[J]. Meccanica,2009,44:733-739.
    [66]Timoshenko, S.P., Goodier, J.N.:Theory of elasticity.3rd ed. [M]. New York: McGraw-Hill Book Company; 1970.
    [67]吕朝锋,陈伟球.功能梯度厚梁的二维热弹性力学解[J].中国科学G辑.2006,34:384-392.
    [68]Shodja H.M., Haftbaradaran H., Asghari M.. A thermoelasticity solution of sandwich structures with functionally graded coating[J]. Compos. Sci. Tech., 2007,67:1073-1080.
    [69]Zhong Z. Yu T.. Analytical solution of a cantilever functionally graded beam[J]. Compos. Sci. Tech.2007,67:481-488.
    [70]Ding H. J., Huang D.J., Chen W.Q.. Elasticity solutions for plane anisotropic functionally graded beams[J].. Int. J. Solids Struct.,2007,44:176-196.
    [71]Gere J. M., Timoshenko S. P.. Mechanics of Materials[M]. Chapman-Hall, London,1991.
    [72]Giannakopoulos A.E., Suresh S., Finot M., Olsson, M.. Elastoplastic analysis of thermal cycling:layered materials with compositional gradients[J]. Acta Metall. Mater.1995,43:1335-1354.
    [73]Malzbender J.. Mechanical and thermal stresses in multilayered materials[J]. J. Appl. Phys.2004,95:1780-1782.
    [74]Nirmala K., Upadhyay P. C., Prucz J. et al. Thermo-elastic stresses in composite beams with functionally graded layer[J]. J. Reinf. Plast. Comp.2006,25: 1241-1254.
    [75]Pitakthapanaphong S. Busso E.P.. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients[J] J. Mech. Phys. Solids.2002,50:695-716.
    [76]聂国隽,康继武,仲政.功能梯度纯弯曲梁弹塑性问题的解析解[J].广西大学学报:自然科学版,2009,34:28-32.
    [77]李世荣,苏厚德.热环境中功能梯度材料Euler梁的自由振动[J].兰州理工大学学报,2008,34:164-169.
    [78]张靖华,李世荣,杨静宁.功能梯度材料Timoshenko梁的非线性大变形分析.兰州理工大学学报,2007,33:166-169.
    [79]S. Agarwal, A. Chakraborty, S. Gopalakrishnan. Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions[J]. Composite Structures,2006,72:91-104.
    [80]Fertis D. G..Nonlinear Mechanics[M]. CRC Press, New York,1999.
    [81]Y.A. Kang, X.-F. Li. Bending of functionally graded cantilever beamwith power-lawnon-linearity subjected to an end force[J]. International Journal of Non-Linear Mechanics.2009,44:696-703.
    [82]Y.A. Kang, X.-F. Li. Large deflections of a non-linear cantilever functionally graded beam[J]. J. Reinf. Plast. Comp.2010,29:1761-1774.
    [83]B.V. Sankar. An elasticity solution for functionally graded beams[J]. Compos. Sci. Tech.2001,61:689-696.
    [84]于涛,仲政.均布荷载作用下功能梯度悬臂梁弯曲问题的解析解[J].固体力学学报.2006,27:15-20.
    [85]Zheng Zhong, Tao Yu. Analytical solution of a cantilever functionally graded beam[J]. Composites Science and Technology,2007,67:481-488.
    [86]Ravikiran Kadoli, Kashif Akhtar. Static analysis of functionally graded beams using higher order shear deformation theory [J]. Applied Mathematical Modelling, 2008,32:2509-2525.
    [87]Y. Huang, X.-F. Li, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section[J]. Journal of Sound and Vibration. 2010,329:2291-2303.
    [88]校金友,张铎,白宏伟.横向载荷作用下功能梯度简支梁的变形分析[J].首届全国航空航天领域中的力学问题学术研讨会.成都.2004,254-258.
    [89]校金友,张铎,白宏伟.用应力函数法求功能梯度梁的弹性理论解[J].强度与环境,2005,32:17-21.
    [90]M.A. Benatta, I. Mechab, A. Tounsi, E.A. Adda Bedia. Static analysis of functionally graded short beams including warping and shear deformation effects[J]. Comp. Mater. Sci.2008,44:765-773.
    [91]张能辉.热载荷作用下功能梯度材料梁的热粘弹性弯曲[J].力学季刊.2007,6:240-245.
    [92]C.F. Lu, W.Q. Chen, R.Q. Xu, C.W. Lim. Semi-analytical elasticity solutions for bi-directional functionally graded beams[J]. Int. J. Struct. Mater.2008,45: 258-275.
    [93]马连生,牛牧华.基于物理中面FGM简支梁的弯曲行为[J].应用力学学报,2010,27:589-593.
    [94]M.Aydogdu, V.Taskin. Free vibration analysis of functionally graded beams with simply supported edges[J]. Mater. Des.2007,28:1651-1656.
    [95]Chakrabortya, S. Gopalakrishnana, J.N. Reddy. A new beam finite element for the analysis of functionally graded materials [J]. International Journal of Mechanical Sciences,2003,45:519-539.
    [96]X.-F. Li. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams[J]. J. Sound Vib. 2008,318:1210-1229.
    [97]Simsek M.. Fundamental Frequency Analysis of Functionally Graded Beams by Using Different Higher-Order Beam Theories[J]. Nucl. Eng. Des.2010,240: 697-705.
    [98]Kang J., Leissa A. W.. Three-Dimensional Vibration Analysis of Thick, Tapered Rods and Beams with Circular Cross-Section[J]. Int. J. Mech. Sci.2004,46: 929-944
    [99]Amal E. Alshorbagy, M.A. Eltaher, F.F. Mahmoud. Free vibration characteristics of a functionally graded beam by finite element method [J]. Applied Mathematical Modelling,2011,35:412-425.
    [100]Kyung-Su Na, Ji-Hwan Kim. Three-dimensional thermomechanical buckling of functionally graded materials[J]. AIAA JOURNAL,2005,43:1605-1615.
    [101]Mesut Simsek. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories[J]. Composite Structures, 2010,92:904-917.
    [102]吴晓, 罗佑新.用Timoshenko梁修正理论研究功能梯度材料梁的动力响应[J]振动与冲击,2011,30:245-248.
    [103]马连生,徐刚年.FGM梁稳定性分析的DQ法[J].兰州理工大学学报,2011, 37:164-167.
    [104]T. Yan. J.Yang. S.Kitipornchai. Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation[J]. Nonlinear Dyn.2012,67:527-540.
    [105]J. Yang, Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks[J]. Compos. Struct.2008,83:48-60.
    [106]L.L. Ke, J. Yang, S. Kitipornchai. Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening [J]. Compos. Struct.2009,90:152-160.
    [107]Q.S.Li, H.Cao, GQ.Li. Stability analysis of bars with varying cross-section[J]. Int. J. Solids. Struct.1995,32:3217-3228.
    [108]Q.S.Li.Buckling analysis of non-uniform bars with rotational and translational springs[J]. Eng. Struct.2003,25:1289-1299.
    [109]Elishakoff, A closed-form solution for the generalized Euler problem[J]. Math. Phy. Eng. Sci.2000,456:2409-2417.
    [110]Elishakoff and S. Candan. Apparently first closed-form solutions for vibrating inhomogeneous beams[J]. International Journal of Solids and Structures.2001, 38:3411-3441.
    [111]Elishakoff and S. Candan. Apparently first closed-form solution for frequencies of deterministically and/or stochastically inhomogeneous simply supported beams[J]. J. Appl. Mech.2001,68:176-185.
    [112]Elishakoff and Z. Guede.Analytical polynomial solutions for vibrating axially graded beams [J]. Mech. Advanced. Mater. Struct.2004,11:517-533.
    [113]L. Wu, Q. Wang and I. Elishakoff. Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode[J]. J. Sound. Vib. 2005,284:1190-1202.
    [114]Calio, I. Elishakoff. Closed-form trigonometric solutions for inhomogeneous beam-columns on elastic foundation[J]. Int. J. Struct. Stability. Dynamics.2004, 4:139-146.
    [115]Calio, I. Elishakoff. Closed-form solutions for axially graded beam-columns [J]. J. Sound. Vib.2005,280:1083-1094.
    [116]Y. Huang, X.-F. Li. Bending and vibration of circular cylindrical beams with arbitrary radial non-homogeneity [J]. International Journal of Mechanical Sciences.2010,52:595-601
    [117]Li X. F., Xi L. Y., Huang Y.Stability Analysis of Composite Columns and Parameter Optimization against Buckling[J]. Compos. Part B Eng.2011,42: 1337-1345
    [118]Metin Aydogdu. Semi-inverse Method for Vibration and Buckling of Axially Functionally Graded Beams[J]. Journal of Reinforced Plastics and Composites, 2008,27:683-691
    [119]Murin J., Aminbaghai M., Kutis, V.. Exact Solution of the Bending Vibration Problem of Fgm Beams with Variation of Material Properties [J]. Eng. Struct. 2010,32:1631-1640.
    [120]Shahba A., Attarnejad R., Marvi M. T., et al.. Free Vibration and Stability Analysis of Axially Functionally Graded Tapered Timoshenko Beams with Classical and Non-Classical Boundary Conditions [J]. Compos. Part B Eng. 2011,42:801-808
    [121]Chakrabarti A., Ray P. C., Bera, R. K.. Large Amplitude Free Vibration of a Rotatingn Nonhomogeneous Beam with Nonlinear Spring and Mass System[J]. J. Vib. Acoust.2010,132, p.054502.
    [122]P.A.A. Laura, B.V. De Greco, J. Utjes, R. Carnicer. Numerical experiments on free and forced vibrations of beams of non-uniform cross section[J]. J. Sound. Vib.,1988,120:587-596.
    [123]S. Abrate. Vibration of non-uniform rods and beams[J]. J. Sound. Vib.1995,185: 703-716.
    [124]Elishakoff, C.W. Bert. Comparison of Rayleigh's noninteger-power method with Rayleigh-Ritz method[J]. Comput. Meth. Appl. Mech. Eng.1988,67: 297-309.
    [125]N. Bazeos, D.L.Karabalis. Efficient computation of buckling loads for plane steel frames with tapered members [J]. Eng. Struct.2006,28:771-775.
    [126]F.Arbabi, F.Li. Buckling of variable cross-section columns:Integral-equation approach[J]. J. Struct. Eng.1991,117:2426-2441.
    [127]Civalek.Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns[J]. Eng. Struct.2004,26:171-186.
    [128]L.F. Qian, R.C. Batra. Design of bidirectional functionally graded plate for optimal natural frequencies [J]. Journal of Sound and Vibration,2005,280: 415-424.
    [129]A.J. Goupee, S.S. Vel. Optimization of natural frequencies of bidirectional functionally graded beams[J]. Struct Multidisc Optim,2006,32:473-484.
    [130]C.F. Lu, W.Q. Chen, R.Q. Xu, C.W. Lim. Semi-analytical elasticity solutions for bi-directional functionally graded beams [J]. International Journal of Solids and Structures,2008,45:258-275.
    [131]聂国隽,仲政.二维功能梯度材料环板的静力性能研究[J].中国力学学会学术大会,2007.
    [132]C.F. LU, C.W. LIM, W.Q. CHEN. A semi-analytical method for multi-directional functionally graded beams and plates[J].中国力学学会学术 大会,2007.
    [133]Feng M.Q., Mita A.. Vibration control of tall building using mega subconfiguration[J]. Journal of Engineering Mechanics.1995,121:1082-1088.
    [134]Li Q.S., Yang K., Zhang N.,et al. Field measurements of amplitude-dependent damping in a 79-storey tall building and its effects on the structural dynamic responses[J]. The Structural Design of Tall Buildings,2002,11:129-153.
    [135]Brownjohn J.M.W.. Ambient vibration studies for system identification of tall buildings[J]. Earthquake Engineering & Structural Dynamics,2003,32:71-95
    [136]Giuseppe C. Rutal, and Isaac Elishakoff. Buckling of a column on aWieghardt foundation[J]. Z. Angew. Math. Mech.2006,86:617-627.
    [137]Calio and I. Elishakoff, Closed form trigonometric solutions for inhomogeneous beam-column on elastic foundation[J]. Int. J. Struct. Stab. Dynamics.2004,4:139-146.
    [138]M. Eisenberger, J. Clastornik. Vibrations and buckling of a beam on a variable winkler elastic foundation [J]. J. Sound. Vib.1987,115:233-241.
    [139]吕朝锋,陈伟球,边祖光.状态空间微积分法分析Winkler地基梁的自由振动[J].浙江大学学报(工学版),2004,38:1451-1454.
    [140]诸骏,陈伟球,叶贵如.轴力作用下带弹性支座的Timoshenko梁的动力优化[J].浙江大学学报{工学版),2008,42:60-65.
    [141]Lee Wen-Hae. Free vibration analysis for tube-in-tube tall buildings [J]. Journal of Sound and Vibration,2007,303(1):287-304.
    [142]Swaddiwudhipong S., Lee S.-L., Zhou Q.. Effect of axial deformation on vibration of tall buildings[J]. The Structural Design of Tall Buildings,2001, 10:79-91.
    [143]Kausel E.. Nonclassical modes of unrestrained shear beams. Journal of Engineering Mechanics[J].2002,128:663-667.
    [144]Li X.-F.2012. Free vibration of axially-loaded shear beams carrying elastically restrained lumped tip masses via asymptotic Timoshenko beam theory[J]. Journal of Engineering Mechanics (in press)
    [145]Sankar B. V.. An Elasticity Solution for Functionally Graded Beams[J]. Comp. Sci. Tech.,2001,61:689-696.
    [146]Nirmala K., Upadhyay P. C., Prucz J., et al. Thermo-elastic Stresses in Composite Beams with Functionally Graded Layer[J]. J. Reinf. Plast. Comp., 2006,25:1241-1254.
    [147]Babaei M. H., Abbasi M. Eslami, M. R.. Coupled Thermoelasticity of Functionally Graded Beams[J]. J. Therm. Stress,2008,31:680-697.
    [148]Frisch-Fay R.. Flexible Bars[M]. Butter Worths, London,1962.
    [149]Fertis D. G... Nonlinear Mechanics[M]. CRC Press, New York,1999.
    [150]Lo, C. C. and Gupta, S. D.. Bending of a Non-linear Rectangular Beam in Large Deflection, J. Appl. Mech.,1978,45:213-215.
    [151]Lau J. H.. Large Deflections of Beams with Combined Loads[J]. ASCE J. Eng.Mech. Div.,1982,108:180-185.
    [152]Chucheepsakul S., Buncharoen S. Wang, C. M.. Large Deflection of Beams Under Moment Gradient[J]. ASCE J. Eng. Mech.,1994,120:1848-1960
    [153]Wang C.M., Lam K. Y., He, X. Q. et al.. Large Deformation of an End Supported Beam Subjected to a Point Load[J]. Int. J. Mech. Non-Linear Mech., 1997,32:63-72.
    [154]Lee K.. Large Deflections of Cantilever Beams of Non-linear Elastic Material Under a Combined Loading[J]. Int. J. Mech. Non-Linear Mech.,2002,37: 439-443.
    [155]Denton A. A.. Plane Strain Bending with Work Hardening[J]. J. Strain Anal. 1966,1:196-203.
    [156]Bassett M. B. JohnsonW.. The Bending of Plate Using a Three-roll Pyramid Type Plate Bending Machine[J]. J. Strain Anal.,1966,1:398-414.
    [157]Gere J. M. Timoshenko, S. P.. Mechanics of Materials[M]. Chapman-Hall, London,1991.
    [158]R.C. Hibbeler, Mechanics of Materials, second ed.[M]. Prentice-Hall, New York,1997.
    [159]Elishakoff, O. Rollot, New closed-form solution for buckling of a variable stiffness column by Mathematica[J]. J. Sound. Vib.1999,224:172-182.
    [160]Ching HK, Yen SC. Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads [J]. J Compos Part B:Eng 2005,36:223-240.
    [161]Sato. Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force[J]. Int. J. Mech. Sci.1980, 22:109-115.
    [162]M. C. Ece, M. Aydogdu, V. Taskin. Vibration of a variable cross-section beam[J]. Mechanics Research Communications.2007,34:78-84.
    [163]S.S.Vel, R.C.Batra. Three-dimensional exact solution for the vibration of functionally graded rectangular plates [J]. J. Sound. Vib.2004,272:703-730.
    [164]Gilat R., Calio I., Elishakoff I.. Inhomogeneous Beams Possessing an Exponential Mode Shape[J]. Mech. Res. Commun.2010,37:417-426.
    [165]Karnovsky I. A., Lebed O. I.. Formulas for Structural Dynamics:Tables, Graphs and Solutions[M]. New York, McGraw-Hill,2004.
    [166]Ece M. C., Aydogdu M., Taskin V. Vibration of a Variable Cross-Section Beam[J]. Mech. Res. Commun.2007,34:78-84.
    [167]Atmane H. A., Tounsi A., Meftah S. A.et al.. Free Vibration Behavior of Exponential Functionally Graded Beams with Varying Cross-Section[J]. J. Vib. Control.2011,17:311-318.
    [168]Stephen N. G... The Second Spectrum of Timoshenko Beam Theory-Further Assessment[J]. J. Sound Vib.2006,292:372-389.
    [169]Bozdogan K.B.. An approximate method for static and dynamic analyses of symmetric wall-frame buildings[J]. The Structural Design of Tall and Special Buildings,2009,18:279-290.
    [170]Clough R.W., Penzien J.. Dynamics of Structures[M]. McGraw-Hill, New York, 1993.
    [171]Chopra A.. Structural dynamics:Theory and applications to earthquake engineering[M]. Prentice-Hall, New Jersey,1995.
    [172]Li G.-Q.. Theory and Method of Computation for Aseismic Structures[M]. Seismic Press, Beijing,1985.
    [173]Feng M.Q., Mita A.. Vibration control of tall building using mega subconfiguration[J]. Journal of Engineering Mechanics,1995,121:1082-1088.
    [174]Li Q.S., Yang K., Zhang N., et al.. Field measurements of amplitude-dependent damping in a 79-storey tall building and its effects on the structural dynamic responses[J]. The Structural Design of Tall Buildings,2002,11:129-153.
    [175]Brownjohn J.M.W.. Ambient vibration studies for system identification of tall buildings[J]. Earthquake Engineering & Structural Dynamics,2003,32:71-95.
    [176]Newmark N.M., Hall W.J.. Earthquake spectra and design[M]. Earthquake Engineering Research Institute, Berkeley, California,1981.
    [177]Balkaya C., Kalkan E.. Estimation of fundamental periods of shear-wall dominant building structures[J]. Earthquake Engineering & Structural Dynamics,2003,32:985-998.
    [178]Balkaya C., Kalkan E.. Seismic vulnerability,behavior and design of tunnel form building structures[J]. Engineering Structures,2004,26:2081-2099.
    [179]Goel R.K., Chopra A.K.. Period formulas for moment-resisting frame buildings[J]. Journal of Structural Engineering,1997,123:1454-1461.
    [180]Goel R.K., Chopra A.K.. Period formulas for concrete shear wall buildings [J]. Journal of Structural Engineering,1998,124:426-433.
    [181]Miranda E.. Approximate seismic lateral deformation demands in multistory buildings[J]. Journal of Structural Engineering,1999,125:417-425.
    [182]Miranda E., Reyes C.J.. Approximate Lateral Drift Demands in Multistory Buildings with Nonuniform Stiffness[J]. Journal of Structural Engineering, 2002,128:840-849.
    [183]Swaddiwudhipong S., Lee S.-L., Zhou Q.. Effect of axial deformation on vibration of tall buildings [J]. The Structural Design of Tall Buildings,2001,10: 79-91
    [184]Dym C.L., Williams H.E.. Estimating Fundamental Frequencies of Tall Buildings[J]. Journal of Structural Engineering,2007,133:1479-1483.
    [185]Kausel E.. Nonclassical modes of unrestrained shear beams. Journal of Engineering[J] Mechanics.2002,128:663-667.
    [186]Li X.-F., Yu Z.-W., Zhang H.. Free vibration of shear beams with finite rotational inertia[J]. Journal of Constructional Steel Research.2011, 67:1677-1683.
    [187]Li X.-F.. Free vibration of axially-loaded shear beams carrying elastically restrained lumped tip masses via asymptotic Timoshenko beam theory [J]. Journal of Engineering Mechanics,2012. (in press)
    [188]Li X.-F, Tang G.-J, Shen, Z.-B Lee K.Y.. Vibration of nonclassical shear beams withWinkler-Pasternak-type restraint[J]. Acta Mechanica,2012. (in press)
    [189]Attard M.M., Lee J.-S., Kim M.-Y.. Dynamic stability of shear-flexible beck's columns based on Engesser's and Haringx's buckling theories[J]. Computers & Structures.2008,86:2042-2055.
    [190]Aristizabal-Ochoa J.D.. Static and dynamic stability of uniform shear beam-columns under generalized boundary conditions[J]. Journal of Sound and Vibration,2007,307:69-88.
    [191]Blaauwendraad J.. Shear in structural stability:On the Engesser-Haringx discord[J]. Journal of Applied Mechanics,2010,77,031005.
    [192]Timoshenko S.. Vibration Problems in Engineering[M]. New York, Wiley, 1974.
    [193]Bokaian A.. Natural frequencies of beams under compressive axial loads[J]. Journal of Sound and Vibration.1988,126:49-65.
    [194]Bokaian A.. Natural frequencies of beams under tensile axial loads[J]. Journal of Sound and Vibration.1990,142:481-498.
    [195]Abramovich, H.. Natural frequencies of Timoshenko beams under compressive axial loads[J]. Journal of Sound and Vibration.1992,157:183-189.
    [196]Auciello N., Ercolano A.. A general solution for dynamic response of axially loaded nonuniform Timoshenko beams[J]. International Journal of Solids and Structures.2004,41:4861-4874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700