赵庄二号井大采高钻式综采工作面矿压显现规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大采高钻式综采具有节能高效、工艺简单的特点,既能适应于10m以上的常规壁式工作面开采,又可用于资源枯竭型矿井回收小块段资源和煤柱;比普通大型综采更能适应工作面地质及开采条件的变化,是中小型矿井实现安全高效开采的有效途径。研究大采高钻式综采工作面矿压显现规律、覆岩结构形态及围岩应力分布特征,对于大采高钻式综采工艺的推广应用具有重要的现实意义。
     本文采用现场实测、理论分析、相似模拟和数值模拟等方法,对大采高钻式综采工作面矿压规律进行了研究。运用关键层理论对覆岩移动规律进行了研究,并进行了理论计算。通过现场监测数据分析工作面矿压显现特征,探讨了支架合理工作阻力。利用相似模拟手段对覆岩活动规律及垮落特征进行了分析。采用数值模拟方法分析了工作面走向、倾向,不同采高及不同工作面长度条件下的支承压力分布规律。
     研究表明,大采高钻式综采工作面矿压显现明显,基本顶为II级来压明显顶板,基本顶初次来压期间支架载荷及动载系数小于周期来压期间支架载荷及动载系数;与普通长度大采高综采工作面比较,其顶板来压步距增大,动载系数减小,支承压力峰值、位置及影响范围降低;支架载荷约为普通长度大采高综采工作面的76%,且以静载为主,合理支架工作阻力约为采高4.3倍的岩柱重量。覆岩垮落高度为2.5-3倍的采高,垮落带及裂隙带高度大于传统经验公式计算出的最大值,故基本顶在较高层为形成“砌体梁”结构,该结构关键块的运动对厚煤层直接顶产生附加力,其周期失稳引起周期来压。采高增加,支承压力影响范围、峰值位置按非线性关系递增,而应力集中系数随之减少。工作面变短后,支承压力影响范围、峰值大小及位置减小,“压力拱”高度降低,覆岩变形、垮落区域减小,故钻式综采大采高工作面矿压显现程度较普通大采高工作面弱。
The large mining height drilling fully-mechanized has the characteristics of energy efficient and technology simply, which suits to conventional working face length more than ten meters, but also used for the recovery of small section resources and coal pillar. It can adapt to the changes in geological and mining conditions easily compared with general large scale mechanized mining, which is an effective way to realize safety and high efficiency mining for small and medium sized mine. Through strata behavior regularity of large mining height drilling fully-mechanized face is studied, structural form of overburden rock and law of stress distribution can be learned, which has a great significance for application of the technology of large mining height drilling fully-mechanized.
     In this paper, the strata behavior regularity of large mining height drilling fully-mechanized in shorter mining face is studied by the means of field measurement, theoretical analysis, similar simulation and numerical simulation. The overburden movement is studied and calculated theoretically by "key strata theory". With the field monitoring, ground pressure behavior is analyzed, the suitable support working resistance is investigated. The law of overburden movement and collapse features is analyzed by similar simulation. Distribution law of rock stress is analyzed with FLAC3D numerical simulation method, and the relationship between mining speed and rock stress is studied.
     The study shows that, the strata behavior regularity of shorter working face is remarkable, main roof pressure is gradeⅡ, and the support load and coefficient of dynamic load are smaller during the first weighting than during the periodic ground pressure. Comparing to general length working face, periodic weighting increases, coefficient of dynamic load decreases, abutment pressure peak and effect range increases too. Roof pressure is more concentrated, support load is 76% of the general length working face, support load is static load, and the suitable working resistance range is 4.3 times mining height of pillar weight. Height of caving zone is 2.5 to 3 times mining height; "voussoir beam" structure is formed in the higher level, which can generate an additional force to immediate roof through movement, and its periodic instability causes periodic ground pressure. Working face decreases, pressure arch height decreases, overburden deformation and caving region decreases too. So, strata behavior of shorter working face weaker than the general length working faces. Mining height increases, the effect range of abutment pressure gradually and the position of peak point are nonlinearly increases, and the center coefficient of stress reduces.
引文
[1]屠世浩.长壁综采系统分析的理论与实践[M].徐州:中国矿业大学出版社,2004.
    [2]涂兴子,康全玉,翟新献.厚煤层分层综采技术[M].北京:煤炭工业出版社,2002.
    [3]毛德兵,康立军.大采高综放开采及其应用的可行性研究[J].煤矿开采2003,(3):31-34.
    [4]胡省三,李秉顺,刘修源.高新技术在煤矿中的应用[M].徐州:中国矿业大学出版社,1996.
    [5]于海涌.放顶煤开采基础理论[M].北京:煤炭工业出版社,1995.
    [6]弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,2006.
    [7]赵怀祥,陈俊成.大采高开采技术研究[J].山东煤炭科技,1998(4):24-26.
    [8]梁生芳.大采高综采工作面装备介绍[J].煤炭工程,2004,(1):11-13.
    [9]杨其震,赵宏珠.中国综采成套技术和设备应用经济效果分析[J]..煤矿开采,2003,(3):13-16.
    [10]郭保华,涂敏.浅谈我国大采高综采技术[J].中国矿业大学学报,2003(10):40-41.
    [11]N.E Yssitli, B.Unver.3D numerical modeling of longwall mining with top-coal caving. Internationl Journal of Rock Mechanics & Mining Sciences,42(2005):219-235.
    [12]Rajendra Singh.Staggerd development of a thick coal seam for full height working in a single lift by the blasting gallery method. Internationl Journal of Rock Mechanics & Mining Sciences, 41(2004):745-759.
    [13]B.Unver, N.E.Yasitli. Modelling of strata movement with a special reference to caving mechanism in thick seam coal mining. Internationl Journal of Coal Geology,66(2006):227-252.
    [14]S.K. Das. Observations and classification of roof strata behaviour over longwall coal mining panels in Aaustralia. Internationl Journal of Rock Mechanics & Mining Sciences, 37(2003):445-452.
    [15]王金华.我国大采高综采技术与装备的现状及发展趋势[J].煤炭科学技术,2006,34(1):4-7.
    [16]何富连,钱鸣高.高产高效大采高综采技术的研究与实践[J].阜新矿业学院学报(自然科学版),1997,16(1):5-7.
    [17]张保春.大采高综采工作面实现安全高效开采的技术应用研究[J].安徽建筑工业学院学报(自然科学版),2007,15(4):70-73.
    [18]刘涛.厚煤层大采高综采技术现状[J].煤炭工程,2002,(2):4-8.
    [19]弓培林.大采高采场围岩控制理论及应用研究[M].北京:煤炭工业出版社,2006.
    [20]袁永,屠世浩,王瑛等.大采高综采技术的关键问题与对策探讨[J].煤炭科学技术,2010,38(1):4-8.
    [21]信息资讯·建设信息专栏[J].煤炭工程,2010(2):5.
    [22]赵宏珠.特大采高液压支架发展与研究[J].采矿安全与工程学报,2007,24(3):265-269.
    [23]赵宏珠,钱建钢.我国综合机械化采煤发展30年回顾[J].煤矿开采,2009,4(8):5-10.
    [24]武建国.大采高综采工作面与巷道围岩控制技术研究[D].太原:太原理工大学,2004.
    [25]张银亮,赵军.国产大采高液压支架的研究现状与发展趋势[J].煤矿开采,2008,6(12):1-3.
    [26]赵宏珠,蒋哲明,李广申.缓倾斜厚煤层整层垮落开采设备及工艺[M].北京:煤炭工业出版社,1991.
    [27]胡国伟.大采高综采工作面矿压显现特征及控制研究[D].太原:太原理工大学,2006.
    [28]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1),7-11.
    [29]弓培林,靳钟铭.大采高综采采场顶板控制力学模型研究[J].岩石力学与工程学报,2008,1(1),193-198.
    [30]夏均民.大采高综采围岩控制与支架适应型研究[D].山东:山东科技大学,2004
    [31]郝海金,吴健,张勇等.大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J].煤炭学报,2004,29(2),137-141
    [32]郝海金,张勇,陆明心.缓倾斜厚煤层大采高开采工作面矿压研究[J].煤,2002,12(2),11-13.
    [33]胡国伟,靳钟铭.大采高综采工作面矿压观测及其显现规律研究[J].太原理工大学学报,2006,37(3),127-130.
    [34]胥海东,范公勤,王金平.破碎围岩环境下基于声发射的大采高工作面矿压显现研究[J].神华科技,2009,3(6):23-26.
    [35]柴敬,高登彦,王国旺等.厚基岩浅埋大采高加长工作面矿压规律研究[J].采矿与安全工程学报,2009,4(12):437-440.
    [36]王贵虎,周更廷.大采高倾斜长壁综采面矿压显现规律[J].矿业安全与环保,2005,3(6),56-58.
    [37]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [38]赵宏珠,戴秋梁.加大综采工作面几何参数对大采高支护设备发展新要求[J].神华科技,2009,3(6),18-23.
    [39]侯忠杰.断裂带基本顶的判别准则及在浅埋煤层中的应用[J].煤炭学报.2003,28(1):8-12.
    [40]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].徐州:中国矿业大学学报,1998,27(1):39-42.
    [41]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135-138.
    [42]钱鸣高,许家林.岩层控制中的关键层理论研究[J]..煤炭学报,1996,(3):225-230.
    [43]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982,(2):10-13.
    [44]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].中国矿业大学出版社,2003.
    [45]侯忠杰.组合关键层理论应用研究及参数确定[J].煤炭学报,2001.26(6):611-615.
    [46]马庆云,汤建泉.覆岩运动与破坏过程的问题探讨[J].矿山压力与顶板管理,2000,(2):32-33.
    [47]谭学术,鲜学福等.复合岩体力学理论及其应用[M].北京:煤炭工业出版社,1994.
    [48]苏中杰.采动覆岩离层变形机理研究[D].阜新:辽宁工程技术大学,2001.
    [49]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.
    [50]刘俊峰.两柱掩护式大采高强力液压支架适应性研究[D].北京:煤炭科学研总院,2006.
    [51]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [52]蒋金泉,王国际,张登明等.矿山压力与岩层控制[M].中国矿业大学出版社,2009.
    [53]钱鸣高,廖协兴,何富连等.采场支架与围岩耦合作用机理研究[J].煤炭学报,1996,21(1):41-44.
    [54]肖远见.试论采场支架与围岩的关系[J].矿业安全与环保,2003,30(4),25-27.
    [55]侯忠杰,吴文湘,肖民.薄基岩浅埋煤层“支架-围岩”关系实验研究[J].湖南科报(自然科学版),2007,(1):9-12.
    [56]吴健,张勇.综放采场支架一围岩关系的新概念[J].煤炭学报,2001,26(4):350-355.
    [57]赵宏珠.液压支架工作阻力[M].徐州:中国矿业大学出版社,1988
    [58]史元伟.采煤工作面围岩控制原理和技术[M].徐州:中国矿业大学出版社,2003.
    [59]柴敬.浅埋煤层开采的大比例立体模拟研究.煤炭学报[J].1998,(4):391-385.
    [60]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [61]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:水利水电出版社,2009.
    [62]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2006.
    [63]侯树宏.灵武矿区2群煤层综放开采覆岩结构研究[D].西安:西安科技大学,2008.
    [64]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700