红螯光壳螯虾(Cherax quadricarinatus)仔虾及幼虾脂质营养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红螯光壳螯虾(Cherax quadricarinatus),俗称澳洲淡水龙虾,我国于1992年在广州首次引进试养和养殖。近年来,随着该虾人工育苗技术的突破,成虾养殖规模的扩大,迫切需要了解红螯光壳螯虾的营养需求,但相关的研究资料较少,明显滞后于生产实践。国内外已有的研究多集中在红螯光壳螯虾幼虾对蛋白质、碳水化合物和维生素,或成虾对磷脂、胆固醇及长链多不饱和脂肪酸的需求上,对于红螯光壳螯虾幼体饲料脂肪源需求的研究报道较少。选择合适的脂肪源不仅可以有效提高虾体对饲料营养的利用率,促进个体生长,而且直接关系到幼体的成活率和饲料的生产成本。因此,本文在已有研究工作的基础上,采用电镜技术、生化、酶学等手段,综合组织学、发育生物学和营养学,较为系统地研究了不同脂肪源对红螯光壳螯虾仔虾及幼虾生长、消化酶活性、肝胰腺和腹部肌肉中脂肪酸组成及仔虾肝胰腺亚显微结构的影响比较,以期了解红螯光壳螯虾仔虾及幼虾生长对主要脂质的需求,并为其人工配合饲料的研制、养殖生产中的合理投饵,提供基础资料。主要研究结果如下:
     不同脂肪源对红螯光壳螯虾幼虾的体长增长率和特殊增长率影响不显著;但增重率各组间存在显著性差异,以豆油组最高,达到2332.93%,花生油组最低,为1839.50%;肝胰腺指数以豆油组显著高于其它各组,为0.75%。仔虾存活率以豆油组最高,花生油组次之,猪油组最低。幼虾存活率以豆油组较高,达到83.3%,鱼油组较低,仅为56.7%。不同的脂肪源对虾体生长指标的影响不尽相同,富含DHA和EPA的鱼油并没有占绝对优势,总体上豆油组表现出更高的饲料利用率,生长情况更好。
     采用生物化学的方法分别测定了红螯光壳螯虾仔虾和幼虾投喂不同脂肪源饲料后,肝胰腺消化酶:胃蛋白酶、脂肪酶、淀粉酶及纤维素酶的比活力。四种消化酶活性在不同组间表现出不同差异,体现了红螯光壳螯虾仔虾和幼虾对不同脂肪源饲料产生了不同的适应。
     不同脂肪源对仔虾的胃蛋白酶活力没有显著影响,但以豆油组的酶活最高;鱼油和豆油组的脂肪酶活力达到花生油和猪油组的2-3倍,且以鱼油组最高;不同脂肪源对淀粉酶活力影响更为显著,以猪油组>花生油>豆油组>鱼油组;纤维素酶在仔虾中表现出极低的活力,豆油和猪油组活力较高,为0.11μg/min,花生油组较低。结果表明,对于红螯光壳螯虾仔虾而言,对蛋白质和脂质的需求和利用高于碳水化合物,在养殖初期应该注重添加更多的蛋白。
     不同脂肪源对幼虾肝胰腺的消化酶活力在胃蛋白酶水平上无显著影响;脂肪酶活力花生油组显著高于其它实验组,为1177.23U/gprot;淀粉酶活力各组间差异显著,以鱼油组>对照组>豆油组>猪油组>花生油组;纤维素酶活力以花生油组较高,为61.14μg/min。结果暗示了使用植物油做脂肪源对红螯光壳螯虾幼虾的脂肪代谢具有促进作用,且豆油优于花生油,可以考虑将更多富含淀粉的成分添加到红螯光壳螯虾幼虾的饵料中来提高其利用率并降低饲料成本,但对糖类物质的有效利用率仍有待进一步研究。
     同一种脂肪源饲料对仔虾和幼虾的消化酶活力产生了不同影响。仔虾肝胰腺的胃蛋白酶活力高于幼虾;淀粉酶和纤维素酶活力明显低于幼虾。通过仔虾和幼虾消化酶活力的变化可以看出,红螯光壳螯虾仔虾在刚脱离母体时食性偏动物食性,随着个体的生长,逐渐向偏植食性转变。可见,在幼体的不同阶段也应可以根据其需求投喂合适成分的饲料,从而提高饲料效率。
     采用生物化学方法研究了不同脂肪源饲料对红螯光壳螯虾仔虾和幼虾肝胰腺和腹部肌肉中脂肪酸的组成,并通过透射电镜技术对不同饲料组仔虾肝胰腺的超微结构进行了比较。
     投喂不同脂肪源饲料,在红螯光壳螯虾仔虾的肝胰腺和腹部肌肉中共检测出16-22种脂肪酸。其中肝胰腺多不饱和脂肪酸以亚油酸(C18:2n6)为主,腹部肌肉中以亚油酸(C18:2n6)和EPA(C20:5n3)为主,此结果反映了仔虾生长期肝胰腺和肌肉的脂肪酸组成和利用特点。肌肉中多不饱和脂肪酸含量多于肝胰腺,说明红螯螯光壳螯虾仔虾期的脂肪酸尤其是亚油酸、亚麻酸和EPA等重要的多不饱和脂肪酸被优先转运到肌肉等组织中,供应其生长所需要的能量代谢。富含亚油酸的豆油既能促进脂肪酸代谢又能促进各种消化酶的活性,对红螯光壳螯虾仔虾的发育具有优良的脂肪酸价值。
     不同饲料组红螯光壳螯虾仔虾肝胰腺的细胞类型和结构基本相同,分四种类型:E、B、R和F细胞,但R细胞(Resorptive cell储存细胞)的超微结构发生显著变化。猪油组细胞膜的缺陷表明以猪油作为脂肪源不能满足红螯光壳螯虾仔虾生长的营养需要,导致代谢障碍,进而影响其存活率;豆油组仔虾肝胰腺的R细胞中含有许多脂肪滴的脂质储存,从而进一步为该组较高的存活率提供了依据。
     幼虾肝胰腺中饱和脂肪酸含量以猪油组显著高于其它组,与腹部肌肉中情况相似;单不饱和脂肪酸以花生油组含量最高,豆油组最低,而腹部肌肉中以动物油组高于植物油组;多不饱和脂肪酸则以豆油组含量最高,猪油组最低,这也与腹部肌肉相似。肝胰腺中EPA含量以鱼油组最高,为5.89%,花生油组次之,豆油和猪油组含量较低,仅为2.52%和2.77%;DHA以花生油组含量最高达5.62%,商业对照组次之,显著高于其它各组含量。腹部肌肉中亚油酸(C18:2n6)和亚麻酸(C18:3n3)含量均以豆油组显著高于其它四组,亚油酸在总脂肪酸中的比例最高,这与与肝胰腺一致。肝胰腺中实验组与对照组∑n-3脂肪酸含量均低于∑n-6脂肪酸含量,与肌肉中二者含量相反。亚油酸大量积累,在体成分组成上反映出红螯光壳螯虾幼虾生长的脂肪酸需求和利用的特点。研究结果表明,饲料中添加一定量的豆油作为脂肪源能够促进红螯螯虾幼虾体内∑n-3和必需脂肪酸的积累,较好地促进幼虾的正常生长,提高其存活率。
Red claw crayfish (Cherax quadricarinatus) which was also called Australian freshwater crayfish was fisrt introduced to Guangzhou, China in 1992. It subordinated to Crustacea, Decapoda, Pleocyemata, Astacidea, Parastacoidea, Parastacidae, Cherax. Recent years, as the cultivation scale increased, it is urgent for us to know the nutrients need of crayfish, but little studies were focused on it. More studies were focused on the protein, carbon componds and vitamins needed for juvenile crayfish, or lecithoid, cholesterol and long-chain PUFA needed for adult crayfish. Choosing the right lipid sources for culturing can not only sufficiently enhance the growth and food utilization rate, but also reduce the cost and improve the surival rate of juvenile individuals. Based on the formal studies, in order to know the lipid need of juvenile crayfish, this study was conducted to evaluate the effects of dietary lipid sources (peanut oil, pork lard, fish oil and soybean oil) on growth, digestive enzyme activity, fatty acid composition and ultrastructure of hepatopancreas in post-larval and juvenile red claw crayfish using the methods of electron microscope, histology and enzymology. The data obtained would provide valuable information to the development of artificial diets for Cherax quadricarinatus.
     Using the biological measuring methods, we compared the length growth rate, special growth rate, weight gain, hepatopancreatic index and survival rate of red claw crayfish fed by different lipid sources. There was no significant effects (P> 0.05) on length growth rate and special growth rate among all treatments. However, the treatment with soybean oil had significantly (P< 0.05) higher weight gain (2332.93%) and hepatopancreatic index (0.75%) than other groups. But the lowest weight gain (1839.50%) was found in peanut oil group. Different lipid sources had different effects on growth indexs of red claw crayfish. Totally, the crayfish can better utilized the food with soybean oil, although fish oil was abundant in DHA and EPA.
     We used the biochemical methods to measure the effects of different lipid sources on digestive enzyme activity (pepsin, lipase, amylase and cellulase) in hepatopancreas of post-larval and juvenile red claw crayfish. They showed different digestive enzyme activity to different lipid sources. The result reflected that post-larval and juvenile red claw crayfish had a different adaptation to different diets.
     Analysis of digestive enzyme profiles from the hepatopancreas revealed a positive correlation between lipase, amylase, cellulase activities and the diet lipid sources, although there was no significantly different (P> 0.05) in pepsin activity. The treatment with fish oil had the highest lipase activity, and together with soybean oil, the lipase activity is 2-3 times higher than that of peanut oil and pork lard groups, but still lower than commercial group. Amylase activity was highest in pork lard group, but lowest in fish oil treatment. Crayfish larva showed low cellulase activity in any group, soybean oil and pork lard groups had higher activity (0.11μg/min) than other lipid sources. The results suggested that the post-larval red claw crayfish needed more protein and lipid than carbohydrate. So, we should add more protein to their food in the early days of culturing.
     Different lipid sources had no significant effects on pepsin activity of juvenile crayfish. Peanut oil group had the highest lipase activity (1177.23U/gprot). Amylase activity was significantly (P< 0.05) different in different diets, and fish oil group has the highest activity. Cellulase activity is higher in peanut oil group (61.14μg/min) than other groups. The result implied that vegetable oil had a role in promoting fat metabolism to juvenile red claw crayfish, and the soybean oil is better than peanut oil. So, maybe we could add more starch ingredients to the diet of juvenile crayfish, which can improve diet's utilization and reduce the cost. However, the effective utilization of the carbohydrate needs further study.
     The same lipid source had a different effect on post-larval and juvenile red claw crayfish. Post-larval crayfish had a higher pepsin activity than juvenile crayfish, but amylase and cellulase activity were significantly lower in post-larval crayfish. Through the change of activity of digestive enzyme, we can see that feeding habits is partial animal feeding in post-larval crayfish but partial plant feeding with the growth of individual. So, larva should be fed diets containing suitable ingredients at different stages of individual to improve utilization of diets.
     We researched the effect of different lipid sources on fatty acid composition of hepatopancreas and tail muscle in post-larval and juvenile red claw crayfish using biochemistry methods. Fatty acids composition including Saturated fatty acids (SFA), Mono-unsaturated fatty acids (MUFA) and Poly-unsaturated fatty acids (PUFA) of in tail muscle and hepatopancreas were affected by different lipid sources. Meanwhile, we compared the ultra structure of hepatopancreas in post-larval crayfish fed different diets.
     Fed different lipid sources,16-22 fatty acids were detected in tail muscle and hepatopancreas. Polyunsaturated fatty acids is mainly based on linoleic acid (C18: 2n6) in hepatopancreas, but linoleic acid (C18:2n6) and EPA (C20:5n3) in tail muscle. The result reflected composition and using feature in post-larval crayfish growth. Content of polyunsaturated fatty acids in tail muscle were higher than hepatopancreas, which suggested that fatty acids, especially linoleic acid (C18:2n6), linolenic acid (C18:3n3) and EPA (C20:5n3), were transported to muscles first to supply energy metabolism require for growth. Soybean oil can promote not only fatty acids metabolism but also digestive enzyme activities, because of rich in linoleic acid (C18: 2n6) and good value of fatty acids.
     The ultra structures of hepatopancreas in post-larval crayfish were studied with electron microscopes. Cell type in hepatopancreas epithelium was same fed different diets, classified into E-cell, B-cell, R-cell and F-cell based on structure and function. But ultra structure of R-cell (Resorptive cell) was affected significantly in different treatment. Defect of membrane in R-cell of pork lard group suggested that as lipid source, pork lard couldn't meet growing nutritional needs of post-larval red claw crayfish. Pork lard might lead to metabolic disturbances, and thereby affecting the survival rate. Rich store of lipid droplets in R-cell of soybean oil group was the reason for high survival rate.
     The content of fatty acids in tail muscle and hepatopancreas was obviously affected by the variety and content of fatty acids in dietary. Saturated fatty acid content in hepatopancreas to lard group was significantly higher than other groups, which is similar in the tail muscle. Monounsaturated fatty acid had the highest content to peanut oil group, and lowest to soybean oil group, but its content was higher in two animal oil groups than two plant oil groups. The content of linoleic acid (C18:2n6) and linolenic acid (C18:3n3) were highest in soybean oil group than all other four groups in tail muscle, which was consistent with hepatopancreas. Accumulation of linoleic acid showed needs and utilization feature of juvenile crayfish. The result suggested adding moderate soybean oil as lipid source could promote the accumulation of essential fatty acids, and improve growth and survival rate.
引文
Abrunhosa F A, Kittaka J.1997. Morphological changes in the midgut, midgut gland and hindgut during the larval and post-larval development of the red king crab Paralithodes camtschaticus [J]. Fisheries Science,63:746-754.
    Aki T, Shimada Y, Inaqaki K H, et al.1999. Molecular cloning and functional characterization of rat Δ6-fatty acid desaturase [J]. Biochem Biophys Res Commun,255(3):575-579.
    Alfredo C T, Luis R C, Humberto V C, et al.2005. In vivo dry matter and protein digestibility of three plant-derived and four animal-derived feedstuffs and diets for juvenile Australian redclaw, Cherax quadricarinatus [J]. Aquaculture,250:748-754.
    Aline A, Hubert W L, Michel L.2003. Whole wheat flour exerts cholesterol-lowering in rats in its native form and after use in bread-making [J]. Food Chemistry,80:337-344.
    Al-mohanna S Y, Nott J A, Lane D J.1985. M-midgut cells in hepatopancreans of Penaeus semisulcatus (Crustacea, Decapoda) [J]. Crustaceana,48:260-268.
    Ana P, Neil A R, Peter B M, et al.2006. Influence of insoluble dietary cellulose on digestive enzyme activity, feed digestibility and survival in the red claw crayfish, Cherax quadricarinatus (von Martens) [J]. Aquaculture Research,37:25-32.
    Anger K.1987. The Do threshold:A critical point in the larval development of decapod crustaccan [J]. J Exp Mar Bio Ecol,108:15-30.
    Anger K, Dawirs R R.1981. Influence of starvation on the larval development of Hyasaraneus (Decapoda, Majidae) [J]. Helgol Meeresunters,34:287-311.
    Anger K, Schultae K.1995. Elemental composition (CHN), growth and exuvial loss in the larval stages of two semiterrestrial crabs, Sesarma curacaoense and Armases miersii [J]. Comp Biolchem Physiol,111A (4):615-623.
    Argent J.1999. McEvoy L Lipid nutrition of marine fish during early development: current status and further direction [J]. Aquaculture,179(4):217-229.
    Babu D E.1987. Observations on the embryonic development and energy source in the crab Xantho bidentatus [J]. Mar Biol,95:123-127.
    Becker G L, Chen C H, Greenawalt J W, et al.1974. Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus [J]. J. Cell Biol,61:316-326.
    Bottino N, Gennity J, Lilly M, et al.1980. Seasonal and nutritional effects of the fatty acids of three species of shrimp, Penaeus setiferus, P. aztecus and P. duorarum [J]. Aquaculture,19: 139-148.
    Buckely L J.1984. RNA/ DNA ratio:an index of larval fish growth in the sea [J]. Mar Bio,80: 291-298.
    Bunt A H.1968. An ultrastructural study of the hepatopancreas of Procambarus clarkia [J]. Crustaceana,15:282-288.
    Calark D E, Brown H L.1990.The biochemical composition of eggs from Macrobrachium rosenbergii in relation to embryonic development [J]. Comp Biochem Physiol,96B:505-511.
    Castell A D.1982. Fatty acids metabolism in crustaceans [A]. Proc. Second intl. conf. on aquaculture nutrition [C], Special Publication No.2, World Mariculture Society, Louisiana State University, Baton Rouge,124-125.
    Catacutan M R.1991. Growth and fatty acid composition of Penaeus monodon juveniles fed various lipids [J]. Bamidgeh,43:47-56.
    Cavalli R O, Lavens P, Sorgeloos P.1999. Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition [J]. Aquaculture,179:387-402.
    Cavalli R 0, Mens C G, Lavens P, et al.2000. Maturation performance, offspring quality and lipid composition of Macrobrachium rosenbergii female fed increasing levels of dietary phospholids [J]. Aquacult Int, (8):41-58.
    Chhom L, Harry A, Christopher L B, et al.1997. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid [J]. Aquaculture,151: 143-153.
    Cossins A R.1977. Adaptation of biological membranes to temperature: The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membrances [J]. Biochim Biophys Acta, (470):395-411.
    Crawford A C, Kricker J A, Anderson A J, et al.2004. Structure and function of a cellulose gene in red claw crayfish, Cherax quadricarinatus [J]. Gene,340:267-274.
    Deering M J, Fielder D R, Hewitt D R.1997. Growth and fatty acid composition of juvenile leader prawns, Penaeus monodon [J]. Aquaculture,151:131-141.
    Djunaidah I S, Wille M, Kontara E K, et al.2003. Reproductive performance and offspring quality in mud crab (Scylla paramamosain) broodstock fed different diets [J]. Aquaculture International,11:3-15.
    Erdal J I, Evensen 0, Kaurstad 0 K, et al.1991. Relationship between diet and immune response in Atlantic salmon (Salmosalar L.) after feeding various levels of ascorbic acid and omega-3 fatty acids [J]. Aquaculture,98:363-379.
    Figueiredo M S, Anderson A.J. Ontogenetic change in digestive proteases and carbohydrases from the Australian freshwater crayfish, redclaw Cherax quadricarinatus (Crustacea, Decapoda, Parastacidae) [J]. Aquac. Res.,34,1235-1239.
    Glencross B D, Smith D M.1999. The dietary linoleic and linolenic fatty acids requirements of the prawn Penaeus monodon [J]. Aquaculture Nutrition,5(1):53-63.
    Guary J C, Kayama M, Murakami Y, et al.1976. The effects of a fat-free diet and compounded diets supplemented with various oils on molt, growth and fatty acid composition of prawn, Penaeus japonicus [J]. Aquaculture,7:245-254.
    Harrison K E.1990. The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans:a review [J]. Shellfish Res.,9(9):1-28.
    Hoehne R, Shields R J.2001. Larviculture of marine finfish in Europe [J]. Aquaculture,200: 55-88.
    Hopkin S P, Nott J A.1979. Some observations on concentrically structured intracellular granules in the hepatopancreas of the shore crab Carcinus maenus [J]. J. Mar. boil. Ass UK,59: 867-877.
    Jacinto E C, Colmenares H V, Civera R C, et al.2003. Effect of dietary protein level on growth and survival of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda: Parastacidae) [J]. Aquaculture Nutrition,9:207-213.
    Jones D A, Kanazawa A, Ono K.1979. Studies on nutritional requirement of the larval stages of Penaeus japonicus using microcapsulated diets [J]. Mar Biol,54:261-267.
    Kamarudin M S, Jones D A, Le VayL.1994. Ontogentic charge in digestive enzyme activity during larval development of Macrobrachium rosenbergii [J]. Aquaculture, (123):323-333.
    Kanazawa A.1997. Effect of docosahexaenoic acid and phospholipids on stress tolerace of fish [J]. Aquaculture,155:129-134.
    Kanazawa A.1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish [J]. Aquaculture,155:129-134.
    Kanazawa A., Teshima S, Tokiwa S.1977a. Nutritional requirements of prawn. VII. Effect of dietary lipid in growth [J]. Bull. Jpn. Soc. Fish.,43:849-856.
    Kanazawa A, Teshima S I, Sakamoto M.1985. Effects of dietary lipids, fatty acids and phospholipids on growth and survival of prawn (Penaeus japonicus) larvae [J]. Aquac,50: 39-49.
    Kiron V, Fukuda H, Takeuchi T, et al.1995. Essential fatty acid nutrition and defence mechanisms in rainbow trout Oncorhynchus mykiss [J]. Comp Biochem Physiol,111A: 351-359.
    Knowlton R E.1974. Larval developmental processes and controlling factors in decapod crustacrean with emphasis on Caridea [J]. Thalassia Jugosl,10:138-148.
    Kontara E K, Coutteau P, Sorgeloos P.1997. Effect of dietary phospholipid on requirements for and incorporation of n-3 highly unsaturated fatty acids in postlarval Penaeus japonicus Bate [J]. Aquaculture,158(3-4):305-320.
    Kontara E M, Djunaidah I S, Coutteau P, et al.1998. Comparison of native, lyso and hydrogenated phosphatidy lcholine as source for phosplion lipids in the diet of postlarval Penaeus japonica [J]. Archives of animal nutrition,51:1-19.
    Koven W, Barr Y, Lutzky S, et al.2001. The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handing stress in gilthead seabream (Sparus aurata) larvae [J]. Aquaculture,193:107-122.
    Lee P G, Smith L L, Lawrence A L.1984. Digestive proteases of Penaeus vannamei Boone: Relationship between enzyme activity, size and diet [J]. Aquac,42:225-239.
    Lee P G, Lawrencce A L.1982. A quantitative analysis of digestive enzymes in Penaeid shrimp, influences of diet, age and species [J]. Physiologist,25:241.
    Leger P, Beiber G F, Soregloos P.1985. International study on Artemia XXXIII. Promising results in larval rearing of Penaeus stylirostris using a prepared diet as algal substitute and substitute and for Artemia enrichment [J]. J World Aquacult Soc,16:354-367.
    Levine D M, Sulkin D S.1984. Nutritional significance of long-chin polayunsaturated fatty acids to the zoeal development of the brachyuran crab, Eurypanopeus depressus [J]. J Exp Mar Biol Ecol.81:211-223.
    Lindberg J C, Doroshov SI.1986. Effect of diet switch between natural and prepared foods on growth and survival of white sturgeon juveniles [J]. Transactions of the American Fisheries Society,115:166-171.
    Loizzi R F.1971. Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell linesand muscle network [J]. Z. Zellf orsch Mikrosk A nat,113: 420-440.
    Lovrich G A, Felder D L.1994. Patterns of growth and triacylgcycerol content in snow crab Chionoecetes opilio zoeal stages reared in the laboratory [J]. Mar Biology,120:585-591.
    Martins T G, Cavalli R 0, Martino R C, et al.2006. Larviculture output and stress tolerance of Farfantepenaeus paulensis postlarvae fed Artemia containing different fatty acids [J]. Aquaculture,252:525-533.
    Maugle P D.1982. Effects of short-neck clam diets on shrimp growth and digestive enzyme activities [J]. Bull Jap Soc Sci Fish,48 (12):1759-1764.
    Middledithch B S, Missler S R, Ward D G, et al.1979. Maturation of penaeid shrimp:dietary fatty acids [J]. Proc World Maricult Soc,10:472-476.
    Millamena O M, Bombeo R F, J umalon N A.1988. Effect of various diets on the nutritional value of A rtemia sp as food for the prawn Penaeus monodon [J]. Mar Biol,98:217-221.
    Mourente G, Medina A, Gonzalez S, et al.1995. Variation in lipid content and nutritional status during larval development of the marine shrimp Penaeus kerathurus [J]. Aquaculture,130: 187-199.
    Ouellet P, Taggart C T, Frank K T.1992. Lipid condition and survival in shrimp Pandalus borealis larvae [J]. Can J Fish Aquat Sci,49:368-378.
    Park H G, Puvanendran V, Kellett A, et al.2006. Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua) [J]. ICES Journal of Marine Science, 63(2):285-295.
    Patricia V H, Miguel A O, David B B.2004. Effect of dietary cholesterol on growth and survival of juvenile redclaw crayfish Cherax quadricarinatus under laboratory conditions [J]. Aquaculture,236:405-411.
    Read G L.1981. The response of Penaeus indicus (Crustacea: Penocidea) to purified and compound diets of varying fatty acid composition [J]. Aquaculture,24:245-256.
    Robinson S C, Ware D W.1988. Ontogenetic development of growth rates in larval Pacific herring Clupea harengus, measured with RNA/DNA ratios in the strait of Georgia, British Cloumbia [J]. Can J Fish Aquat Sci.,45:1422-1429.
    Rodriguez C, Cejas J R, Martin M V, et al.1998. Influence of n-3 highly unsaturated fatty acid deficiency on the lipid composition of broodstock gilthead sea bream (Sparus aurata) and on egg quality [J]. Fish Physiology,18:177-187.
    Sargent J R, Henderson R J, Tocher D R.1989. The lipids. In: J.E. Halver (Editor), Fish Nutrition, 2nd edn. Academic Press, San Diego, CA, pp.153-218.
    Spaargarden H D, Haefer P A.1994. Interaction of ovary and hepatopancreas during the reproductive cycle of Crangon crangon Ⅱ. Biochemical relationships [J]. Crust Biol,14(1): 6-19.
    Storch V.1984. The influence of nutritional stress on the ultrastructure of the patapancreas of terrestrial ispods [J]. Sym p. Zool. So. London,53:167-184.
    Storch V, Anger K.1983. Influence of nutritional stress on the hepatopancreas of larval Hyasaraneus ((Decapoda, Majidae) [J]. Helgol Meeresunters,36:67-75.
    Teshima S, Kanazawa A, Kakuta Y.1986a. Effects of dietary phospholipids on lipid transport in the juvenile prawn [J]. Bull Jpn Soc Sci Fish,52:159-163.
    Teshima S, Kanazawa A, Koshio S, et al.1989. Lipid metabolism of the prawn Penaeus japonicus during maturation: variation in lipid profiles of the ovary and hepatopancreas [J]. Comp Biochem Physiol,92B:45-49.
    Ulati S K, Ashes L R.1999. Hydrogenation of eicosapentaenoic and docosahexaenoic acids and their incorporation fat [J]. Animal Feed Science and Technology,79(15):57-64.
    Vazquez-Boucard C V, Levy P, Cecealdi H J, et al.2002. Developmental changes in concentrations of vitellin, vitellogenin, and lipids in hemolymph, hepatopancreas, and ovaries from different ovarian stages of Indian white prawn Fenneropenaeus indicus [J]. Exp Mar Biol Ecol,281:63-75.
    Vogt G, Storch V, Quinito E T.1985. Midgut gland as monitor organ for the nutritional value of diet in Penaeus monodon [J]. Aquaculture,48:1-12.
    Ward D G, Middleditch B S, Lawrence A L.1979. Fatty acids changes during larval development of Penaeus setiferus [J]. Proc World Maricult Soc,10:464-471.
    Wen X B, Chen L Q, Ai C X, et al.2002. Reproduction response of Chinese mitten-handed crab (Eriocheir sinensis) fed different sources of dietary lipid [J]. Comp Biochem Physiol,131A: 657-681.
    Xu X L, Ji W L, Castell J D, et al.1994. Influence of dietary lipid sources on fecunditv, egg hatchability and fatty acid composition of Chinese prawn (Penaeus chinensis) broodstock [J]. Aquac, (119):359-370.
    白义康,康相涛,孙桂荣,等.2008.脂肪酸脱氢酶研究进展[J].河南农业科学,2:9-12.
    陈立侨,江洪波,周忠良,等.2000.(ω- 3HUFA对中华绒螯蟹幼体存活率及体脂肪酸组成的影响[J].水产学报,24(5):448-452.
    成永旭,堵南山,赖伟.1998.不同阶段中华绒螯蟹肝胰腺的脂类及脂肪酸组成[J].动物学报,44(4):420-429.
    成永旭,李少菁,王桂忠,等.1998.锯缘青蟹幼体肝胰腺细胞结构变化与其营养状况的关系Ⅰ.蚤状幼体Ⅰ期的研究[J].厦门大学学报(自然科学版),37(4):576-581.
    成永旭,堵南山,赖伟.1999.中华绒螯蟹成熟卵巢的脂类及脂肪酸组成[J].中国水产科学,6(1):79-81.
    成永旭,堵南山,赖伟.2000.中华绒螯蟹肝胰腺R和F细胞及其脂类储存的电镜研究[J].动物学报,46(1):8-13.
    成永旭,王武,吴嘉敏,等.2001.虾蟹类幼体的脂类需求及脂类与发育的关系[J].中国水产科学,7(4):104-107.
    成永旭,严生良,王武,等.1998.饲料中磷脂和多不饱和脂肪酸对中华绒螯蟹大眼幼体育成仔蟹的成活率和生长的影响[J].水产学报,22(1):9-15.
    高淳仁,梁亚全,刘庆慧,等.1997.饲料中不饱和脂肪酸对斑节对虾幼虾存活、蜕皮和生长的影响[J].中国水产科学,4(1):75-79.
    顾志敏,许谷星,黄鲜明,等.2003.红螯螯虾的室内人工育苗.水产学报,27(1):32-37.
    季文娟.1996.野生及人工养殖的中国对虾(Penaeus chinensis)的脂肪酸组成的分析及比较研究[J].中国水产科学,3(1):16-20.
    季文娟.1998.高度不饱和脂肪酸对中国对虾亲虾的产卵和卵质的影响[J].水产学报,22(3):240-246.
    江洪波,陈立侨,王群,等.2005.饵料蛋白质对中华绒螯蟹仔蟹消化酶活性及胰蛋白酶mRNA丰度的影响[J].水产学报,29(2):216-221.
    江洪波,陈立侨,周忠良,等.2001.脂质营养对中华绒螯蟹幼体肝胰腺超微结构的影响[J].动物学研究,22(1):64-68.
    李爱杰.1996.水产动物营养与饲料学[M].北京:中国农业出版社.
    李超春,周歧存,刘楚吾.2005.虾蟹类脂类营养研究进展[J].湛江海洋大学学报,25(1):73-79.
    李富花,李少菁.1998.锯缘青蟹幼体肝胰腺的观察研究[J].海洋与湖沼,29(1):29-32.
    李红,赵云龙,王群,等.2003.日本沼虾胚胎发育不同阶段主要生化成分的变化[J].水产学 报,27(6):545-549.
    李少菁,王桂忠,汤鸿,等.1995.锯缘青蟹胚胎发育过程中几种水解酶活力的比较研究[J].厦门大学学报(自然科学版),34(6):970-973.
    林仕梅,罗莉,叶元土.2001.中华绒螯蟹营养生理的研究Ⅱ.蛋白质能量比对中华绒螯蟹蛋白酶活力和饲料消化率的影响[J].浙江海洋学院学报(自然科学版),20(增刊):62-65.
    林小涛,周小壮,于赫男,等.2004.饥饿对南美白对虾生化组成及补偿生长的影响[J].水产学报,28(1):47-53.
    刘立鹤,陈立侨,李康,等.2007.不同脂肪源饲料对中华绒螯蟹卵巢发育与繁殖性能的影响[J].中国水产科学,14(5):786-793.
    刘晓云,姜明.1997.中国对虾(Penaeus chinensis)肝小管管壁细胞结构的研究[J].青岛海洋大学学报,27(4):515-520.
    刘玉梅,朱谨钊,吴厚余,等.1991.中国对虾幼体和仔虾消化酶活力及氨基酸组成的研究[J].海洋与湖沼,22(6):571-575.
    卢洁,黄凯,臧宁,等.2005.气相色谱全分析海水和淡水养殖南美白对虾组织中脂肪酸组成与含量[J].色谱,23(2):193-195.
    罗文,赵云龙,姚俊杰,等.2006.红螯螯虾胚胎发育期主要消化酶和同工酶的活性变化[J].动物学杂志,41(1):12-18.
    麦康森,艾庆辉,徐玮,等.2004.水产养殖中的环境胁迫及其预防——营养学途径[J].中国海洋大学学报,34(5):767-774.
    潘鲁青,刘泓宇,肖国强.2006.甲壳动物幼体消化酶研究进展[J].中国水产科学,13(3):492-501.
    潘鲁青,王克行.1997.中华绒螯蟹幼体消化酶活力与氨基酸组成的研究[J].中国水产科学,4(2):13-20.
    钱国英,朱秋华.1999.中华绒螯蟹配合饲料中蛋白质、脂肪、纤维素的适宜含量[J].中国水产科学,6(3):61-62.
    汤鸿,李少菁,王桂忠,等.1995.锯缘青蟹幼体消化酶活力[J].厦门大学学报(自然科学版),34(1):88-93.
    田华梅,王群,赵云龙,等.2003.中华绒螯蟹胚胎发育过程中的消化酶活力及氨基酸组成[J].中国水产科学,10(5):402-408.
    王重刚,陈品健,顾勇,等.1998.不同饵料对真鲷稚鱼消化酶活性的影响[J].海洋学报,20(4):103-106.
    王春琳,尹飞,宋微微.2007.黑斑口虾蛄胚胎和幼体不同发育时期脂类及脂肪酸组成分析[J].浙江大学学报(理学版),34(2):223-227.
    王桂忠,汤鸿,李少菁,等.1995.锯缘青蟹胚胎发育过程中主要生化组成[J].台湾海峡,14(3):280-283.
    王恒,曹维维,孙龙生,等.2009.不同脂肪源对罗氏沼虾生长及体组织常见组分的影响[J].淡水渔业,39(2):37-41.
    汪留全,李海洋,胡王,等.2004.饲料中磷脂水平对幼蟹生长和饲料利用率的影响[J].上海水产大学学报,1:8-10.
    翁幼竹,李少菁,王桂忠.2001.锯缘青蟹幼体饵料的营养强化[J].水产学报,25(3):227-231.
    吴瑞全,黄樟翰,肖学铮,等.2000.罗氏沼虾饲料脂肪的最适含量[J].上海水产大学学报,9(1):31-34.
    吴旭干,滕炜鸣,唐伯平,等.2008.成体瘤背石磺脂类和脂肪酸组成[J].中国水产科学,15(3):431-438.
    吴志新,陈孝煊,罗宇良,等.1998.不同饵料蛋白质含量对红螯螯虾生长的影响[J].水利渔业,(4):22-23.
    谢开恩,王福刚,陈碧霞,等.1995.红螯螯虾人工繁殖技术的探讨[J].福建水产,(12):35-39.
    徐新章,何珍绣,付培峰.1997.不同脂肪源对幼蟹生长的影响[J].饲料工业,18(5):16-18.
    徐学良,季文娟.1992.ω-3及ω-6不饱和脂肪酸对中国对虾幼虾存活、蜕皮和生长的影响[J].海洋水产研究,13:21-27.
    许实荣,孙凤,娄康后.1987.中国对虾营养研究-B族维生素(B1,B6)对对虾蛋白酶和淀粉酶活力的影响[J].海洋科学,11(4):34-37.
    颜素芬,姜永华,陈昌生.2005.中国龙虾早期叶状幼体肝胰腺的显微与超微结构[J].水产学报,29(6):737-744.
    杨奇慧,周歧存,马丽莎,等.2005.凡纳滨对虾幼体胃蛋白酶和类胰蛋白酶活力的研究[J].海洋科学,29(5):6-9.
    叶金聪.2003.营养强化的轮虫在鲻鱼育苗中的效用[J].台湾海峡,22(1):53-58.
    于赫男,林小涛,许忠能,等.2010.饥饿胁迫下凡纳滨对虾昼夜活动行为的变化[J].暨南大学学报,31(1):100-104.
    赵云龙.2000.不同水温对红螯螯虾胚胎发育的影响.湖泊科学,3(3):15-18.
    赵云龙,孟凡丽,顾志敏,等.2000.红螯螯虾繁殖习性的研究[J].动物学杂志,35(5):5-9.
    张永江.1995.红螯淡水龙虾及其繁殖[J].水产养殖,(5):33.
    张志峰,廖承义,王海林,等.1997.中国对虾胚胎发育的研究[J].水产学报,21(2):201-215.
    周化斌,张永普,吴洪喜,等.2006.可口革囊星虫的营养成分分析与评价[J].海洋湖沼通报,(2):62-68.
    周丽华,束刚,朱晓彤,等.2008.肌肉脂肪酸转运膜蛋白及其相互作用[J].中国生物化学与分子生物学报,24(11):992-1000.
    朱小明,李少菁.1998.蟹类幼体营养需求和饵料研究的进展[J].台湾海峡,17(增刊):10-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700