改进的溶胶凝胶法制备铌酸锶钡/钛酸锶钡复相陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四方钨青铜结构的铌酸锶钡(Sr_xBa_(1-x)Nb_2O_6,0.25≤x≤0.75,简写为SBN)和钙钛矿结构的钛酸锶钡(Sr_xBa_(1-x)TiO_3,简写为BST)具有优良的电学性能,是实验研究和应用开发的热点。为了发掘两类材料更优异的性能进而探索其实际应用的可能性,人们开始研究SBN和SBT复合陶瓷的制备和介电性能。本文采用改进的溶胶凝胶法制备SBN和BST两相共存的复相陶瓷,简称BSTN,系统研究了其制备方法和及制备过程中各影响因素。同时分析了复相陶瓷体系中不同Sr/Ba比和Nb/Ti比对体系结构及介电性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)等方法系统研究了BSTN的结构,并结合TG-DTA等分析手段对烧结制度进行了分析。通过阻抗测试仪及LCR数字电桥分析了BSTN复相陶瓷的介频特性及介温特性。
     本论文的研究表明:(1)与传统复相陶瓷的制备方法固相法相比,改进的溶胶凝胶法有利于两相的良好固溶,同时降低烧结温度并抑制晶粒的异常生长;(2)通过对前聚体干凝胶的热分析得到其最佳的预烧温度为800℃,并结合现有烧结炉制定出烧结过程中的升温曲线;(3)分析了烧结温度和烧结时间对复相陶制备的影响,得到:钙钛矿相BST的形成温度低于钨青铜相SBN,确定实验采用烧结温度1250℃烧结3h;(4)在x范围为0.25~0.75之间钙钛矿相和钨青铜相可以良好的固溶在复相体系中。随着x值的增加复相陶瓷室温下的介电常数逐渐减小,而介电损耗逐渐增加。所以当体系Sr/Ba比为3/7时,介电常数较大的同时介电损耗较小,且居里温度在室温范围,对提高介电器件的性能有着重要的意义;(5)固定Sr/Ba比为3/7,系统研究了复相陶瓷0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5的相组成和微观结构与Nb/Ti比的关系。随着体系中Nb5+含量的增加,其居里温度不断升高,介电常数和介电损耗都减小,当y=0.7时表现出良好的介频特性和温频特性,可以认为复相陶瓷的介电性能得到了很好的改善。
Strontium barium niobate with tetragonal tungsten bronze structure and barium strontium titanate with perovskite structure have attracted lots of attention due to their outstanding dielectrical properties and potential applications. However SBN with defect that was difficult sintered to a high density and can abnormal grain grow. So the composite material with good dielectric properties, mechanical properties may be obtained by a composite of BST and SBN. In this paper (1-x)BaO·xSrO·(1-y)TiO2·yNb2O5(BSTN in short) with coexistence of the perovskite and tungsten bronze phases were successfully prepared by a modified sol-gel method, and the formation mechanism of the composite ceramics was investigated in details. The effect of different Sr/Ba ratio and Ni/Ti ratio to the structure and properties of the materials were also studied. Some instruments were chose included X-ray diffraction (XRD), scanning electron microscope (SEM), impedance instrument and also LCR digital bridge.
     Following results can be obtained from the paper: (1) Compare to the traditional solid method, this modified sol-gel can shorten the sintering time and lower the crystallizing temperature while with a good combination of the two phase without any abnormal grain growth; (2) The presintering temperature was chosen at 800℃through thermal analysis and a heating cure was made; (3) By analysis the sintering mechanism can got that the formation temperature of SBN is higher than that of BST, and the composite ceramics sintering temperature was determined at 1250℃for 3h; (4) BST and SBN can be coexisted in the system well with the x value in range of 0.25~0.75. With the increasing of x value, dielectric constant became lower while the dielectric loss increase. So, the composite ceramic with x=0.3 possess higher dielectric constant and lower dielectric loss means more to improve the dielectrical device; (5) In 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 system, with the increasing of y value the material perform a better dielectric property, especially when y=0.7. So, the dielectric properties of composite ceramic were improved largely.
引文
[1] ICK K C, BURM J C, JONG H P, et al. Crystal Structure of La(Mg2/3Nb1/3)O3 Ceramics[J]. Materials Research Bulletin, 2000, 35(6): 921-926.
    [2] THIRUMAL M, GANGULI K. Molten Salt Synthesis of Complex Perovskite-Related Dielectric Oxides[J]. Materials Chemistry and Physics, 2001, 70: 7-10.
    [3] PARK H M, LEE H J, SONG Y W, et al. Crystal Structure Refinement of (Ba1-xLax) [Mg (1+x)/3Nb (2-x)/3] O3 with 0.3≤x≤0.7 by Rietveld Method[J]. Materials Research Bulletin, 2001, 36: 2163-2174.
    [4]郑兴华,梁国栋,丁剑,等. Sr1-xBaxNb2O6钨青铜铁电陶瓷的结构与介电性能研究[J].硅酸盐通报, 2006,25(4): 11-14.
    [5] JONG C A. Crystallization of Sr0.5Ba0.5Nb2O6 Thin Films on LaNiO3 Electrode by RF Magnetron Reactive Sputtering[J]. Jpn. J. Appl. Phys., 2000, 39(2A): 545-550.
    [6]王炜,张洁,焦岗成,等.铌酸锶钡陶瓷的固相烧结行为与结构演化研究[J].航空材料学报, 2006, 26(3): 333-334.
    [7]周宗辉.原位复合钙钛矿/钨青铜复相材料的形成及介电与热释电性能研究[D].杭州:浙江大学(博士论文), 2004: 17-19.
    [8]张柏顺,郭涛,何军,等.钛酸锶钡粉体晶化过程和物相结构研究[J].湖北大学学报:自然科学版, 2006, 28(4): 364-367.
    [9]胡琳.低介、高可调性的钛酸锶钡陶瓷的研究[D].北京:清华大学(硕士学位论文), 2005: 1-5.
    [10] SENGUPTA. Ceramic Ferroelectric Composite Material-BSTO-ZnO: US, 5635433[P]. 1997-06-03[2007-11-21].
    [11] AMORIN H, PORTELLES J, GUERRERO F, et al. Ferroelectric Properties of the La0.03Sr0.255Ba0.7Nb2-yTiyO6-y/2 Ceramic System[J]. Journal of Electroceramics, 1999, 3(4): 371-375.
    [12] SENGUPTA. Ceramic Ferroelectric Material. US, 5312790[P]. 1993-06-09[1994-05-06].
    [13] HU T, JANTUNEN H. Ba0.7Sr0.3TiO3 Powders with B2O3 Additive Prepared by the Sol-Gel Method for Use as Microwave Material[J]. Material Science in Semiconductor Processing, 2003, 5: 215-217.
    [14]曹晓燕.高度择优取向铁电铌酸锶钡薄膜的制备及其性能研究[D].杭州:浙江大学(硕士学位论文), 2004: 7-9.
    [15] MACIOLEK R B, LIU S T. Preparation and Physical Properties of Lanthanum-Modified Sr1-xBaxNb2O6 Ferrielectric Crystals[J]. Journal of Electronic Materials, 1975, 4(3): 516-519.
    [16] CAO H C, EVANS A G. Nonlinear Deformation of Ferroelectric Ceramics[J]. Am Ceram Soc., 1993, 76(4): 890-896.
    [17] ANSGAR B, Schaufele. Ferroelastic Properties of Lead Zirconate Titanate Ceramic[J]. Am Ceram Soc., 1996, 79(10): 2637-2640.
    [18] ZHANG Q M. Change of the Weak-field Properties of Pb(ZrTi)O3 Piezoceramics with Compressive Uniaxial Stress and its Links to the Effect of Dopants on the Stability of the Polarizations in the Materials[J]. Mater Res., 1997, 12(1): 226-234.
    [19] HWANG S C, LYNCH C S, MCMEEKING R M. Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model[J]. Acta Metall Mater., 1995, 43(5): 2073-2084.
    [20] CHENG J, WANG B, DU S. Effective Electro Elastic Properties of Polycrystalline Ferroelectric Ceramic Predicted by a Statistical Model[J]. Acta Mechanica, 1999, 138(3): 163-175.
    [21] POHANKA R C. Effect of the Phase Transformation on the Fracture Behavior of BaTiO3[J]. Am Ceram Soc., 1978, 61(1): 72-75.
    [22]钟维烈.铁电体物理学[M].北京:科学出版社, 1998: 5-532.
    [23] KWON, EKNOYAN O, TAYLOR H F, et al. Low-voltage Electro-optic Modulator in SBN60[J]. Electronics Letters, 2005, 35(3): 219-220.
    [24] SRINIVAS A, BOEY F Y C, SRITHARAN T. Synthesis of a New Electroceramic by Replacement of Bi in Strontium Bismuth Niobate[J]. Journal of Electroceram, 2006, 16: 321-325.
    [25] SCOTT J F, PAZ C A, ARAUJO. Ferroelectric memories[J]. Science, 1989: 246-280
    [26] AUCIELLO, SCOTT J F, RAMESH R. The Physics of Ferroelectric Memories[J]. Physics Today, 1998: 22-27.
    [27] HUI Y, MINDE H. Relationship of Microstructure and Thickness in Ferroelectric Strontium Barium Niobate Thin Film[J]. Optical Instruments,2001, 23(5): 193-197.
    [28]黄清伟,王佩玲,程一兵,等. Sr0.4Ba0.6Nb2O6物相形成过程的XRD分析[J].无机材料学报, 2002, 17(4): 841-844.
    [29]黄清伟,王佩玲,程一兵,等.原始粉料对Sr0.4Ba0.6Nb2O6烧结性能与显微结构的影响[J].无机材料学报, 2003, 18(1): 175-178.
    [30] CHEN W W, SHIAKI Y, WATARI, et al. Preparation of Grain-Oriented (Sr, Ba)Nb2O6 Ferroelectric Ceramics by Magnetic Alignment[J]. Journal of the American Ceramic Society, 2006, 89(1): 381-384.
    [31]叶辉, MELANIE M T HO, MAK C L.铁电铌酸锶钡薄膜的结构特性研究[J].光子学报, 2002,31(10): 1228-1232.
    [32]彭娟,单连伟,吴泽.铌酸锶钡/钛酸锶钡复相陶瓷制备新工艺研究[J].化学工程师, 2007,21(11): 49-51.
    [33]朱建华,吕文中,梁飞,等.新型低介微波介质陶瓷的结构及性能[J].电子元件与材料, 2006, (3): 34-36.
    [34]赵明磊,张磊,钟维烈,等.铽改性铌酸锶钡晶体的介电性和热电性[J].功能材料与器件学报, 2001, 7(4): 409-412.
    [35] TAKAHARA S, KIUCHI K. Dielectric Properties of Mixed-Sintering Ceramics in the System Pb(Fe1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3[J]. Ceram. Mater., 1986, 1(4): 346-349.
    [36] FURUKAWA, HARATA M. Low Firing and High Dielectric Constant XTR Ceramic Dielectric for Multilayer Capacitors Based on Relaxor and Barium Titanate Composite[J]. Mater. Sci., 1991, 26: 5838-5842.
    [37] PATRO P K, DESHMUKH R D, KULKARNI A R, et al. Synthesis of Sr0.5Ba0.5Nb2O6 by Coprecipitation Method-Dielectric and Microstructural Characteristics[J]. Journal of Electroceramics, 2004, 13: 479-485.
    [38]杨飞宇,燕青芝,赵浩峰.钛酸钡粉体制备方法研究进展[J].粉末冶金工业, 2003, 13(6): 27-31.
    [39]郭靖,胡曰博,熊育飞. TiCl4共沉淀法合成钛酸钡超细粉体[J].四川有色金属, 2004, 2: 29-33.
    [40] MENDES R G, ARAUJO E B, KLEIN H. Synthesis of Strontium Barium Niobate Ferroelectric Thin Films by an Alternative Chemical Method[J]. Journal of Materials Science Letters, 1999, 18: 1941-1943.
    [41]蔡政.功能陶瓷的制备表征与铁电、介电性能研究[D].江苏:南京师范大学(硕士论文), 2002: 8-13.
    [42] SIQUEIROS J M, PORTELLES J. Study by Hysteresis Measurements of the Influence of Grain Size on the Dielectric Properties of Ceramics of the Sr0.40Ba0.60TiO3 Type Prepared under Different Sintering Conditions[J]. Solid State Communications, 1999, 112: 189-194
    [43] ZHANG L, ZHONG E L. Finite-size Effects in Ferroelectric Solid Solution BaxSr1-xTiO3[J]. Phys., 1999, 32: 546-551.
    [44] CHATTOPADHYAY S, AYYUB P. Finite-size Effects in Antiferroelectric PbZrO3 Nanoparticles[J]. Phys., 1997, 9: 8135-8145.
    [45] AYYUB P, PALLKAR V R. Effect of Crystal Size Reduction on Lattice Symmetry and Cooperative[J]. Physical Review B: Condenced Matter, 1995, 51: 6135-6140.
    [46] ZHONG W L, LIANG B. Phase Transition in PbTiO3 Ultrafine Particles of Different Sizes[J]. Phys.: Condens. Matte., 1993, 5: 2619-2625.
    [47] LIOU J W, CHIOU B S. Dielectric Tunability of Barium Strontium Titanate/Silicon-rubbercomposite[J]. Phys.: Condens. Matter, 1998, 10(12): 2773-2786.
    [48] YONEZAWA M, UTSUMI K. Research and Development of Relaxor Ferroelectric Ceramics at NEC[C]. Proceeding of 71th International Symposium on Application of Ferroelectrics, New York, 1990: 159-164.
    [49] TSUZUKU K, FUJIMOTO M. Temperature-state Lead-Relaxor-Based Ceramics Dielectrics with Chemical Inhomgenety[J]. Am. Ceram. Sci., 1994, 77(6): 1451-1456.
    [50] UCHIKOBA F, ITO T. XTR Lead-complex Perovskite Dielectrics with Inhomogeneous Composition Distribution[J]. Appl. Phys., 1994, 34: 2347-2349.
    [51] TAKAHARA H, KIUCHI K. Dielectric Properties of Mixed-sintering Ceramics in the System Pb(Fe2/3WI1/3)O3[J]. Ceram. Mater., 1986, 1(4), 346-349.
    [52] CAVA R J, PECK W F, et al. Compensation of the Temperature Coefficient of the Dielectric Constant of Barium Strontium Titanate[J]. Appl. Phys. Lett., 1995, 67(25): 3813-3815.
    [53]赵忠民,张龙,白鸿柏,等.原位生长纳微米纤维自增韧复相陶瓷显微结构与不同尺度多级增韧[J].稀有金属材料与工程, 2006, 35(2): 91-95.
    [54]周广,邓建成.配位均匀共沉淀法制备Ag/ZnO纳米复合材料的研究[J].功能材料, 2007, 38(4): 665-668.
    [55]张巍巍,谢平波,张慰平.稀土正硼酸盐Ln1-XBO3: Eux(Ln=Y, Gd)的结构与发光特性[J].无机材料学报, 2001, 16(1): 9-11.
    [56]蒋洪川,杨仕清,张文旭.溶胶-凝胶法合成Y3Al5O12: Ce3+, Tb3+稀土荧光粉的研究[J].无机材料学报, 2001, 16(4): 720-722.
    [57]张世英,李德意,微坤.溶胶-凝胶法制备BaMgAl10O17: Eu荧光粉的研究[J].中国陶瓷工业, 2003, 10(2): 36-38.
    [58]黄飞. Sol-Gel法制备YAG: Tb、Ce、Gd绿色荧光粉的研究[D].黑龙江:哈尔滨理工大学(硕士论文), 2005: 34-38.
    [59] LIOU Y C, WU C T, CHUNG T C. Synthesis and Microstructure of SrTiO3 and BaTiO3 Ceramics by a Reaction Sintering Process[J]. J. Mater. Sci., 2007, 42: 3580-3587.
    [60] HU W C, YANG C R, LOU X B. Characterization of Sn-doped BST Thin Films on LaNiO3-Coated BSI Substrate[J]. J. Mater. Sci., 2007, (1): 1057-1060.
    [61]张梅,杨绪杰,陆路德.溶胶-凝胶法制备纳米TiO2[J].化工新型材料, 2002, 30(1): 35-37.
    [62]郭伟巍,颜秀茹,谭俊茹.溶胶-凝胶法制备BTN陶瓷材料及其性能研究[J].应用化学, 2002, 19(2): 126-129.
    [63] AMORI′N H, FUNDORA A, PORTELLES J. Evidence of Short-range Antiferroelectric Local States in Lanthanum and Titanium-modified Sr0.3Ba0.7Nb2O6 Ferroelectric Ceramics[J]. Applied Physics Letters, 2003, 83(21): 4390-4392
    [64]朱卫东.溶胶-凝胶法制备BaxSr1-xTiO3及其性能研究[D].江苏:苏州大学(硕士论文), 2001, 56-59.
    [65]郭惠芬,张兴堂,武超,等. Ba1-xSrxTiO3相结构的拉曼光谱研究[J].光散射学报, 2003, 15(2): 105-109.
    [66]孙建英,翟继卫,愁修建,等. Ba0.6Sr0.4TiO3-Mg2TiO4复合陶瓷材料的介电可调性及微波特性[J].硅酸盐学报, 2007, 35(11): 55-57.
    [67]李金桂,吴再思.防腐蚀表面工程技术[M].第四版.北京.化学工业出版社, 2003: 252-254.
    [68]丁剑,俞建长,郑兴华,等.钨青铜陶瓷Sr0.5Ba0.5Nb2O6的制备结构与介电性能研究[J].福州大学学报, 2006, 34(2): 232-235.
    [69]张高科,吴伯麟,欧阳世翕.钨青铜结构铌酸盐晶体的分子设计及其掺杂[J].材料导报, 1997, 11(3): 29-32.
    [70]丁士文,柴佳,冯春燕,等.室温固态反应制备纳米Ba1-xSrxTiO3固溶体及其结构与介电性能探究[J].化学学报, 2006, 64(12): 1243-1247.
    [71] JUMO K, JAE H J, BYEONG S B. Crystallization Behavior of Sol-Gel Derived Strontium Barium Niobate Thin Films[J]. J. Am. Ceram. Soc., 2001, 84(1): 193-199.
    [72]周宗辉,杜丕一,翁文剑,等.钙钛矿/钨青铜两相复合BSTN陶瓷的形成与性能研究[J].无机材料学报, 2004, 19(6): 1322-1328.
    [73]罗绍华,唐子龙,尧巍华,等.低温燃烧合成钛酸钡及其陶瓷介电性能研究[J].硅酸盐学报, 2003, 31(6): 560-565.
    [74] QINGWEI H, PEILING W, YIBING C, et al. XRD Analysis of Formation of Strontium Barium Niobate Phase[J]. Materials Letters, 2002, 56: 915-920.
    [75] GRANZOW T, WOIKE T H, RAMMENSEE W, et al. Influence of Ce and Cr Doping on the Pyroelectric Behavior of Sr0.61Ba0.39Nb2O6[J]. Physica Status Solidi (a), 2003, 197(3): R2-R4.
    [76] SHAOBO L, MEIDONG L, SHENG J, et al. Fabrication of SiO2-Doped Ba0.85Sr0.15TiO3 Glass-Ceramic Films and the Measurment of Their Pyroelectric Coefficient[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99(1-3): 511-515.
    [77] WEN Y, AIMIN C, BANGCHAO Y. Preparation of Barium Strontium Titanate Ceramic by Sol-Gel Method and Microwave Sintering[J]. Journal of Materials Sythesis and Processing, 2002, 10(6): 303-309.
    [78] DORFLER U, GRANZOW T, WOIKE T H, et al. Aging of the Ferroelectric Hysteresis in Ce-Doped Strontium Barium Niobate Observed by Holographic Phase Gratings[J]. Appl. Phys., 2003, (B): 55-57.
    [79] FANG T T, WU N T, FUH S S. Formation Mechanism of Strontium Barium Ceramic Powders[J]. Jouranl of Materials Science Letters, 1994, 13: 1746-1748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700