TiO_2基纳米管阵列的构筑、表征及其光电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接将太阳能转换成电能和利用太阳能光解水制氢是当前备受关注的两个研究方向,其中开发高效廉价的光电极材料是最关键环节。TiO2纳米管阵列因具有独特高度有序的纳米结构和优异的物理化学性能,已成为纳米材料和太阳能利用领域研究的热点之一。本论文分别在金属Ti、TC1(Ti-2Al-1.5Mn)和TC4(Ti-6Al-4V)合金表面制备了TiO2基纳米管有序阵列,并实现了对TiO2纳米管的金属掺杂和硫掺杂,获得了制备规律并揭示了产物光电化学性质,取得了一些创新性成果。
     采用电化学阳极氧化法,针对纯钛、TC1合金分别在中性0.5wt%NH4F和酸性0.5wt%NH4F + 0.1MH3PO4电解液体系中,制备出较大面积的TiO2基纳米管阵列薄膜,系统考察了极距、电解液温度和热处理温度对产物形貌、晶体结构、光吸收和光电化学性能的影响。中性电解液体系中所制备的纳米管阵列较好的光电化学性质;证实TC1合金在阳极氧化过程中部分锰原子能以阳离子替代的方式占据晶格中Ti4+的位置,从而可有效扩展TiO2纳米管阵列的光吸收范围,使光吸收效、光电化学性能得到显著提高,具有明显的光解水能力。
     于0.5wt%NH4F + 0.1MH3PO4电解液体系中,在TC4合金表面制备了纳米管有序阵列,系统研究了电解液温度和热处理温度等对产物形貌结构和光电化学性能的影响。
     采用热硫化法对TiO2纳米管阵列进行硫掺杂,掺杂后样品的光电化学性能大幅度提高,具有突出的光解水特性,显示出良好的化学稳定性和抗光腐蚀能力,有望成为高效廉价的太阳能分解水光电极材料。
Nowadays, one of man’s endeavors is to cope with the energy crisis and environmental pollution for the sustainable development of human society, in which the energy problem is vital. Solar and hydrogen energy are considered as the‘Green Energy’which is most likely to gradually replace fossil fuels. Currently, the conversion of solar directly to electrical energy and the hydrogen production from water splitting by solar are the two most promising research directions. It is absolutely vital to develop the efficient, low-cost and practical photoelectrode materials.
     In the past several decades, TiO2-based nanostructure semiconductors have been extensively studied due to their excellent chemical stability, nontoxicity, low-cost, and high photocatalytic activities. They were considered as particularly versatile materials with technological application prospects in solar cell and hydrogen production from water photolysis, and more. Especially over the past few years, highly ordered, vertically oriented TiO2 nanotube arrays fabricated by electrochemical anodization constitute a material architecture that offers a large specific surface area, favorable surface chemistry and narrow distribution of diffusion path not only for entering the tubular depth but also for species to be transported through the tube wall, have attracted tremendous efforts. In the present work, TiO2-based nanotubular oxide layers have been fabricated on the surfaces of metal Ti, TC1 (Ti-2Al-1.5Mn) alloy and TC4 (Ti-6Al-4V) alloy by a two-electrode electrochemical anodic oxidation technique. The preparation and properties were investigated carefully. At the same time, S-doped TiO2 nanotubular films were achieved by a facile thermal vulcanization process, in which the photoelectric properties were significantly improved. Under optimum conditions, furthermore, nanotubular films fabricated on the surface of TC1 alloy and the S-doped TiO2 nanotube arrays have been found to have the ability of water photolysis. The main contents of the paper were listed as follows:
     1. Self-organized TiO2 nanotube arrays were prepared by a facile two-electrode anodization in a 0.5wt% NH4F aqueous electrolyte at 20V for 3h with the average inner diameter of about 91nm and the tube length about 720nm. In the current system, the best polar distance (between anode and cathode) was about 3cm and the optimal temperature of the electrolyte was the normal room temperature (~18℃). The as-formed nanotubes under the optimized conditions were annealing at different temperature to obtain different crystalline structures. The tests of optical absorption and photoelectrochemical properties showed that the nanotubes had best properties after annealed at 600℃.The photoconversion efficiency was about 1.07% under 100 mW/cm2 illuminations. TiO2 nanotube arrays can also be fabricated in a 0.5wt%NH4F + 0.1MH3PO4 aqueous electrolyte at 20V for 1h with the average inner diameter of about 100nm and the tube length about 830nm. Having been annealed at different temperatures, the nanotubular structure retained intact when the temperature was lower than 600℃. When the annealing temperature was 700℃, the local damage could be found. And the nanotubular structure would be completely destroyed into a porous granule membrane when the annealing temperature was higher than 800℃. The tests of optical absorption and photoelectrochemical properties showed that the nanotubes had best properties after annealed at 600℃.The photoconversion efficiency was about 0.95%. Under their respective optimum conditions, as compared with the acidic electrolyte system, the TiO2 nanotube arrays prepared in the neutral system had better photoelectrochemical properties. This was because that the nanotubes prepared in the neutral electrolyte system have better uniformity and ordered character. In addition, the electrochemical oxidation of Ti was faster in the acidic electrolyte system, which would increase the thickness of‘barrier layer’at the bottom of nanotubes in some degree, thus inhibiting the transmission of photo-induced carriers. In the present system, the optimal conditions for the TiO2 nanotube arrays were in the 0.5wt% NH4F electrolyte, anodizing voltage of 20V, oxidation time of 3h, polar distance of 3cm, and electrolyte temperature of room temperature, and the annealing temperature of 600℃.
     2. TiO2-based nanotube arrays were prepared on TC1 alloy for the first time by a facile two-electrode anodization in a 0.5wt% NH4F aqueous electrolyte at 20V for 3h, with the average inner diameter of about 90nm, the tube length about 650nm and the tube wall thickness of 21nm.The main growth mechanism governing the formation of nanotubes on TC1 alloy was suggested to be consistent with those of tubes synthesized on pure Ti in F– containing solutions on the whole. Nanotubes formation in fluoride ion bearing electrolytes occurred as a result of the interplay between three simultaneously occurring processes, namely the field assisted oxidation of alloy to form oxides, the field assisted dissolution of metal ions in the electrolyte, and the chemical dissolution of metal and oxides due to etching by fluoride ions, which was substantially enhanced by the presence of H+ ions. And the formation of nanotube arrays were ultimately determined by the dynamic equilibrium between the growth and dissolution processes. As the alloy contained two different phases, it was important to restrain the selective dissolution of the phases, which could result in non-uniform surface layer. It was profitable to select subacid electrolyte and to optimize anodization voltage and time. In the current system, the best polar distance was about 3cm and the optimal temperature of the electrolyte was the normal room temperature. The tests of optical absorption and photoelectrochemical properties showed that the nanotubes had best properties after annealed at 600℃. The photoconversion efficiency was about 1.2%. Nanotubular layers can also be fabricated on TC1 alloy in a 0.5wt%NH4F + 0.1MH3PO4 aqueous electrolyte at 20V for 1h with the average inner diameter of about 85nm. By annealing the initially amorphous films at different temperatures, the nanotubular structure retained intact when the temperature was lower than 650℃. And the nanotubular structure would be completely destroyed into a rod-like film when the annealing temperature was higher than 800℃. The tests of optical absorption and photoelectrochemical properties showed that the nanotubes had best properties after annealed at 650℃. The photoconversion efficiency was about 0.79 %. Compared with the neutral electrolyte, nanotube arrays prepared in the acidic system had poor performance. This was because that the nanotubular layers prepared in the acidic electrolyte system were relatively lack of uniformity and the‘barrier layer’may thicker. In addition, since the more serious selective dissolution of the two phase of TC1 alloy, some holes would be formed in the wall of the nanotubes, which might seriously affect the transmission process of photo-induced carriers.
     3. Nanotubular films were fabricated on TC4 alloy in a 0.5wt%NH4F + 0.1MH3PO4 aqueous electrolyte. The nanotubes anodiced at 20V for 1h were in highly ordered with the average inner diameter of about 120nm, the wall thickness of 17nm and the tube length about 300nm. EDX and XPS analysis showed that metal ion doping could not be achieved. In the current system, the optimal electrolyte temperature was the normal room temperature. The thermal stability studies showed that the annealing temperature should be lower than 650℃. When the temperature was higher than 700℃, the nanotubular structure was completely transformed into rod-like granule membrane. The photoelectrochemical properties of as-prepared nanotubular films were rather poor. However, given that as-prepared nanotubes were in highly ordered, it was expected to have broad application prospects in the traditional application area of TC4 alloy.
     4. S-doped TiO2 nanotubular films were achieved by a facile thermal vulcanization process. The best pre-annealing temperature was 600℃and the optimum S-doped temperature was 550℃. The studies had shown that the main way of the present sulfur doping was S atoms to replace the O vacancies in the TiO2 Crystal lattices. The possible doping mechanism was that the surface of TiO2 nanotube arrays were partly reduced by H2 resulting in oxygen vacancy in the first under the appropriate temperatures, and then, S atoms occupied these oxygen vacancies. This processes finally achieved the sulfur-doped structures. Having been doped, the nanotubular structure had not been seriously affected and the optical absorption in the visible area had been markedly increased. The photoconversion efficiency was about 1.59%. The photoelectrochemical properties of S-doped TiO2 nanotube arrays were significantly improved. It was because that the range of effective optical absorption was largely expanded and the photoconversion efficiency was also improved remarkably.
     5. The results of open-circuit potential and photocurrent response tests of the TiO2-based nanotube arrays prepared at different conditions were consistent with their respective photoelectrochemical properties. The fast photocurrent response could be obtained for the nanotube arrays prepared on pure Ti and TC1 alloy. Having been doped by sulfur, the photocurrent response performance was further enhanced. The fast photoelectric response indicated less recombination of photogenerated electrons and holes and higher transmission efficiency of photo-induced carriers, which were vital to the application in the field of photovoltaic conversion.
     6. The initial experimental studies have shown that the nanotubular films prepared on TC1 alloy in the neutral electrolyte under optimal conditions have some capacity of photoelectrochemical hydrogen production from water splitting. Furthermore, the S-doped TiO2 nanotube arrays prepared at optimal conditions have been found to have remarkable ability of water photolysis, which are expected to become the excellent photoelectrode materials for water splitting by solar.
引文
[1] Bequerel, A. E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courantsélectriques [J]. C.R. Acad. Sci., 1839, 9:145–149.
    [2] Brattain,W. H.; Garrett, C. G. B. Experiments on the interface between germanium and an electrolyte [J]. Bell Syst. Tech. J., 1955, 34: 129–176.
    [3] Gerischer, H. Electrochemical behavior of semiconductors under illumination [J]. J. Electrochem. Soc., 1966, 13: 1174–1182.
    [4] Gerischer, H.; Tributsch, H. Electrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO-Einkristallen [J]. Ber. Bunsenges. Phys. Chem., 1968, 72: 437–445.
    [5] Fujishima, A; Honda, K. Electrochemical photocatalysis of water at a semiconductor electrode [J]. Nature, 1972, 238 (5358): 37–38.
    [6] Armor, J. N. Catalysis and the hydrogen economy [J]. Catal. Lett., 2005, 101(3-4): 131–135.
    [7] Feynman, R. There's Plenty of Room at the Bottom:An Invitation to Enter a New Field of Physics" Caltech’s Engineering & Science magazine, 1960 (Pasadena, CA: Caltech Public Relations, 1959).
    [8]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001: 23–49 & 51–67
    [9] Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Preparation and characterization of quantum-size titanium dioxide [J]. J. Phys. Chem., 1988, 92(18): 5196–5201.
    [10] Huang, J. X.; Xie, Y.; Li, B.; Liu, Y.; Lu, J.; Qian, Y. T. Ultrasound-Induced Formation of CdS Nanostructures in Oil-in-Water Microemulsions [J]. J. Colloid Interf. Sci., 2001, 236(2): 382–384.
    [11] Harada, H.; Ueda, T. Photocatalytic activity of ultra-fine rutile in methanol-water solution and dependence of activity on particle size [J]. Chem. Phys. Lett., 1984, 106(3): 229–231.
    [12] Li, Q. S.; Domen, K.; Naito, S.; Onishi, T.; Tamaru, K. Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysts [J]. Chem. Lett., 1983, 12(3): 321–324.
    [13] Frank, S. N.; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J. Phys. Chem., 1977, 81(15): 1484–1488.
    [14] Leland, J. K.; Bard, A. J. Photochemistry of colloidal semiconducting iron oxide polymorphs [J]. J. Phys. Chem., 1987, 91(19): 5076–5083.
    [15] Yoneyama, H.; Haga, S.; Yamanaka, S. Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay [J]. J. Phys. Chem., 1989, 93 (12): 4833–4837.
    [16] Okamoto, K.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder [J]. Bull. Chem. Soc. Jpn., 1985, 58 (7): 2015–2022.
    [17] Henglein, A.; Gutiérrez, M.; Fischer, Ch.-H. Photochemistry of colloidal metal sulfides. 6. Kinetics of interfacial reactions at zinc sulfide particles [J]. Ber. Bunsen-Ges. Phys. Chem., 1984, 88, 170–175.
    [18] Albery, W. J.; Bartlett, P. N. The Transport and Kinetics of Photogenerated Carriers in Colloidal Semiconductor Electrode Particles [J]. J. Electrochem. Soc., 1984, 131(2): 315–325.
    [19] O'Regan, B; Gr?tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353 (6346): 737–740.
    [20] Gribb, A. A.; Banfield, J. F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 [J]. Am. Mineral, 1997, 82(7-8): 717–728.
    [21] Choi, W.; Tennin, A.; Hoffmann, M. R. Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles [J]. Angew. Chem. Int. Ed., 1994, 33(10):1091–1092.
    [22] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Vsible-light Photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528):269–271.
    [23] Khan, S. U. M.; Al-Shahry, M.; Ingler Jr, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 2002, 297 (5590): 2243–2245.
    [24] Ao, C. H.; Lee, S. C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level [J]. J. Photochem. Photobio. A: Chem., 2004, 161(2-3): 131–140.
    [25] Ohno, T.; Mitsui, T.; Matsumura, M. Photocatalytic activity of S-doped TiO2: photoeatalyst under visible light [J]. Chem. Lett., 2003, 32(4): 364–365.
    [26] Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Vsible light-induced degradation of methylene blue on S-doped TiO2 [J]. Chem. Lett., 2003, 32(4): 330–331.
    [27] Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Effects of F– doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem. Mater., 2002, 14(9): 3808–3816.
    [28] Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants V. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions [J]. J. Phys. Chem. B, 1998, 102(30): 5845–5851.
    [29] Kim, S. S.; Yum, J. H.; Sung, Y. E. Improved Performance of a dye-sensitized solar cell using a TiO2/ZnO/EosinY electrode [J]. Sol. Energy Mater. Sol. Cells, 2003, 79(4): 495–505.
    [30] Amao, Y.; Yamad, Y.; Aoki, K. Preparation and Properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO2 film electrode [J]. J. Photoehem. Photobio. A: Chem., 2004, 164(1-3): 47–51.
    [31] Dillert, R.; Cassano, A. E.; Goslich, R.; Bahnemann, D. Large scale studies in solar catalytic wastewater treatment [J]. Catal.Today, 1999, 54(2-3): 267–282.
    [32] Li, X. Z.; Chen, C. C.; Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surface under visible light irradiation [J]. Langmuir, 2001, 17 (13):4118–4122.
    [33] Chao, H. E.; Yuna, Y. U.; Xingfang, H. U.; Larbot, A. Effect of silver doping on the phase transformation and grain growth of Sol-gel titania powder [J]. J. European Ceram. Soc., 2003, 23(9): 1457–1464.
    [34] Yu, J. G.; Xiong, J. F.; Cheng, B.; Liu, S. W. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Appl. Catal. B: Environ., 2005, 60(3-4): 211–221.
    [35] Rengaraj, S.; Li, X. Z. Enhanced Photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension [J]. J. Mol. Catal. A: Chem., 2006, 243(1): 60–67.
    [36] Wang, C. M.; Heller, A.; Gerischer, H. Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds [J]. J. Am. Chem. Soc., 1992, 114(13): 5230–5234.
    [37] Li, F. B.; Li, X. Z. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst [J]. Chemosphere, 2002, 48(10):1103–1111.
    [38] Berkó, A.; Bíró, T.; Solymosi, F. Formation and migration of carbon produced in the dissociation of CO on Rh/TiO2 (110)-(1×2) model catalyst: a scanning tunneling microscopy study [J]. J. Phys. Chem. B, 2000, 104(11): 2506–2510.
    [39] Macak, J. M.; Barczuk, P. J.; Tsuchiya, H.; Nowakowska, M. Z.; Ghicov, A.; Chojak, M.; Bauer, S.; Virtanen, S.; Kulesza, P. J.; Schmuki, P. Self-Organized nanotobular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol [J]. Electrochem. Commun., 2005, 7(12): 1417–1422.
    [40] Hemnann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants [J]. Catal. Today, 1999, 53(2): 115–129.
    [41] Iijima, S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56–58.
    [42] Grimes, C. A. Synthesis and application of highly ordered arrays of TiO2nanotubes [J]. J. Mater. Chem., 2007, 17(15): 1451–1457.
    [43] Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells [J]. J. Electrochem. Soc., 2003, 150(8): G488–493.
    [44] Stylidi, M.; Kondarides, D. I.; Verykios, X. E. Visible light-induced photocatalytic degradation of Acid Orange in aqueous TiO2 suspensions [J]. Appl. Catal. B: Environ., 2004, 47(3): 189–201.
    [45] Hoffmann, M. R.; Martin, S. T.; Chot, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis [J]. Chem. Rev., 1995, 95(1): 69–96.
    [46] Hagfeldt, A.; Gratzel, M. Light-Induces Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995, 95 (1): 49–68.
    [47] Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M.; Shirai, M. Application of Titania Nanotubes to a Dye-sensitized Solar Cell [J]. Electrochem., 2002, 70(6): 418–420.
    [48] Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niiharab, K.; Yanagida, S. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization [J]. Phys. Chem. Chem. Phys., 2005, 7(24): 4157– 4163.
    [49] Adachi, M.; Okasa, I.; Ngamsinlapasathian, S.; Murata, Y.; Yoshikawa, S. Dye-sensitized solar cells using semicaonductor thin film compared of titania nanotubes [J]. Electrochem., 2002, 70(6): 449–452.
    [50] Rothschild, A.; Edelman, F.; Komem, Y.; Cosandey, F. Sensing behavior of TiO2 thing films exposed to air at low temperatures [J]. Sens. Actuators B: Chem., 2000, 67(3):282–289.
    [51] Varghese, O.K.; Gong, D. W.; Paulose, M.; Ong, K. O.; Dickey, E. C.; Grimes, C. A. Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure [J]. Adv. Mater., 2003, 15(7-8): 624–627.
    [52] Varghese, O. K.; Gong, D. W.; Paulose, M.; Ong, K. G.; Grimes, C. A. Hydrogensensing using titania nanotubes [J]. Sens. Actuators B: Chem., 2003, 93(1-3): 338–344.
    [53] Hoyer, P. Formation of a Titanium Dioxide Nanotube Array [J]. Langmuir, 1996, 12(6): 1411–1413.
    [54] Michailowski, A.; Al-Mawlawi, D.; Cheng, G. S.; Moskovits, M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates [J]. Chem. Phys. Lett., 2001, 349(1-2): 1–5.
    [55] Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C. Synthesis of Single-Crystalline TiO2 Nanotubes [J]. Chem. Mater., 2002, 14(3): 1391–1397.
    [56] Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S. I. Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Sol-Gel Process [J]. Chem. Mater., 2002, 14(1): 266–272.
    [57] Jung, J. H.; Kobayashi, H.; Bommel, K. J. C.; Shinkai, S.; Shimizu, T.; Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template [J]. Chem. Mater., 2002, 14(4): 1445–1447.
    [58] Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E .C. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res., 2001, 16(12): 3331–3334.
    [59] Mor, G. K.; Varghese, O. K.; Paulose, M.; Mukherjee, N.; Grimes, C. A. Fabrication of tapered, conical-shaped titania nanotubes [J]. J. Mater. Res., 2003, 18(11):2588–2593.
    [60] Zhao, J. L.; Wang, X. H.; Chen, R. Z.; Li, L. T. Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates [J]. Mater. Lett., 2005, 59(18): 2329–2332.
    [61] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of Titanium Oxide Nanotube [J]. Langmuir, 1998, 14(12): 3160–3163.
    [62] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing [J]. Adv. Mater., 1999,11(15):1307–1311.
    [63] Zhang, Q. H.; Gao, L.; Sun, J.; Zheng, S. Preparation of Long TiO2 Nanotubesfrom Ultrafine Rutile Nanocrystals [J]. Chem. Lett., 2002, 31(2):226–227.
    [64] Girginov, A. A.; Zahariev, A. S.; Machkova, M. S. Kinetics of formation of complex anodic oxide films on aluminium [J]. Mater. Chem. Phys., 2002, 76(3): 274–278.
    [65] Yakovleva, N. M.; Anicai, L.; Yakovlev, A. N.; Dima, L.; Khanina, E. Ya.; Buda, M.; Chupakhina, E. A. Structural study of anodic films formed on aluminum in nitric acid electrolyte [J]. Thin Solid Films, 2002, 416(1-2): 16–23.
    [66] Sui, Y. C.; Cui, B. Z.; Martínez, L.; Perez, R.; Sellmyer, D. J. Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film [J]. Thin Solid Films, 2002, 406(1-2): 64–69.
    [67] Mei,Y. F.; Wu, X. L.; Shao, X. F.; Huang, G. S.; Siu, G. G. Formation mechanism of alumina nanotube array [J]. Phys. Lett. A, 2003,309(1-2): 109–113.
    [68] Tsuchiya, H.; Berger, S.; Macak, J. M.; Mu?oz, A. G.; Schmuki, P. A new route for the formation of self-organized anodic porous alumina in neutral electrolytes [J]. Electrochem. Commun., 2007, 9(4): 545–550.
    [69] Tsuchiya, H.; Macak, J. M.; Taveira, L.; Schmuki, P. Fabrication and characterization of smooth high aspect ratio zirconia nanotubes [J]. Chem. Phys. Lett., 2005, 410(4-6): 188–191.
    [70] Tsuchiya, H.; Macak, J. M.; Ghicov, A.; Taveira, L.; Schmuki, P. Self-organized porous TiO2 and ZrO2 produced by anodization [J]. Corros. Sci., 2005, 47(12): 3324–3335.
    [71] Tsuchiya, H.; Schmuki, P. Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization [J]. Electrochem. Commun., 2005, 7(1) :49–52.
    [72] Tsuchiya, H.; Macak, J. M.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna,K.; Schmuki, P. Self-organized porous WO3 formed in NaF electrolytes [J]. Electrochem. Commun., 2005, 7(3): 295–298.
    [73] Choi, J.; Lim, J. H.; Lee, J.; Kim, K. J. Porous niobium oxide films prepared by anodization–annealing–anodization [J]. Nanotechnology, 2007, 18(5): 055603.
    [74] Sieber, I.; Schmuki, P. Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation [J]. J. Electrochem. Soc., 2005, 152 (9): C639–C644.
    [75] Wei, W.; Macak, J. M.; Schmuki, P. High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta [J]. Electrochem. Commun., 2008, 10(3): 428–432.
    [76] Prakasam, H. E.; Varghese, O. K.; Paulose, M.; Mor, G. K.; Grimes, C. A. Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization [J]. Nanotechnology, 2006, 17(17): 4285–4291.
    [77] Tsuchiya, H.; Hueppe, M.; Djenizian, T.; Schmuki, P.; Fujimoto, S. Morphological characterization of porous InP superlattices [J]. Sci. Technol. Adv. Mater., 2003, 5(1-2): 119–123.
    [78] Han, W. Q.; Zhou, G.; Li, J. S.; Sun, X. Y.; Li, J. S. Fabrication of Tin dioxide nanotubes by anodic oxidation [J]. J. Inorg. Mater., 2007, 22(3): 395–399.
    [79] Yasuda, K.; Schmuki, P. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes [J]. Eletrochim. Acta, 2007, 52(12): 4053–4061.
    [80] Habazaki, H.; Oikawa, Y.; Fushimi, K.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G. E. Formation of porous anodic films on Ti–Si alloys in hot phosphate-glycerol electrolyte [J]. Electrochim. Acta, 2007, 53(4): 1775–1781.
    [81] Macak, J. M.; Tsuchiya, H.; Taveira, L.; Ghicov, A.; Schmuki, P. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions [J]. J. Biomed. Mater. Res. Part A, 2005, 75A (4): 928–933.
    [82] Luo, B. M.; Yang, H. B.; Liu, S. K.; Fu, W. Y.; Sun, P.; Yuan, M. X.; Zhang, Y. Y.; Liu, Z. L. Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti–6Al–4V alloy [J]. Mater. Lett., 2008,62(30): 4512–4515.
    [83] Tsuchiya, H.; Berger, S.; Macak, J. M.; Ghicov, A.; Schmuki, P. Self-organized porous and tubular oxide layers on TiAl alloys [J]. Electrochem. Commun., 2007, 9 (9):2397–2402.
    [84] Mohapatra, S. K.; Raja, K. S.; Misra, M.; Mahajan, V. K.; Ahmadian, M.Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy [J]. Electrochim. Acta, 2007, 53(2): 590–597.
    [85] Liu, S. K.; Fu, W. Y.; Yang, H. B.; Li, M. H.; Sun, P.; Luo, B. M.; Yu, Q. J. Wei, R. H.; Yuan, M. X.; Zhang, Y. Y.; Ma, D.; Li, Y. X.; Zou, G. T. Synthesis and Characterization of Self-organized Oxide Nanotube Arrays via a Facile Electrochemical Anodization [J]. J. Phys.Chem. C, 2008, 112(50): 19852–19859.
    [86] Zwilling V. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy [J]. Surf. Interface Anal., 1999, 27(7): 629–637.
    [87] Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth Anodic TiO2 Nanotubes [J]. Angew. Chem. Int. Ed., 2005, 44(45): 7463–7465.
    [88] Beranek, R.; Hildebrand, H.; Schmuki, P. Self-organized porous Titanium oxide prepared in H2SO4/HF electrolytes [J]. Electrochem. Solid-State Lett., 2003, 6 (3): B12–B14.
    [89] Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P. Titanium oxide nanotubes prepared in phosphate electrolytes [J]. Electrochem. Commun., 2005, 7(5): 505–509.
    [90] Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J]. J. Mater. Res., 2005, 20 (1): 230–235.
    [91] Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes [J]. Nanotechnology, 2006, 17(2): 398–402.
    [92] Taveira, L. V.; Macák, J. M.; Tsuchiya, H.; Dick, L. F. P.; Schmuki, P. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes [J]. J. Electrochem. Soc., 2005, 152 (10): B405–B410.
    [93] Macak, J. M.; Sirotna, K.; Schmuki, P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes [J]. Electrochim. Acta, 2005, 50(18):3679–3684.
    [94] Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications [J]. Sol. Energy Mater. Sol. Cells, 2006, 90(14): 2011–2075.
    [95] Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134μm in Length [J]. J. Phys. Chem. B, 2006, 110(3): 16179–16184.
    [96] Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology, 2007, 18(6): 065707.
    [97] Albu, S. P.; Ghicov, A.; Macak, J. M.; Schmuki, P. 250μm long anodic TiO2 nanotubes with hexagonal self-ordering [J]. Phys. Stat. Sol., 2007, 1(2): R65–R67.
    [98] Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. A new benchmark for TiO2 nanotube growth by anodization [J]. J. Phys. Chem. C, 2007, 111(20):7235–7241.
    [99] Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A. TiO2 nanotube arrays of 1000μm length by anodization of titanium foil: phenol red diffusion [J]. J. Phys. Chem. C, 2007, 111(41): 14992–14997.
    [100] Hahn, R.; Macak, J. M.; Schmuki, P. Rapid anodic TiO2 and WO3 nanotubes in fluoride free electrolytes [J]. Electrochem. Commu., 2007, 9(5): 947–952.
    [101] Chen, X. B.; Schriven, M.; Suena, T.; Mao, S. S. Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization [J]. Thin Solid Film, 2007, 515(24): 8511–8514.
    [102] Allam, N. K.; Shankar, K.; Grimes, C. A. Photoelectrochemicaland waterphotoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes [J]. J. Mater. Chem., 2008, 18(20):2341–2348.
    [103] Onoda, K.; Yoshikaw, S. Effect of electrolysis conditions on photocatalytic activities of the anodized TiO2 films [J]. J. Solid State Chem., 2007, 180(12):3425–3433.
    [104] Capek, D.; Gigandet, M.-P.; Masmoudi, M.; Wery, M.; Banakh O. Long-time anodisation of titanium in sulphuric acid [J]. Surf. Coat. Technol., 2008, 202(8): 1379–1384.
    [105] Wang, S.; Wu, X. H.; Qin, W.; Jiang, Z. H. Optoelectronic properties of TiO2 films prepared by microplasma oxidation method [J]. Mater. Lett., 2008, 62(6-7): 1078–1081.
    [106] Brunella, M. F.; Diamanti, M.V.; Pedeferri, M. P.; Fonzo, F. D.; Casari, C. S.; Bassi, A. L. Photocatalytic behavior of different titanium dioxide layers [J]. Thin Solid Films, 2007, 515(16): 6309–6313.
    [107] Iwata, T.; Ishikawa, M.; Ichino, R.; Okido, M. Photocatalytic reduction of Cr(VI) on TiO2 film formed by anodizing [J]. Surf. Coat. Technol., 2003, 169-170: 703–706.
    [108] Zorn, G.; Lesman, A.; Gotman, I. Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation [J]. Surf. Coat. Technol., 2006, 201(3-4): 612–618.
    [109] Onoda, K.; Yoshikawa, S. Applications of anodized TiO2 films for environmental purifications [J]. Appl. Catal. B: Environ., 2008, 80(3-4): 277–285.
    [110] Mato, S.; Alcalá, G.; Skeldon, P.; Thompson, G. E.; Mann, A. B.; Masheder, D.; Habazaki, H.; Shimizu, K. Dielectric and mechanical properties of anodic films in the Ta-Ti system [J]. Surf. Interface Anal., 2003, 35(5): 477–482.
    [111] Onoda, K.; Yoshikawa, S. Effect of pre-nitridation treatment on the formation of anatase TiO2 films by anodization [J]. Ceram. Int., 2008, 34(6): 1453–1457.
    [112] Oh, H. J.; Lee, J. H.; Kim, Y. J.; Suh, S. J.; Lee, J. H.; Chi, C. S. Surface characteristics of porous anodic TiO2 layer for biomedical applications [J]. Mater. Chem. Phys., 2008, 109(1): 10–14.
    [113]许振明,徐孝勉.铝和镁的表面处理[M].上海:上海科学技术文献出版社, 2005. 129–131.
    [114] Su, Y. T.; Johansson C. B.; Jeong, Y.; Albrektsson, T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes [J]. Med. Eng. Phys., 2001, 23(5): 329–346.
    [115] Zhao, J. L.; Wang, X. H.; Chen, R. Z.; Li, L. T. Fabrication of titanium oxide nanotube arrays by anodic oxidation [J]. Solid State Commun., 2005, 134(10):705–710.
    [116] Raja, K. S.; Misra, M.; Paramguru, K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium [J]. Eletrochim. Acta, 2005, 51(1): 154–165.
    [117] Mor, G. K.; Varghese, O. K.; Paulose, M.; Ong, K. G.; Grimes, C. A. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements [J]. Thin Solid Films, 2006, 496(1): 42–48.
    [118] Ghicov, A.; Schmidt, B.; Kunze, J.; Schmuki, P. Photoresponse in the visible range from Cr doped TiO2 nanotubes [J]. Chem. Phys. Lett., 2007, 433(4-6): 323–326.
    [119] Lei, L. C.; Su, Y. L.; Zhou, M. H.; Zhang, X. W.; Chen, X. Q. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte [J]. Mater. Res. Bull., 2007, 42(12): 2230–2236.
    [120]李静,云虹,林昌健.铁掺杂TiO2纳米管阵列对不锈钢的光生阴极保护[J].物理化学学报, 2007, 23 (12) : 1886–1892.
    [121] Zhang, W. Y.; Li G. Z.; Li, Y. N.; Yu, Z. T.; Xi, Z. P. Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties [J]. Trans. Nonferrous Met. Soc. China, 2007, 17(S1): S692–S695.
    [122] Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.;Schmuki, P. Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes [J]. Nano Lett., 2006, 6 (5): 1080–1082.
    [123] Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H.; Dick, L. F. P.; Schmuki, P. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia [J]. Electrochem. Commun., 2006, 8(4): 544–548.
    [124] Hahn, R.; Ghicov, A.; Salonen, J.; Lehto, V.-P.; Schmuki, P. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment [J]. Nanotechnology, 2007, 18(10): 105604.
    [125] Shankar, K.; Paulose, M.; Mor, G. K.; Varghese, O. K.; Grimes, C. A. A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays [J]. J. Phys. D: Appl. Phys., 2005, 38(18): 3543–3549.
    [126] Tang, X. H.; Li, D. Y. Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response [J]. J. Phys. Chem. C, 2008, 112 (14): 5405–5409.
    [127] Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water [J]. J. Catal., 2007, 246(2): 362–369.
    [128] Xu, C. K.; Shaban, Y. A.; Ingler Jr., W. B.; Khan, S. U. M. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting [J]. Sol. Energy Mater. Sol. Cells, 2007, 91(10): 938–943.
    [129] Su, Y. L.; Zhang, X. W.; Han, S.; Chen, X. Q.; Lei, L. C. F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition [J]. Electrochem. Commun., 2007, 9(9): 2291–2298.
    [130] Shankar, K.; Tep, K. C.; Mor, G. K.; Grimes, C. A. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties [J]. J. Phys. D: Appl. Phys., 2006, 39(11): 2361–2366.
    [131] Su, Y. L.; Zhang, X. W.; Zhou, M. H.; Han, S.; Lei, L. C. Preparation of highefficient photoelectrode of N–F-codoped TiO2 nanotubes [J]. J. Photochem. Photobiol. A: Chem., 2008, 194(2-3): 152–160.
    [132] Kim, D.; Fujimoto, S.; Schmuki, P.; Tsuchiya, H. Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys [J]. Electrochem. Commun., 2008, 10(6): 910–913.
    [133] Lu, N.; Quan, X.; Li, J.Y.; Chen, S.; Yu, H. T.; Chen, G. H. Fabrication of Boron-doped TiO2 nanotube array eElectrode and investigation of its photoelectrochemical capability [J]. J. Phys. Chem. C, 2007, 111(32): 11836–11842.
    [134] Li, J. Y.; Lu, N.; Quan, X.; Chen, S.; Zhao, H. M. Facile Method for Fabricating Boron-Doped TiO2 Nanotube Array with Enhanced Photoelectrocatalytic Properties [J]. Ind. Eng. Chem. Res., 2008, 47 (11): 3804–3808.
    [135] Chen, S.; Paulose, M.; Ruan, C.; Mor, G. K.; Varghese, O. K.; Kouzoudis, D.; Grimes, C. A. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells [J]. J. Photochem. Photobio. A: Chem., 2006, 177(2-3): 177–184.
    [136] Yin, Y. X.; Jin, Z. G.; Hou, F. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays [J]. Nanotechnology, 2007, 18(49):495608
    [137] Banerjee, S.; Mohapatra, S. K.; Das, P. P.; Misra, M. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS,Chem. Mater., 2008, 20 (21): 6784–6791.
    [138] Si, H.Y.; Sun, Z. H.; Zhang, H. L. Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes [J]. Colloids and Surfaces A: Pysicochem. Eng. Aspects, 2008, 313-314: 604–607.
    [139] Seabold, J. A.; Shankar, K. K.; Wilke, R. H. T.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Choi, K. S. Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 vanotube arrays [J].Chem. Mater., 2008, 20 (16): 5266–5273.
    [140] Xie,Y. B. Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules [J]. Nanotechnology, 2006, 17(14): 3340–3346.
    [141] Park, J. H.; Park, O. O.; Kim, S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide [J]. Appl. Phys. Lett., 2006, 89(16):163106.
    [142] Nah, Y. C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. TiO2-WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties[J]. J. Am. Chem. Soc., 2008, 130(48):16154–16155.
    [143] Kontos, A. I.; Likodimos, V.; Stergiopoulos, T.; Tsoukleris, D. S.; Falaras, P. Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles [J]. Chem. Mater., 2009, 21(4): 662–672.
    [144] Mohapatra, S. K.; Banerjee, S.; Misra, M. Synthesis of Fe2O3/TiO2 nanorod–nanotube arrays by filling TiO2 nanotubes with Fe [J]. Nanotechnology, 2008, 19(31): 315601.
    [145] Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation [J]. Environ. Sci. Technol., 2009, 43(3): 858-863.
    [146] Wang, Q.; Zhu, K.; Neale, N. R.; Frank, A. J. Constructing Ordered Sensitized Heterojunctions: Bottom-Up Electrochemical Synthesis of p-Type Semiconductors in Oriented n-TiO2 Nanotube Arrays [J]. Nano Lett., 2009, 9 (2): 806–813.
    [147] Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced Photocleavage of Water Using Titania Nanotube Arrays [J]. Nano Lett., 2005, 5(1): 191–195.
    [148] Paulose, M.; Mor, G. K.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays [J]. J. Photoch. Photobio. A: Chem., 2006, 178(1): 8–15.
    [149] Park, J. H.; Kim, S.; Bard, A. J. Novel carbon–doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano Lett., 2006, 6(1) : 24–26.
    [150] Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2-xCx Nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode [J]. J. Phys. Chem. C, 2007, 111(24): 8677–8685.
    [151] Xie, Y. B. Photoelectrochemical application of nanotubular titania photoanode [J]. Electrochem. Acta, 2006, 51(17): 3399–3402.
    [152] Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M. Preparation of titania nanotubes and their environmental applications as electrode [J]. Environ. Sci. Technol., 2005, 39(10): 3770–3775.
    [153] Zhang, Z. H.; Yuan, Y.; Shi, G. Y.; Fang, Y. J.; Liang, L. H.; Ding, H. C.; Jin, L. T. Photoelectroc atalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation [J]. Environ. Sci. Technol., 2007, 41(17): 6259–6263.
    [154] Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A: Chem., 2004, 164(1-3): 3–14.
    [155] Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells [J]. J. Phys. D: Appl. Phys., 2006, 39(21): 2498–2503.
    [156] Macák, J. M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. Dye-sensitized anodic TiO2 nanotubes [J]. Electrochem. Commun., 2005, 7(11): 1133–1137.
    [157] Wang, H.; Yip, C. T.; Cheung, K. Y.; Djuri?i?, A. B.; Xie, M. H.; Leung,Y. H.; Chan, W. K. Titania-nanotube-arraybased photovoltaic cells [J]. Appl. Phys. Lett., 2006, 89(2): 023508.
    [158] Paulose, M.; Shanker, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Backside illuminated dye-sensitized solar cells based on titania nanotube arrayelectrodes [J]. Nanotechnology, 2006, 17(5): 1446–1448.
    [159] Mor, G. K.; Shankar, K.; Varghese, O. K.; Grimes, C. A. Photoelectrochemical properties of titania nanotubes [J]. J Mater. Res., 2004,19(10): 2989-2996.
    [160] Grimes, C. A.; Ong, K. G.; Varghese, O. K.; Yang, X. P.; Mor, G.; Paulose, M.; Dickey, E. C.; Ruan, C. M.; Pishko, M. V.; Kendig, J. W.; Mason, A. J. A sentinelsensor network for hudrogen sensing [J]. Sens., 2003, 3(3): 69–73.
    [161] Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. A room- temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination [J]. J. Mater. Res., 2004, 19 (2): 628–633.
    [162] Oh, S.-H.; Fin?nes, R. R.; Daraio, C.; Chen, L.-H.; Jin, S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes [J]. Biomater., 2005, 26(24):4938–4943.
    [163] Prida, V. M.; Hernández-Vélez, M.; Pirota, K. R.; Menéndez, A.; Vázquez, M. Synthesis and magnetic properties of Ni nanocylinders in self-aligned and randomly disordered grown titania nanotubes [J]. Nanotechnology, 2005, 16(11): 2696–2702.
    [164] Vega, V.; Prida, V. M.; Hernández-Vélez, M.; Manova, E.; Aranda, P.; Ruiz-Hitzky, E.; Vázquez, M. Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores [J]. Nanoscale Res. Lett., 2007, 2(7): 355–363.
    [165] Roy, S. C.; Paulose, M.; Grimes,C. A. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage [J]. Biomater., 2007, 28(31): 4667–4672.
    [166] Zheng, Q.; Zhou, B.; Bai, J.; Li, L.; Jin, Z.; Zhang, J.; Li, J.; Liu, Y.; Cai, W.; Zhu, X. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand [J]. Adv. Mater., 2008, 20(5): 1044–1049.
    [167] Xie, Y. B.; Zhou, L. M.; Huang, H. T. Bioelectrocatalytic application of titania nanotube array for molecule detection [J]. Biosens. Bioelectron., 2007, 22(12):2812–2818.
    [168] Varghese, O. K.; Paulose, M.; Shankar, K.; Mor, G. K.; Grimes, C. A. Water-Photolysis Properties of Micron-Length Highly-Ordered Titania Nanotube-Arrays [J]. J. Nanosci. Nanotech., 2005, 5(7): 1158–1165.
    [169] Pleskov, Y. V.; Krotova, M. D. Photosplitting of water in a photoelectrolyser with solid polymer electrolyte [J]. Electrochim. Acta, 1993, 38 (1): 107–109.
    [170] Oliva, F. Y.; Avalle, L. B.; Santos, E.; Camara, O. R. Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates [J]. J. Photochem. Photobiol. A: Chem., 2002,146 (3): 175–188.
    [171] Ruan, C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte [J]. J. Phys. Chem. B, 2005, 109(33): 15754–15759.
    [172] Albu, S. P.; Ghicov, A.; Macak, J. M.; Schmuki, P. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications [J]. Nano Lett., 2007, 7(5): 1286–1289.
    [173] Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Lett., 2007, 7(1): 69–74.
    [174] Macak, J. M.; Tsuchiya, H.; Schmuki, P. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium [J]. Angew. Chem, Int. Ed., 2005, 44(14): 2100–2102.
    [175] Bauer, S.; Kleber, S.; Schmuki, P. TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes [J]. Electrochem. Commun., 2006, 8(8): 1321–1325.
    [176] Varghese, O. K.; Paulouse, M.; Gong, D.; Grimes, C. A.; Dickey, E. C. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J]. J. Mater. Res., 2003, 18(1): 156-165.
    [177] Bahnemann, D. W.; Dillert, R.; Robertson, P. K. J. Photocatalysis:Initial Reaction Steps, in Chemical Physics of Nanostructured Semiconductors, Chapter 7; Kokorin, A. I., Bahnemann, D. W.,Eds.; VSP BS: Eindhoven, The Netherlands, 2003.
    [178] Zhuang, H.F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity [J]. Environ. Sci. Technol., 2007, 41 (13): 4735–4740.
    [179] Feng, X. J.; Macak, J. M.; Schmuki P., Robust self-organization of oxide nanotubes over a wide pH range [J]. Chem. Mater., 2007, 19 (7): 1534–1536.
    [180] Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J], Nano Lett., 2006, 6(2): 215–218.
    [181] Ghicov, A.; Aldabergerova, S.; Tsuchiya, H.; Schmuki, P. TiO2-Nb2O5 Nanotubes with Electrochemically Tunable Morphologies [J]. Angew. Chem. Int. Ed., 2006, 45(42): 6993–6996.
    [182] Yasuda, K.; Schmuki, P. Formation of self-organized zirconium titanate nanotube layers by alloy anodization [J]. Adv. Mater., 2007, 19(13): 1757–1760.
    [183] Feng, X. J.; Macak, J. M.; Schmuki, P. Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy [J]. Electrochem. Commun., 2007, 9(9): 2403–2407.
    [184] Ghicov, A.; Aldabergenova, S.; Tsuchyia, H.; Schmuki, P. TiO2–Nb2O5 nanotubes with electrochemically tunable morphologies [J]. Angew. Chem. Int. Ed., 2006, 45(42): 6993–6996.
    [185] Feng, X. J.; Macak, J. M.; Albu, S. P.; Schmuki, P. Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface [J]. Acta Biomater., 2008, 4(2): 318–323.
    [186] Tsuchiya, H.; Macak, J. M.; Ghicov, A.; Schmuki, P. Self-Organization of Anodic Nanotubes on Two Size Scales [J]. Small, 2006, 2(7): 888–891.
    [187] Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Vertically oriented Ti?Fe?O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis [J]. Nano Lett., 2007, 7 (8): 2356–2364.
    [188] Mor, G. K.; Varghese, O. K.; Wilke, R. H. T.; Sharma, S.; Shankar, K.; Latempa, T. J.; Choi, K.-S.; Grimes, C. A. p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation [J]. Nano Lett., 2008, 8 (7): 1906–1911.
    [189] Klosek, S.; Raftery, D. Visible light driven V-doped TiO2 photocatalyst and its photo- oxidation of ethanol [J]. J. Phys. Chem. B, 2001, 105(14): 2815–2819.
    [190] Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 [J]. Catal. Today, 2003, 84(3-4): 191–196.
    [191] Sung-Suh, H. M.; Choi, J. R.; Hah, H. J.; Koo, S. M.; Bae, Y. C. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation [J]. J. Photochem. Photobiol. A: Chem., 2004, 163(1-2): 37–44.
    [192] Strehlow, W. H.;Cook, E. L. Compilation of energy band gaps in elemental and binary compound semiconductors and insulators [J]. J. Phys. Chem. Ref. Data, 1973, 2(1): 163–199.
    [193] Beranek, R.; Tsuchiya, H.; Sugishima, T.; Macak, J. M.; Taveira, L.; Fujimoto, S.; Kisch, H.; Schmuki, P. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes[J]. Appl. Phys. Lett., 2005, 87(24): 243114.
    [194] Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations [J]. J. Phys. Chem. Solids, 2002, 63(10): 1909?1620.
    [195] Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J. Catal., 2003, 216(1-2): 505?516.
    [196] Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumur, M.Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A: General, 2004, 265(1): 115?121.
    [197] Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping [J]. Appl. Phys. Lett., 2002, 81(3) : 454–456.
    [198] Lin, L.; Lin, W.; Zhu, Y.; Zhao, B.; Xie, Y. Phosphor-doped titania a novel photocatalyst active in visible light [J]. Chem. Lett., 2005, 34(3): 284–285.
    [199] Wu, G. S.; Wang, J. P.; Thomas, D. F.; Chen, A. C. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity[J]. Langmuir, 2008, 24(7):3503–3509
    [200] Zhou, J. K.; Lv, L.; Yu, J. Q.; Li, H. L.; Guo, P. Z.; Sun, H.; Zhao, X. S. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light[J]. J. Phys. Chem. C, 2008, 112(14):5316–5321.
    [201] Umebayashi, T.; Yamaki, T.; Yamamoto, S.; Miyashita, A.; Tanaka, S.; Sumita, T.; Asai, K. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies [J]. J. Appl. Phys., 2003, 93(9):5156–5160.
    [202] Zhang, Q.W.; Wang, J.; Yin, S.; Sato, T.; Saito, F. Synthesis of a visible-light active TiO2-xSx photocatalyst by means of mechanochemical doping [J]. J. Am. Ceram. Soc., 2004, 87(6): 1161?1163.
    [203] Yang, H. B.; Liu, S. K.; Li, J. X.; Li, M. H.; Peng, G.; Zou, G. T. Synthesis of inorganic fullerene-likeWS2 nanoparticles and their lubricating performance [J]. Nanotechnology, 2006, 17(5): 1512–1519.
    [204] Sayago, D. I.; Serrano, P.; B?hme, O.; Goldoni, A.; Paolucci, G.; Román, E.; Martin-Gago, J. A. Adsorption and desorption of SO2 on the TiO2(110)-(1×1) A photoemission study surface: A photoemission study [J]. Phys. Rev. B, 2001, 64: 205402.
    [205] Sayago, D. I.; Serrano, P.; B?hme, O.; Goldoni, A.; Paolucci, G.; Román, E.;Martin-Gago, J. A. A photoemission study of the SO2 adsorption on TiO2 (110) surfaces [J]. Surf. Sci., 2001, 482–485(Part 1): 9–14.
    [206] Gonbeau, D.; Guimon, C.; Pfisterguillouzo, G.; Levasseur, A.; Meunier, G.; Dormoy, R. XPS study of thin films of titanium oxysulfides [J]. Surf. Sci., 1991, 254(1-3): 81–89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700