核基质蛋白在人肝癌SMMC-7721细胞诱导分化过程中的变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以环六亚甲基双乙酰胺(HMBA)处理人肝癌SMMC-7721细胞,鉴定HMBA对人肝癌SMMC-7721细胞的诱导分化效果。在此基础上,综合应用蛋白质组学、免疫细胞化学、细胞分子生物学等技术,对SMMC-7721细胞诱导分化前后核基质蛋白表达变化进行系统研究,分析鉴定和确证与肿瘤细胞增殖分化相关的特异核基质蛋白,并研究特异核基质蛋白与人肝癌细胞相关癌基因、抑癌基因产物在细胞内的共定位关系与变化,探索它们在肿瘤细胞诱导分化过程中的调控作用。以期能够在较为整体的水平上阐明肝癌细胞诱导分化的调控机制,并进一步认识细胞癌变与逆转机理和细胞增殖与分化的调控原理问题。
     实验结果显示,5 mmol/L HMBA对人肝癌SMMC-7721细胞的增殖活动具有抑制作用,诱导处理7天后,细胞生长抑制率达50%,细胞倍增时间延长1.8倍,G_0/G_1期细胞比例由40.6%上升为70.6%,S期细胞比例由27.4%下降为6.9%,细胞周期被阻滞于G_0/G_1期;光镜和电镜观察结果显示,经5 mmol/LHMBA处理后的SMMC-7721细胞出现核质比减小,细胞体积增大,细胞表面微绒毛减少,细胞核形态趋于规则,核仁数目减少,核内异染色质减少,常染色质增多,线粒体嵴数目增多,内质网和高尔基体更为典型、发达等变化;免疫细胞化学检测结果显示,经诱导处理后,SMMC-7721细胞内癌基因c-fos、c-myc、c-erbB-2、bcl-2以及mtp53表达产物减少,抑癌基因Rb、p21、p27表达产物增多;选择性抽提整装光镜和电镜观察显示,经HMBA处理的SMMC-7721细胞核基质纤维和中间纤维数量和层次更加丰富,分布更为均匀,单丝成份增多,与核纤层连系更为紧密,形成贯穿整个核质区域的较为规则的纤维网络;双向凝胶电泳与MALDI-TOF质谱分析共鉴定出9个在HMBA诱导分化前后差异表达的核基质蛋白,其中表达上调的有4个,分别是p27~(BBP)、BTF2-p44 subunit、tubulin beta 2C、sin3b;表达下调的有4个,分别是突变型pystl、DKFZp434K1815 variant、laminin-binding protein、nucleophosmin:新出现的一个蛋白是SFRS1;蛋白印迹杂交、免疫荧光显微镜和免疫胶体金标记电镜观察确证了nucleophosmin和prohibitin在SMMC-7721细胞诱导分化前后细胞核基质中的表达变化及其在核基质上的定位;激光共聚焦显微镜观察显示nucleophosmin和prohibitin与癌基因c-myc、c-fos和抑癌基因p53、Rb表达产物在细胞内均存在一定的共定位关系,并且它们的表达水平和细胞定位在诱导分化前后发生了变化。
     研究结果表明,5 mmol/L HMBA能有效抑制人肝癌SMMC-7721细胞的增殖活动,改变SMMC-7721细胞形态与超微结构特征,下调癌基因c-los、c-myc、c-erbB-2、bcl-2、mtp53和上调抑癌基因Rb、p21、p27等的表达,从而对人肝癌细胞的分化具有显著诱导效果。在SMMC-7721细胞分化过程中,其核基质.中间纤维系统构型产生了与正常细胞相似的恢复性变化,并且出现了多种差异表达的核基质蛋白,其中nucleophosmin和prohibitin为不同诱导分化物诱导多种肿瘤细胞后出现的共同差异核基质蛋白。而nucleophosmin和prohibitin与c-Myc、c-Fos、pRb、mtp53等均存在共定位关系并在SMMC-7721细胞分化过程中出现分布和位移变化的现象。由此证实了HMBA能够干预SMMC-7721细胞相关癌基因、抑癌基因的活性,改变一些与基因表达调控和细胞信号转导相关的重要核基质蛋白的表达,进而阻滞细胞周期,促使人肝癌细胞分化。这为我们在较为整体的水平上深入研究肿瘤细胞诱导分化的调控机制以及阐明细胞癌变与逆转机理提供了科学依据和探索的新方向,并为肿瘤的诊断和抗癌药物的开发提供潜在的靶向性蛋白。
In this study,5mmol/L hexamethylene biacetamide(HMBA ) was used to induce the differentiation of human hepatocarcinoma SMMC-7721 cells,and its effects were examined.On this base,by use of the methods of subcellular proteomics, immunocytochemistry and molecular biology,we studied systematically the changes of nuclear matrix proteins during differentiation of SMMC-7721 cells induced by HMBA,analysed their co-localizational relationship with products of related oncogenes and tumor suppressor genes,and speculated their functions to the induced differentiation of SMMC-7721 cells.It's useful for us to find out the role of differential expressed nuclear matrix proteins on induced differentiation of tumor cell and explore the molecular mechanisms of carcinogenesis and malignant phenotypic reversion in a relatively systematical level.
     The results revealed that the proliferation of SMMC-7721 cells were inhibited after 7 days of treatment by HMBA.The reduplication time ratio of treated cells to untreated cells was 1.8.The percentage of cells in G_0/G_1 phase increased from 40.6% to 70.6%while decreased from 27.4%to 6.9%in S phase.The cell cycle of SMMC-7721 cells were arrested in G_0/G_1 obviously.Light and electric microscope observation had showed that after treated with 5 mmol/L HMBA,the ratio of nuclear to cytoplasm lessened,the volume of cell increased,the number of nucleoli decreased. The number of microvilli and the heterochromatin decreased while euchromatin and free ribosomes increased.The endoplasmic reticulum,mitochondfion and golgi body all developed.It was revealed by immunocytochemistry assay that the expression level of oncogenes including c-myc,c-fos,c-erbB-2,bcl-2,mtp53 were downregnlated,while the expression level of tumor suppressor genes such as Rb,p21 and p27 were upregulated.By cellular selective extaction and whole-mount SEM/TEM observation,we found that after HMBA inducement,the NM-IF filaments of SMMC-7721 cells were concentrated and distributed uniformly.The heterogeneous population of filaments,including highly branched utrathin filaments could also be seen in the regular meshwork.The connection between the two kinds of filaments and the relatively thin,condensed and sharply demarcated lamina composed of intermediate-sized filaments was relatively fastened.Meanwhile,9 NM proteins changed remarkably during SMMC-7721 cell differentiation.Four proteins,i.e. mutant pystl,hypothetical protein,nucleophosmin,and LBP were downregulated, whereas four other proteins,eIF6,p44 subunit,β-tubulin 2C,and sin3b were upregulated with the last one,SFRS1 only found in the differentiated SMMC-7721 cells.Two proteins-nucleophosmin and prohibitin had been found existed and localized in the nuclear matrix,as well as its altered expression,by use of western blot, immunofluorescence staining and immune electron microscopy analysis.It also showed that nucleophosmin and prohibitin were colocalized with oncogene c-fos and c-myc products,as well as tumor suppressor gene mtp53 and Rb products.Both of their expression level and localization changed during the differentiation of SMMC-7721 cells.
     It is concluded that the human hepatocarcinoma SMMC-7721 cells could be induced into differentiation by treatment with HMBA,the malignant morphological and ultrastructural characteristics were reversed,the configuration and composition of nuclear matrix was altered.Some nuclear matrix proteins which were importantant to gene expression and regulation or cell signal transduction have changed in their expression level and subcellular localization during the differentiation.The colocalization of nucleophosmin and prohibitin with products of related oncogenes such as c-myc,c-los and tumor suppressor genes such as Rb,p53 suggested the pathway and mechanisms in which specific nuclear matrix proteins regulated the proliferation and differentiation of the human hepatocarcinoma SMMC-7721 cells. These results indicated that HMBA could interfere the activities of some oncogenes and tumor suppressor genes,regulate the expression of important nuclear matrix proteins,then cause cell cycle arrest,and induce human hepatocarcinoma cells into differentiation.Our study provides proofs and a new way to explore the mechanisms of induced differentiation of tumor cells and cell carcinogenesis and its reversion. Besides,this study provides several potential target proteins for cancer diagnosis and cancer therapy.
引文
[1]Scott RE.Differentiation,differentiation/gene therapy and cancer[J].Pharmacol Ther.1997:73(1):51-65.
    [2]Lynch RG.Differentiation and cancer:the conditional autonomy of phenotype[J].Proc Natl Acad Sci USA.1995:92(3):647-8.
    [3]Flickinger RA.Induction of tumor cell differentiation[J].Differentiation.2000;65(5):241-5.
    [4]Ponzielli R,Katz S,Barsyte-Lovejoy D,et al.Cancer therapeutics:targeting the dark side of Myc[J].Eur J Cancer.2005:41(16):2485-501.
    [5]Pelengaris S,Khan M,Evan G.c-MYC:more than just a matter of life and death[J].Nat Rev Cancer.2002:2(10):764-76.
    [6]Pelengaris S,Khan M.The many faces of c-MYC[J].Arch Biochem Biophys.2003:416(2):129-36.
    [7]Chen JP,Chen L,Leek J,et al.Antisense c-myc fragments induce normal differentiation cycles in HL-60 cells[J].Eur J Clin Invest.2006:36(1):49-57.
    [8]Frostesjo L,Heby O.Polyamine depletion up-regulates c-Myc expression,yet induces G(1)arrest and terminal differentiation of F9 teratocarcinoma stem cells[J].J Cell Biochem.1999;76(1):143-52.
    [9]Eriksson M,Taskinen M,Lepp(a|¨) S.Mitogen activated protein kinase-dependent activation of c-Jun and c-Fos is required for neuronal differentiation but not for growth and stress response in PC12 cells[J].J Cell Physiol.2007;210(2):538-48.
    [10]Weaver AM,McCabe M,Kim I,et al.Epidermal growth factor and platelet-derived growth factor-BB induce a stable increase in the activity of low density lipoprotein receptor-related protein in vascular smooth muscle cells by altering receptor distribution and recycling[J].J Biol Chem.1996;271(40):24894-900.
    [11]Collado B,Sanchez MG,Diaz-Laviada I,et al.Vasoactive intestinal peptide(VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+signalling.Implications in angiogenesis and neuroendocrine differentiation[J].Biochim Biophys Acta.2005;1744(2):224-33.
    [12]Young MR,Yang HS,Colburn NH.Promising molecular targets for cancer prevention:AP-1, NF-kappa B and Pdcd4[J].Trends Mol Med.2003;9(1):36-41.
    [13]Teitelbaum SL.RANKing c-Jun in osteoclast development[J].J Clin Invest.2004;114(4):463-5.
    [14]Crespo P,Leon J.Rasproteins in the control of the cell cycle and cell differentiation[J].Cell Mol Life Sci.2000;57(11):1613-36.
    [15]Scheele JS,Ripple D,Lubbert M.The role of ras and other low molecular weight guanine nucleotide(GTP)-binding proteins during hematopoietic cell differentiation[J].Cell Mol Life Sci.2000;57(13-14):1950-63.
    [16]Weber MJ,Gioeli D.Ras signaling in prostate cancer progression[J].J Cell Biochem.2004;91(1):13-25.
    [17]Shinohara N,Koyanagi T.Ras signal transduction in carcinogenesis and progression of bladder cancer:molecular target for treatmant?[J].Urol Res.2002;30(5):273-81.
    [18]Paris M,Wang WH,Shin MH,et al.Homeodomin transcription factor Phox2a,via cyclic AMP-mediated activation,induces p27Kip1 transcription,coordinating neural progenitor cell cycle exit and differentiation[J].Mol Cell Biol.2006;26(23):8826-39.
    [19]Huang H,Chang EJ,Ryu J,et al.Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway[J].Biochem Biophys Res Commun.2006;351(1):99-105.
    [20]Huang S,Shen Q,Mao WG,et al.JWA,a novel signaling molecule,involved in the induction of differentiation of human myeloid leukemia cells[J].Biochem Biophys Res Commun.2006;341(2):440-50.
    [21]Mansukhani A,Ambrosetti D,Holmes G,et al.Sox2 induction by FGF and FGFR2 activating mutations inhibits Writ signaling and osteoblast differentiation[J].J Cell Biol.2005;168(7):1065-76.
    [22]Yen A,Norman AW Varvayanis S.Nongenomic vitamin D3 analogs activating ERK2 in HL-60 cells show that retinoic acid-induced differentiation and cell cycle arrest require early concurrent MAPK and RAR and RXR activation[J].In Vitro Cell Dev Blol Anim.2001;37(2):93-9.
    [23]Zhao Q,Tao J,Zhu Q,et al.Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation[J].Leukemia.2004;18(2):285-92.
    [24]Singh RP,Agarwal R.Mechanisms of action of novel agents for prostate cancer chemoprevention[J].Endocr Relat Cancer.2006;13(3):751-78.
    [25]Bertagnolli MM.Chemoprevention of colorectal cancer with cyclooxygenase-2 inhibitors:two steps forward,one step back[J].Lancet Oncol.2007;8(5):439-43.
    [26]Sporn MB,Liby KT.Cancer chemoprevention:scientific promise,clinical uncertainty[J].Nat Clin Pract Oncol.2005;2(10):518-25.
    [27]Schroder O,Turak S,Daniel C,et al.gpregulation of 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase by butyrate in Caco-2 cells[J].World J Gastroenterol.2005;11(45):7136-41.
    [28]Ikezoe T,Hisatake Y,Takeuchi T,et al.HIV-1 protease inhibitor,ritonavir:a potent inhibitor of CYP3A4,enhanced the anticancer effects of docetaxel in androgen-independent prostate cancer cells in vitro and in vivo[J].Cancer Res.2004;64(20):7426-31.
    [29]Brynczka C,Labhart P,Merrick BA.NGF-mediated transcriptional targets of p53 in PC12neuronal differentiation[J].BMC Genomics.2007;8:139.
    [30]Rocha AS,Soares P,Fonseca E,et al.E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas[J].Histopathology.2003;42(6):580-7.
    [31]Phan VT,Shultz DB,Truong BT,et al.Cooperation of cytokine signaling with chimeric transcription factors in leukemogenesis:PML-retinoic acid receptor alpha blocks growth factor-mediated differentiation[J].Mol Cell Biol.2003;23(13):4573-85.
    [32]Seil I,Frei C,Sültmann H,et al.The differentiation antigen NY-BR-1 is a potential target for antibody-based therapies in breast cancer[J].Int J Cancer.2007;120(12):2635-42.
    [33]Kawamata H,Fujimori T,Imai Y.TSC-22(TGF-beta stimulated clone-22):a novel molecular target for differentiation-inducing therapy in salivary gland cancer[J].Curt Cancer Drug Targets.2004;4(6):521-9.
    [34]Huang S,Wikswo J.Dimensions of systems biology[J].Rev Physiol Biochem Pharmacol.2006;157:81-104.
    [35]Bruggeman FJ,Westerhoff HV.The nature of systems biology[J].Trends Microbiol.2007;15(1):45-50.
    [36]Armstrong JD,Pocklington AJ,Cumiskey MA,et al.Reconstructing protein complexes:from proteomics to systems biology[J]. Proteomics. 2006;6(17):4724-31.
    [37] Mittal V, Nolan DJ. Genomics and proteomics approaches in understanding tumor angiogenesis[J]. Expert Rev Mol Diagn. 2007;7(2):133-47.
    [38] Chuthapisith S, Layfield R, Kerr ID, et al. Principles of proteomics and its applications in cancer [J]. Surgeon. 2007;5(1): 14-22.
    [39] Berezney R. The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus[J]. J Cell Biochem. 1991;47(2):109-23.
    [40] Verheijen R, van Venrooij W, Ramaekers F. The nuclear matrix: structure and composition[J]. J Cell Sci. 1988;90(Pt1): 11-36.
    
    [41] Jack RS, Eggert H. The elusive nuclear matrix[J]. Eur J Biochem. 1992;209(2):503-9.
    [42] Vemuri MC, Raju NN, Malhotra SK. Recent advances in nuclear matrix function[J]. Cytobios. 1993:76(305): 117-28.
    [43] Anachkova B, Djeliova V, Russev G. Nuclear matrix support of DNA replication[J]. J Cell Biochem. 2005;96(5):951-61.
    [44] Tsutsui KM, Sano K, Tsutsui K. Dynamic view of the nuclear matrix[J]. Acta Med Okayama. 2005; 59 (4): 113-20.
    [45] Martelli AM, Falcieri E, Zweyer M, et al. The controversial nuclear matrix: a balanced point of view[J]. Histol Histopathol. 2002;17(4):1193-205.
    [46] Nakayasu H, Berezney R. Nuclear matrins: identification of the major nuclear matrix proteins[J].Proc Natl Acad Sci USA. 1991:88(22): 10312-6.
    [47] Shen HB, Chou KC. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM[J]. Protein Eng Des Sel. 2007;20(11) :561-7.
    [48] Larsen AK, Skladanowski A, Bojanowski K. The roles of DNA topoisomerase II during the cell cycle[J].Prog Cell Cycle Res. 1996:2:229-39.
    [49] Stratling WH, Yu F. Origin and roles of nuclear matrix proteins. Specific functions of the MAR-binding protein MeCP2/ARBP[J].Crit Rev Eukaryot Gene Expr. 1999;9(3-4):311-8.
    [50] Ocampo J, Mondragon R, Roa-Espitia AL, et al. Actin, myosin, cytokeratins and spectrin are components of the guinea pig sperm nuclear matrix[J]. Tissue Cell. 2005;37(4):293-308.
    [51] Nair CK, Mukherjee A, Singh BB. Nuclear matrix bound DNA polymerase-beta in mouse fibrosarcoma: effect of gamma-radiation[J]. Indian J Exp Biol. 1996;34(9):868-9.
    [52]Eivazova ER,Markov SA,Pirozhkova Ⅰ,Lipinski M,Vassetzky YS.Recruitment of RNA polymerase Ⅱ in the Ifng gene promoter correlates with the nuclear matrix association in activated T helper cells[J].J Mol Biol.2007;371(2):317-22.
    [53]Terent'ev AA,Kostyuk GV,Boikov PY.Dynamics of association-dissociation of the c-myc gene with the nuclear matrix during activation-inactivation of the gene[J].Biochemistry(Mosc).1998;63(5):533-6.
    [54]Mancini MA,Shan B,Nickerson JA,Penman S,Lee WH.The retinoblastoma gene product is a cell cycle-dependent,nuclear matrix-associated protein[J].Proc Natl Acad Sci USA.1994;91(1):418-22
    [55]Knutson KL,Hoenig M.Subnuclear localization of protein kinase C delta in beta cells[J].Biochem Mol Med.1997;62(1):50-7.
    [56]Neri LM,Riederer BM,Marugg RA,Capitani S,Martelli AM.Analysis by confocal microscopy of the behavior of heat shock protein 70 within the nucleus and of a nuclear matrix polypeptide during prolonged heat shock response in HeLa cells[J].Exp Cell Res.1995;221(2):301-10.
    [57]Chabot B,Bisotto S,Vincent M.The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the[U4/U6.U5]tri-snRNP particle[J].Nucleic Acids Res.1995;23(16):3206-13.
    [58]Taniura H,Yoshikawa Z.Necdin interacts with the ribonucleoprotein hnRNP U in the nuclear matrix[J].J Cell Biochem.2002;84(3):545-55.
    [59]Mann K.Characterization of SV40 T antigen associated with the nuclear matrix[J].Virology.1990;179(1):437-45.
    [60]Boulware SL,Weber PC.Cross-reactivity of the anti-PML antibody PG-M3 with the herpes simplex virus type 1 immediate early protein ICP4[J].J Gen Virol.2000;81(Pt 7):1773-7.
    [61]Müller WE,Wenger R,Reuter P,Renneisen K,Schr(o|¨)der HC.Association of Tat protein and viral mRNA with nuclear matrix from HIV-1-infected H9 cells[J].Biochim Biophys Acta.1989;1008(2):208-12
    [62]Dobreva G,Chahrour M,Dautzenberg M,et al.SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation[J].Cell.2006;125(5):971-86.
    [63]Zhou X,Wang R,Fan L,et al.Mitosin/CENP-F as a negative regulator of activating transcription factor-4[J]. J Biol Chem. 2005:280(14):13973-7.
    [64] Kim TA, Jiang S, Seng S, et al. The BTB domain of the nuclear matrix protein NRP/B is required for neurite outgrowth[J]. J Cell Sci. 2005;118(Pt 23):5537-48.
    [65] Yugami H, Kabe Y, Yamaguchi Y, et al. hnRNP-U enhances the expression of specific genes by stabilizing mRNA[J]. FEBS Lett. 2007:581(1):1-7.
    [66] Zaalishvili TM, Gabriadze IY, Margiani DO, et al. Participation of Poly(ADP-ribose)- polymerase of nuclear matrix in DNA repair[J]. Biochemistry (Mosc). 2000:65(6):659-61.
    [67] Mancini MA, He D, Ouspenski II, Brinkley BR. Dynamic continuity of nuclear and mitotic matrix proteins in the cell cycle[J]. J Cell Biochem. 1996:62(2):158-64.
    
    [68] Mancini MA, Shan B, Nickerson JA, et al. The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein[J]. Proc Natl Acad Sci USA. 1994;91(1):418- 22.
    [69] Terent'ev AA, Kostyuk GV, Boikov PY. Dynamics of association-dissociation of the c-myc gene with the nuclear matrix during activation-inactivation of the gene[J]. Biochemistry (Mosc). 1998:63(5): 533-6.
    [70] Mu ZM, Le XF, Vallian S, et al. Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells[J]. Carcinogenesis. 1997:18(11):2063-9.
    [71] Mladenov E, Tsaneva I, Anachkova B. Cell cycle-dependent association of Rad51 with the nuclear matrix [J]. DNA Cell Biol. 2007:26(1): 36-43.
    [72] Ben-Yehoyada M, Ben-Dor I, Shaul Y. c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association [J]. J Biol Chem. 2003:278(36): 34475-82.
    [73] Wang H, Yu S, Davis AT, et al. Cell cycle dependent regulation of protein kinase CK2 signaling to the nuclear matrix[J]. J Cell Biochem. 2003;88(4):812-22.
    [74] Davis AT, Wang H, Zhang P, et al. Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix[J]. J Cell Biochem. 2002:85(3):583-91.
    [75] Yu S, Wang H, Davis A, et al. Consequences of CK2 signaling to the nuclear matrix[J]. Mol Cell Biochem. 2001:227(1-2):67-71.
    [76] MarchisioM, Santavenere E, Paludi M, et al. Erythroid cell differentiation is characterized by nuclear matrix localization and phosphorylation of protein kinases C (PKC) alpha, delta, and zeta[J]. J Cell Physiol. 2005:205(1):32-6.
    [77]DeFranco DB,Guerrero J.Nuclear matrix targeting of steroid receptors:specific signal sequences and acceptor proteins[J].Crit Rev Eukaryot Gene Expr.2000;10(1):39-44.
    [78]Yamashita S.Localization and functions of steroid hormone receptors[J].Histol Histopathol.1998;13(1):255-70.
    [79]Lelievre S,Weaver VM,Bissell MJ.Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton:a model of gene regulation[J].Recent Prog Horm Res.1996;51:417-32.
    [80]Stein GS,van Wijnen AJ,Stein J,et al.Contributions of nuclear architecture to transcriptional control[J].Int Rev Cytol.1995;162A:251-78.
    [81]Mancini MA,He D,Ouspenski II,Brinkley BR.Dynamic continuity of nuclear and mitotic matrix proteins in the cell cycle[J].J Cell Biochem.1996,;62(2):158-164.
    [82]Neri LM,Bortul R,Zweyer M,et al.Influence of different metal ions on the ultrastructure,biochemical properties,and protein localization of the K562 cell nuclear matrix[J].J Cell Biochem.1999;73(3):342-54.
    [83]Zhai ZH,Nickerson JA,Krochmalnic G,et al.Alterations in nuclear matrix structure after adenovirus infection[J].J Virol.1987;61(4):1007-18.
    [84]Gniadecki R,Olszewska H,Gajkowska B.Changes in the ultrastructure of cytoskeleton and nuclear matrix during HaCaT keratinocyte differentiation[J].Exp Dermatol.2001;10(2):71-9.
    [85]倪子绵 李祺福.人胃腺癌MGc80-3细胞的核骨架-中间纤维系统[J].电子显微学报.1994:5:327.
    [86]赵妍 唐剑 赵春红等.维甲酸诱导人成骨肉瘤MG-63细胞分化过程中核基质构型及其蛋白质组成变化观察[J].厦门大学学报(自然科学版).2006;45(s):6-10.
    [87]李祺福.地塞米松对胃癌细胞核骨架-中间纤维系统的影响[J].电子显微学报.1999:18(4):410-413.
    [88]李祺福.视黄酸对胃癌细胞NM-IF系统变化的影响[J].厦门大学学报(自然科学版).1998:37(3):419-422.
    [89]Lahme S,Bichler KH,Feil G,et al.Comparison of cytology and nuclear matrix protein 22(NMP22) for the detectionand follow-up of bladder-cancer[J].Adv Exp Med Biol.2003:539(Pt A):111-9.
    [90]Tsui KH,Chert SM,Wang TM,et al.Comparisons of voided urine cytology,nuclear matrix protein-22 and bladder tumor associated antigen tests for bladder cancer of geriatric male patients in Taiwan, China[J]. Asian J Androl. 2007;9(5):711-5.
    [91] Cannon GM Jr, Balasudramani M, Getzenberg RH. Characterization of nuclear matrix protein alterations associated with renal cell carcinoma[J]. Urology. 2007;69(6):1227-30.
    [92] Barboro P, Rubagotti A, Boccardo F, et al. Nuclear matrix protein expression in prostate cancer: possible prognostic and diagnostic applications[J]. Anticancer Res. 2005;25(6B): 3999-4004.
    [93] Brunagel G, Schoen RE, Bauer AJ, et al. Nuclear matrix protein alterations associated with colon cancer metastasis to the liver[J]. Clin Cancer Res. 2002;8(10):3039-45.
    [94] Kumar A, Kumar R, Gupta NP. Comparison of NMP22 Bladder Chek test and urine cytology for the detection of recurrent bladder cancer[J]. Jpn J Clin Oncol. 2006;36(3):172-175.
    [95] Kibar Y, Goktas S, Kilic S, et al. Prognostic value of cytology, nuclear matrix protein 22 (NMP22) test, and urinary bladder cancer II (UBC II) test in early recurrent transitional cell carcinoma of the bladder [J]. Ann Clin Lab Sci. 2006; 36(1): 31-38.
    [96] Kaya K, Ayan S, Gokce G, et al. Urinary nuclear matrix protein 22 for diagnosis of renal cell carcinoma[J]. Scand J Urol Nephrol. 2005:39(1):25-9.
    [97] Wang ZH, Yu D, Li HK, et al. Alteration of nuclear matrix protein composition of neuroblastoma cells after arsenic trioxide treatment[J]. Anticancer Res. 2001; 21(1A): 493-8.
    [98] Donat TL, Sakr W, Lehr JE, et al. Unique nuclear matrix protein alterations in head and neck squamous cell carcinomas: intermediate biomarker candidates [J]. Otolaryngol Head Neck Surg. 1996;114(3): 387-93.
    [99] Sjakste N, Sjakste T, Vikmanis U. Role of the nuclear matrix proteins in malignant transformation and cancer diagnosis[J]. Exp Oncol. 2004;26(3):170-8.
    [100] Sjakste N, Sjakste T, Vikmanis U. Role of the nuclear matrix proteins in malignant transformation and cancer diagnosis[J]. Exp Oncol. 2004;26(3):170-8.
    [101] Coradeghini R, Barboro P, Rubagotti A, et al. Differential expression of nuclear lamins in normal and cancerous prostate tissues[J]. Oncol Rep. 2006;15(3):609-13.
    [102] Balasubramani M, Day BW, Schoen RE, et al. Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer[J].Cancer Res.2006;66(2):763-9.
    [103]Grocela JR,McDougal WS.Utility of nuclear matrix protein(NMP22) in the detection of recurrent bladder cancer[J].Urol Clin North Am.2000:27(1):47-51.
    [104]Oehr P.Proteomics as a tool for detection of nuclear matrix proteins and new biomarkers for screening of early tumors stage[J].Anticancer Res.2003;23(2A):805-12.
    [105]Chou RH,Churchill JR,Flubacher MM,et al.Identification of a nuclearmatrix-associated region of the c-myc protooncogene and its recognition by a nuclear protein in the human leukemia HL-60 cell line[J].Cancer Res.1990;50:3199.
    [106]Chatterjee Tk.and Fisher RA.RGS12TS-S Localizes at Nuclear Matrix-Associated Subnuclear Structures and Represses Transcription:Structural Requirements for Suhnuclear Targeting and Transcriptional Repression[J].Mol.Cell.Biol.2002;22:4334-4345.
    [107]Chen HB,Chen L,Zhang JK,et al.Human papillomavirus 16 E6 is associated with the nuclear matrix of esophageal carcinoma cells[J].World J Gastroenterol.2001;7(6):788-791.
    [108]SheraKA,Shera CA,and McDougall JK.Small Tumor Virus GenomesAre Integrated near Nuclear Matrix Attachment Regions in Transformed Cells[J].J.Virol.2001;75:12339-12346.
    [109]Zhao CH,Li QF,Zhao Y,Niu JW,Li ZX,Chen JA.Changes of nuclear matrix proteins following the differentiation of human osteosarcoma MG-63 cells[J].Genomics Proteomics Bioinformatics.2006;4(1):10-7.
    [110]赵春红 李祺福 李智星 陈晋安.人成骨肉瘤MG-63细胞在HMBA诱导分化后核基质蛋白表达的变化[J].分子细胞生物学报.2006;39(2):169-176.
    [111]李棋福 赵春红.HMBA诱导人成骨肉瘤116-63细胞分化过程中核基质蛋白表达变化[J].厦门大学学报(自然科学版).2004:43(3):281-285.
    [112]Zhao CH,Li QF.Altered profiles of nuclear matrix proteins during the differentiation of human gastric mucous adenocarcinoma MGc80-3 cells[J].World J Gastroenterol.2005;11(30):4628-33.
    [113]Alberti I,Barboro P,Barbesino M,et al.Changes in the expression of cytokeratins and nuclear matrix proteins are correlated with the level of differentiation in human prostate cancer[J].J Cell Biochem 2000;79(3):471-85.
    [114]Mattia E,Eufemi M,Chichiarelli S,et al.Differentiation-specific nuclear matrix proteins cross-linked to DNA by cis-diummine dichloroplatinum[J].Exp Cell Res.1998; 238(1):216-9.
    [115]Wu AH,Sell S.Markers for hepatocellular carcinoma[J].Immunol Ser.1990;53:403-22.
    [116]Blum HE,Spangenberg HC.Hepatocellular carcinoma:an update[J].Arch Iran Med.2007;10(3):361-71
    [117]Yao DF,Dong ZZ,Yao M.Specific molecular markers in hepatocellular carcinoma[J].Hepatobiliary Pancreat Dis Int.2007;6(3):241-7.
    [118]Blum HE.Hepatocellular carcinoma:susceptibility markers[J].IARC Sci Publ.2001;154:241-4.
    [119]Houseini ME,Mohammed MS,Elshemey WM,et al.Enhanced detection of hepatocellular carcinoma[J].Cancer Control.2005;12(4):248-53.
    [120]Qin LX,Tang ZY.The prognostic molecular markers in hepatocellular carcinoma[J].World J Gastroenterol.2002;8(3):385-92.
    [121]Yuen MF,Wu PC,Lai VC,et al.Expression of c-Myc,c-Fos,and c-jun in hepatocellular carcinoma[J].Cancer.2001;91(1):106-12.
    [122]Lemmer ER,Friedman SL,Llovet JM.Molecular diagnosis of chronic liver disease and hepatocellularcarcinoma:the potential of gene expression profiling[J].Semin Liver Dis.2006;26(4):373-84.
    [123]Lin Y,Shi CY,Li B,et al.Tumour suppressor p53 and Rb genes in human hepatocellular carcinoma[J].Ann Acad Med Singapore.1996:25(1):22-30.
    [124]Feitelson MA.Hepatitis B x antigen and p53 in the development of hepatocellular carcinoma[J].J Hepatobiliary Pancreat Surg.1998;5(4):367-74.
    [125]DetjenKM,Murphy D,Welzel M,et al.Downregulation of p21(waf/cip-1) mediates apoptosis of human hepatocellularcarcinoma cells in response to interferon-gamma[J].Exp Cell Res.2003:282(2):78-89.
    [126]Qin LF,Ng IO.Expression of p27(KIP1) and p21(WAF1/CIP1) in primary hepatocellular carcinoma:clinicopathologic correlation and survival analysis[J].Hum Pathol.2001;32(8):778-84.
    [127]Fukushima K,Ueno Y,Yamagiwa Y,et al.Correlation between p21(waf1) and p16(INK4a)expression in hepatocellular carcinoma[J].Hepatol Res.2001:20(1):52-67.
    [128]Qin LF,Ng IO,Fan ST,et al.p21/WAF1,p53 and PCNA expression and p53 mutation status in hepatocellular carcinoma[J].Int J Cancer.1998;79(4):424-8.
    [129]Heinze T,Jonas S,Karsten A,et al.Determination of the oncogenes p53 and C-erb B2 in the tumour cytosols of advanced hepatocellular carcinoma(HCC) and correlation to survival time[J].Anticancer Res.1999;19(4A):2501-3.
    [130]Nakopeulou L,Stefanaki K,Filaktopoulos D,et al.C-erb-B-2 oncoprotein and epidermal growth factor receptor in human hepetocellular carcinoma:an immunohistochemical study[J].Histol Histopathol.1994;9(4):677-82.
    [131]Chun E,Lee KY.Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells[J].Biochem Biophys Res Column.2004;315(3):771-9.
    [132]Kim TK,Jang HJ,Wilson SR.Imaging diagnosis of hepatocellular carcinoma with differentiation from other pathology[J].Clin Liver Dis.2005 May;9(2):253-79.
    [133]Moriwaki H,Shimizu M,Okuno M,et al.Chemoprevention of liver carcinogenesis with retinoids:Basic and clinical aspects[J].Hepetol Res.2007;37 Suppl 2:S299-302.
    [134]Yu J,Qiao L,Zimmermann L,et al.Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo[J].Hepatology.2006;43(1):134-43.
    [135]Rui-Chuan C,Jin-Hua S,Gao-Liang O,et al.Induction of differentiation in human hepatocarcinoma cells by isoverbascoside[J].Planta Med.2002;68(4):370-2.
    [136]Yamamoto H,Fujimoto J,Okamoto E,et al.Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo[J].Int J Cancer.1998;76(6):897-902.
    [137]Dbouk N,McGuire BM.Hepatic encephalopathy:a review of its pathophysiology and treatment[J].Curr Treat Options Gastroenterol.2006;9(6):464-74.
    [138]Hu J,Fang 5,Dong Y,et al.Arsenic in cancer therapy[J].Anticancer Drugs.2005;16(2):119-27.
    [139]Leszczyniecka M,Roberts T,Dent P,et al.Differentiation therapy of human cancer:basic science and clinical applications[J].Pharmacol Ther.2001;90(2-3):105-56.
    [140]Knuth A,Jager D,Jager E.Cancer immunotherapy in clinical oncology[J].Cancer Chemother Pharmacol.2000;46 Suppl:S46-51.
    [141]Damdinsuren B,Nagano H,Kondo M,et al.TGF-betal-induced cell growth arrest and partial differentiation is related to the suppression of Id1 in human hepatoma cells[J].Oncol Rep.2006:15(2):401-8.
    [142]Jung HY,Park SH,Yoo YD,et el.CDK2/4 regulate retinoic acid-induced G1 arrest in hepatocellular carcinoma cells[J].Hepatol Res.2005;31(3):143-52.
    [143]Koga H,Harada M,Ohtsubo M,et el.Troglitazone induces p27Kipl-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells[J].Hepatology.2003;37(5):1086-96.
    [144]李祺福 欧阳高亮 刘庆榕等.中国鲎鲎素诱导人肝癌SMMC-7721细胞分化的观察[J].癌症.2002:21(5):480-483.
    [145]欧阳高亮 李祺福 彭宣宪等.HMBA对人肝癌SMMC-7721细胞周期相关基因表达的影响[J].实验生物学报.2002:35(3):173-178.
    [146]欧阳高亮 李祺福 彭宣宪等.HMBA诱导人肝癌SMMC-7721细胞分化的观察[J].实验生物学报.2001:34(4):269-273.
    [147]Feng Y,Tian ZM,Wan MX,et el.Protein profile of human hepatocarcinoma cell line SMMC-7721:identification and functional analysis[J].World J Gastroenterol.2007 May 14;13(18):2608-14.
    [148]Song G,Luo Q,Qin J,et el.Expression of integrin betal and its roles on adhesion between different cell cycle hepatocellular carcinoma cells(SMMC-7721) and human umbilical vein endothelial cells[J].Colloids Surf B Biointerfaces.2004;34(4):247-52.
    [149]Yang JY,Lun HY,Lin QY,et el.Subcellular daunorubicin distribution and its relation to multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R[J].World J Gastroenterol.2002;8(4):644-9.
    [150]Rifkind RA,Richon VM,Marks PA.Induced differentiation,the cell cycle,and the treatment of cancer[J].Pharmacol Ther.1996;69(2):97-102.
    [151]Marks PA,Richon VM,Rifkind RA.Cell cycle regulatory proteins are targets for induced differentiation of transformed cells:Molecular and clinical studies employing hybrid polar comounds[J].Int J Hematol.1996;63(1):1-17
    [152]CapcoDG,Krochmalnic G,Penman S.A new method of preparing embeddment-free sections for transmission electron microscopy:applications to the cytoskeletal framework and other three-dimensional networks[J].J Cell Biol.1984;98(5):1878-85.
    [153]Capco DG,Wan KM,Penman S.The nuclear matrix:three-dimensional architecture and protein compositiun[J].Cell.1982;29(3):847-58.
    [154]Gerner C,Holzmann K,Grimm R,et al.Similarity between nuclear matrix proteins of various cells revealed by an improved isolation method[J].J Cell Biochem.1998;71(3):363-74.
    [155]Tawfic S,Davis AT,Faust RA,et al.Association of protein kinase CK2 with nuclear matrix:influence of method of preparation of nuclear matrix[J].J Cell Biochem.1997;64(3):499-504.
    [156]Wang QH,Xie Y,Fan HH.HMBA-induced differentiation of myeloid leukemic cell lines is associated with altered G1 cell cycle regulators and related genes[J].Chin Med J(Engl).2004;117(3):453-5.
    [157]Shirsat NV,Kayal JJ,Shaikh S,et al.Growth inhibition and differentiation of C6 glioma cells on treatment with hmba[J].Cell Biol Int.2001;25(7):621-7.
    [158]Zhang G,Wang G,Wang S,et al.Applying proteomic methodologies to analyze the effect of hexamethylene bisacetamide(HMBA) on proliferation and differentiation of human gastric carcinoma BGC-823 cells[J].Int J Biochem Cell Biol.2004;36(8):1613-23.
    [159]Zeng XL,Tu ZG.In vitro induction of differentiation by ginsenoside Rh2 in SMMC-7721hepatocarcinoma cell line[J].Pharmacol Toxicol.2003;93(6):275-83.
    [160]Rui-Chuan C,Jin-Hua S,Gao-Liang O,et al.Induction of differentiation in human hepatocarcinoma cells by isoverbascoside[J].Planta Med.2002;68(4):370-2.
    [161]Shi SL,Wang YY,Liang Y,et al.Effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823[J].World J Gastroenterol.2006;12(11):1694-8.
    [162]郑燕彬 王国红 洪琛等.丹参酮IIA对人成骨肉瘤MG-63细胞增殖的抑制作用[J].厦门大学学报(自然科学版).2006;45(S1):1-5.
    [163]王国红 田玉玲 石贺欣等.熊去氧胆酸和维甲酸对人成骨肉瘤细胞MG-63细胞周期与分化的影响[J].厦门大学学报(自然科学版).2005;44(S1):111-115.
    [164]Li QF,Ouyang GL,Peng XX,et al.Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells[J].World J Gastroenterol.2003,9(3):454-8.
    [165]Ouyang GL,Li QF,Peng XX,et al.Effects of tachyplesin on proliferation and differentiation of human hepatocellular carcinoma SMMC-7721 cells[J].World J Gastroenterol.2002,8(6):1053-8.
    [166]李祺福 欧阳高亮 刘庆榕等.中国鲎鲎素诱导人肝癌SMMC-7721细胞分化的观察[J].癌症. 2002:21(5):480-483.
    [167]李棋福 李长友 欧阳高亮等.中国鲎鲎素对人胃腺癌8GC-823细胞增殖的抑制作用[J].厦门大学学报(自然科学版).2001:40(1):110-115.
    [168]Wang XM,Wang X,Li J,et al.Effects of 5-azacytidine and butyrate on differentiation and apoptosis of hepatic cancer cell lines[J].Ann Surg.1998:227(6):922-31.
    [169]Guilband NF,Gas N,Dupont MA,et al.Effects of differentiation-inducing agents on maturation of human MCF-7 breast cancer cells[J].J Cell Physiol.1990;145(1):162-72.
    [170]Kong XB,Fanucchi MP,ChouTC.Antagonistic interactions of hexamethylene bisacetamide in combination with 1-beta-D-arabinofuranosylcytosine,adriamycin and harringtonine on the growth and differentiation of HL-60 cells in vitro[J].Leuk Res.1988:12(10):853-9.
    [171]Li QF,Ou Yang GL,Li CY,et al.Effects of tachyplesin on the morphology and ultrastructure of human gastric carcinoma cell line BGC-823EJ].World J Gastroenterol.2000:6(5):676-680.
    [172]李祺福 李长友 欧阳高亮等.中国鲎鲎素对人胃腺癌BGC-823细胞形态和超微结构的影响[J].厦门大学学报(自然科学版).2000;39(6):837-841.
    [173]李祺福 马宗源 唐剑.HMBA对人成骨肉瘤MG-63细胞形态结构和终末分化指标表达的影响[J].厦门大学学报(自然科学版).2007:46(6):1-6.
    [174]Loodwood AH,Murphy SK,Borislow S.Cell signal transduction and the reversal of malignancy[J].J Cell Biochem,1987;33:237-247.
    [175]Liu FS.Molecular carcinogenesis of endometrial cancer[J].Taiwan J Obstet Gynecol.2007;46(1):26-32.
    [176]Johnson DG;,Degregori J.Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context[J].Curr Mol Med.2006;6(7):731-8.
    [177]Bai M,Skyrlas A,Agnantis NJ,et al.Diffuse large B-cell lymphomas with germinal center B-cell-like differentiation immunophenotypic profile are associated with high apoptotic index,high expression of the proapoptotic proteins bax,bak and bid and low expression of the antiapoptotic protein bcl-xl[J].Mod Pathol.2004;17(7):847-56.
    [178]Ectopic p21(WAF1) expression induces differentiation-specific cell cycle changes in PC12cells characteristic of nerve growth factor treatment[J].J Biol Chem.1998;273(36):23517-23.
    [179]Edamoto Y,Hara A,Biernat W,et al.Alterations of RB1,p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C,hepatitis B and alcoholic liver cirrhosis[J].Int J Cancer.2003;106(3):334-41.
    [180]Moghaddam SJ,Haghighi EN,Samiee S,et al.Immunohistochemical analysis of p53,cyclinDl,RB1,c-fos and N-ras gene expression in hepatocellular carcinoma in Iran[J].World J Gastroenterol.2007;13(4):588-93.
    [181]Yuen MF,Wu PC,Lai VC,et al.Expression of c-Myc,c-Fos,and c-jun in hepatocellular carcinoma[J].Cancer.2001;91(1):106-12.
    [182]Voravud N,Foster CS,Gilbertson JA,et al.Oncogene expression in cholangiocarcinoma and in normal hepatic development[J].Hum Pathol.1989;20(12):1163-8.
    [183]Yuan SL,Huang RM,Wang XJ,et al.Reversing effect of Tanshinone on malignant phenotypes of human hepatocarcinoma cell line[J].World J Gastroenterol.1998;4(4):317-319.
    [184]Coulouarn C,Gomez-Quiroz LE,Lee JS,et al.Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis[J].Hepatology.2006;44(4):1003-11.
    [185]Li X,Shi ZM,Feng P,et al.Effect of Qi-protecting powder(Huqi San) on expression of c-jun,c-los and c-myc in diethylnitrosamine-mediated hepatocarcinogenesis[J].World J Gastroenterol.2007;13(31):4192-8.
    [186]Levy L,Renard CA,Wei Y,et al.Genetic alterations and oncogenic pathways in hepatocellular carcinoma[J].Ann N Y Acad Sci.2002;963:21-36
    [187]Gu JR,Hu LF,Cheng YC,et al.Oncogenes in human primary hepatic cancer[J].J Cell Physiol Suppl.1986;4:13-20.
    [188]Mehta R.The potential for the use of cell proliferation and oncogene expression as intermediate markers during liver carcinogenesis[J].Cancer Lett.1995;93(1):85-102.
    [189]Strom SC,Faust JB.Oncogene activation and hepatocarcinogenesis[J].Pathobiology.1990;58(3):153-67.
    [190]Wang XW,Hussain SP,Huo TI,et al.Molecular pathogenesis of human hepatocellular carcinuma[J].Toxicology.2002;181-182:43-7.
    [191]Bodalina UM,Hammond KD,Gilbert DA.Temporal variation in the expression of the p53 protein in proliferating and differentiating murine erythroleukaemia cells[J].Mol Cell Biochem.2007;294(1-2):155-62.
    [192]Shirsat NV,Kayal JJ,Shaikh S,et al.Growth inhibition and differentiation of C6 glioma cells on treatment with hmba[J].Cell Biol Int.2001:25(7):621-7.
    [193]Schroy PC,Rustgi AK,Ikonomu E,et al.Growth and intestinal differentiation are independently regulated in HT29 colon cancer cells[J].J Cell Physiol.1994:161(1):111-23.
    [194]Richon VM,Rifkind RA,Marks PA.Expression and phosphorylation of the retinoblastoma protein during induced differentiation of murine erythroleukemia cells[J].Cell Growth Differ.1992:3(7):413-20.
    [195]Baldassarre G,Barone MV,Belletti B,et al.Key role of the cyclin-dependent kinase inhibitor p27kip1 for embryonal carcinoma cell survival and differentiation[J].Oncogene.1999:18(46):6241-51.
    [196]黄宗平 李祺福 汪玲.HMBA和亚硒酸钠对人胃腺癌细胞的诱导分化[J].厦门大学学报(自然科学版).1996;35(4):606-611.
    [197]马宗源 李祺福 唐剑.HMBA对人成骨肉瘤MG-63细胞增殖和相关基因表达的影响[J].厦门大学学报(自然科学版).2007,46(5):702-706.
    [198]Kang JH,Shi YM,Zheng RL.Effects of ascorbic acid on human hepatoma cell proliferation and redifferentiation[J].Acta Pharmacologia Sinica.1999:20(11):1019-24.
    [199]Wang XW,Xu B.Several new targets of antitumor agents[J].Acta Pharmacologia Sinica.1997;18(4):289-92.
    [200]Zeng WJ,Liu GY,Xu J,et al.Pathological characteristics,PCNA labeling index arid DNA index in prognostic evaluation of patients with moderately differentiated hepatocellular carcinoma[J].World J Gastroenterol.2002:8(6):1040-4.
    [201]Matturri L,Biondo B,Cazzullo A,et al.Prognostic significance of different biological markers(DNA index,PCNA index,apoptosis,p53,karyotype) in 126 adenocarcinoma gnstric biopsies[J].Anticancer Res.1998:18(4B):2819-25.
    [202]焦仁杰.细胞核骨架-核纤层-中间纤维体系的研究[J].自然科学进展.1996;6(1):8-15.
    [203]Nikerson JA and Penman S.Localization of nuclear matrix core filament proteins at interphase and mitosis[J].Cell Biol.Int.Rep.,1992,16:811-826.
    [204]Nickerson JA,Krockmalnic G,Wan KM,et al.A normally masked nuclear matrix antigen that appears at mitosis on cytoskeleton filaments adjoining chromosomes,centrioles,and midbodies[J].J Cell Biol.1992:116:977-987.
    [205] Kallajoki M, Harborth J, Weber K, Osborn M. Microinjection of a monoclonal antibody against SPN antigen, now identified by peptide sequences as the NuMA protein, induces micronuclei in PtK2 cells[J]. J Cell Sci. 1993:104:139-150.
    [206] Hoffman M. The cell's nucleus shapes up[J], Science. 1993:259:1257-1259.
    [207] Zhai ZH, Nickerson JA, Krochmalnic G, et al. Alterations in nuclear matrix structure after adenovirus infection[J]. J Virol. 1987:61:1007-1018.
    [208] Berezney R, Coffey DS. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei[J].J Cell Biol. 1977;73(3):616-637.
    [209] Fey EG, Wan KM, Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition[J]. J Cell Biol 1984:98(6): 1973-1984.
    [210] Fey EG, Penman S. Tumor promoters induce a specific morphological signature in the nuclear matrix-intermediate filament scaffold of Madin-Darby canine kidney (MDCK) cell colonies [J]. Proc Natl Acad Sci USA. 1984;81(14):4409-4413.
    [211] Li QF. Effects of retinoic acid on the changes of nuclear matrix-intermediate filament system in gastric carcinoma cells[J]. World J Gastroenterol. 1999;5(5):417-420.
    [212] Ceci M, Offenhauser N, Marchisio PC, et al. Formation of nuclear matrix filaments by p27(BBP)/eIF6[J]. Biochem Biophys Res Commun. 2002;295(2):295-9.
    [213] Sanvito F, Piatti S, Villa A, et al. The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly [J]. J Cell Biol. 1999; 144(5): 823-37.
    [214] Yun JP, Chew EC, Liew CT, et al. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix[J]. J Cell Biochem. 2003:90(6):1140-8.
    [215] Subong EN, Shue MJ, Epstein JI, et al. Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4-216) recognizes nucleophosmin/B23[J]. Prostate. 1999:39(4):298-304.
    [216] Grisendi S, Mecucci C, Falini B, et al. Nucleophosmin and cancer[J]. Nat Rev Cancer. 2006;6(7): 493-505.
    [217] Frehlick LJ, Eirin-Lopez JM, Ausio J. New insights into the nucleophosmin/ nucleoplasmin family of nuclear chaperones[J]. Bioessays. 2007;29(1):49-59.
    [218] Ye K. Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis [J]. Cancer Biol Ther.2005;4(9):918-23.
    [219]Naoe T,Suzuki T,Kiyoi H,et al.Nucleophosmin:a versatile molecule associated with hemtological malignancies[J].Cancer Sci.2006;97(10):963-9.
    [220]Falini B,Mecucci C,Tiacci E,et al.Cytoplasmic nucleophosmin in acute myelogenous leukemia with a norml karyotype[J].N Engl J Med.2005;352(3):254-66.
    [221]Berger R,Busson M,Baranger L,et al.Loss of the NPM1 gene in myeloid disorders with chromosome 5 rearrangements[J].Leukemia.2006;20(2):319-21.
    [222]Yun JP,Chew EC,Liew CT,et al.Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix[J].J Cell Biochem.2003;90(6):1140-1148.
    [223]Sato T,Saito H,Swensen J,et al.The human prohibitin gene located on chromosume 17g21 is mutated in sporadic breast cancer[J].Cancer Res.1992;52(6):1643-1646.
    [224]Nijtmans LG,Artal SM,Grivell LA,et al.The mitochondrial PHB complex:roles in mitochondrialre spiratory complexa ssembly,ageing and degenerative disease[J].Cell MolLife Sci.2002;59(1):143-155.
    [225]Back JW,Sanz MA,De Jong L,et al.A structure for the yeast prohibitin complex:Structure prediction and evidence from chemical cross linking and massspectrometry[J].Protein Sci.2002;11(10):2471-2478.
    [226]Mishra S,Murphy LC,Nyumba BL,et al.Prohibitin:a potential target for new therapeutics[J].Trends Mol Med.2005;11(4):192-7.
    [227]Dell'Orco RT,McClung JK,Jupe ER,et al.Prohibitin and the senescent phenotype[J].Exp Gerontol.1996;31(1-2):245-52.
    [228]McClung JK,Jupe ER,Liu XT,et al.Prohibitin:potential role in senescence,development,and tumor suppression[J].Exp Gerontol.1995;30(2):99-124.
    [229]Wang S,Nath N,Adlam M,et al.Prohibitin,a potential tumor suppressor,interacts with RB and regulates E2F function[J].Oncogene.1999;18(23):3501-10.
    [230]Feng W,Webb P,Nguyen P,et al.Potentiation of estrogen receptor activation function 1(AF-1) by Src/JNK through a serine 118-independent pathway[J].Mol Endocrinol.2001;15(1):32-45.
    [231]Wang S,Zhang B,Faller DV.Prohibitin requires Brg-1 and Brm for the repression of E2F and cell growth[J].EMBO J.2002;21(12):3019-28.
    [232] Dixit VD, SridaranR, Edmonsond MA, et al. Gonadotropin-releasing hormone attenuates pregnancy-associated thymic involution and modulates the expression of antiproliferative gene product prohibitin[J]. Endocrinology. 2003; 144(4): 1496-1505.
    [233] Campbell IG, Allen J, Eccles DM. Prohibitin 3' untranslated region polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2003,12(11 Pt1): 1273-1274.
    [234] Manjeshwar S, Branam DE, Lerner MR, et al. Tumor suppression by the prohibitin gene 3'untranslated region RNA in human breast cancer[J]. Cancer Res. 2003;63(17):5251-5256.
    [235] Seth D, Rudolph J. Redox regulation of MAP kinase phosphatase 3[J]. Biochemistry. 2006:45(28): 8476-87.
    [236] Zhang J, Zhou B, Zheng CF, et al. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates[J]. J Biol Chem. 2003;278(32):29901-12.
    [237] Bardwell AJ, Abdollahi M, Bardwell L. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk—1 transcription factor compete for MAPK binding and are crucial for enzymic activity[J]. Biochem J. 2003;370(Pt3):1077-85.
    [238] Liu S, Sun JP, Zhou B, et al. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3[J]. Proc Natl Acad Sci U S A. 2006; 103(14) :5326-31.
    [239] Mark JK, Smith S, Hefford MA. Over-expression and refolding of MAP kinase phosphatase 3[J]. Protein Expr Purif. 2007;54(2):253-60.
    [240] Karlsson M, Mathers J, Dickinson RJ, et al. Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal[J]. J Biol Chem. 2004; 279(40):41882-91.
    [241] Hirabayashi T, Kume K, Shimizu T. Conditional expression of the dual-specificity phosphatase PYST1/MKP-3 inhibits phosphorylation of cytosolic phospholipase A2 in Chinese hamster ovary cells[J]. Biochem Biophys Res Commun. 1998;253(2):485-8.
    [242] Stewart AE, Dowd S, Keyse SM, et al. Crystal structure of the MAPK phosphatase Pystl catalytic domain and implications for regulated activation[J]. Nat Struct Biol. 1999;6(2):174-81.
    [243] Eblaghie M, Sanz-Ezquerro J, Dickinson R, et al. 5 Pyst1/MKP3, a novel dual-specificity phosphatase, and FGF signalling in chick limb development[J]. J Anat. 2002;201(5):418.
    [244] Eblaghie MC, Lunn JS, Dickinson RJ, et al. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos[J]. Curr Biol. 2003:13(12):1009-18.
    [245]Dickinson RJ,Eblaghie MC,Keyse SM,et al.Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis[J].Mech Dev.2002;113(2):193-6.
    [246]Smith TG,Sweetman D,Patterson M,et al.Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite[J].Development.2005;132(6):1305-14.
    [247]Schreiber-Agus N,Chin L,Chen K,et al.Anamino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3[J].Cell.1995;80(5):777-86.
    [248]Ayer DE,Lawrence QA,Eisenman RN.Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3[J].Cell.1995;80(5):767-76.
    [249]Schreiber-Agus N,Meng Y,Hoang T,et al.Role of Mxil in ageing organ systems and the regulation of normal and neoplastic growth[J].Nature.1998;393(6684):483-7.
    [250]Laherty CD,Billin AN,Lavinsky RM,et al.SAP30,a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors[J].Mol Cell.1998;2(1):33-42
    [251]Galaktionov K,Chen X,Beach D.Cdc25 cell-cycle phosphatase as a target of c-myc[J].Nature.1996:382(6591):511-7.
    [252]Hurlin PJ,Queva C,Eisenman RN.Mnt,a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites[J].Genes Dev.1997:11(1):44-58.
    [253]Nagy L,Kao HY,Chakravarti D,et al.Nuclear receptor repression mediated by a complex containing SMRT,mSin3A,and histone deacetylase[J].Cell.1997;89(3):373-80.
    [254]Heinzel T,Lavinsky RM,Mullen TM,et al.A complex containing N-CoR,mSin3 and histone deacetylase mediates transcriptional repression[J].Nature.1997:387(6628):43-8.
    [255]AyerDE,Lawrence QA,Eisenman RN.Mad-Max transcriptional repression is mediated by ternary complex formation with mammlian homologs of yeast repressor Sin3[J].Cell.1995;80(5):767-76.
    [256]Schreiber-Agus N,Chin L,Chen K,et al.An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3[J].Cell.1995;80(5):777-86.
    [257]Hurlin PJ,Queva C,Eisenman RN.Mnt:a novel Max-interacting protein and Myc antagonist[J].Curr Top Microbiol Immunol.1997;224:115-21.
    [258]David G,Alland L,Hong SH,et al.Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein[J].Oncogene.1998;16(19):2549-56.
    [259]Jones PL,Veenstra GJ,Wade PA,et al.Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription[J].Nat Genet.1998;19(2):187-91.
    [260]Nan X,Ng HH,Johnson CA,et al.Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex[J].Nature.1998;393(6683):386-9.
    [261]Murphy M,Ahn J,Walker KK,et al.Transcriptional repression by wild-type p53 utilizes histone deacetylases,mediated by interaction with mSin3a[J].Genes Dev.1999;13(19):2490-501.
    [262]Koipally J,Renold A,Kim J,et al.Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes[J].EMBO J.1999;18(11):3090-100.
    [263]Grimes JA,Nielsen SJ,Battaglioli E,et al.The co-repressor mSin3A is a functional component of the RESTCoREST repressor complex[J].J Biol Chem.2000;275(13):9461-7.
    [264]Yang Q,Kong Y,Rothermel B,et al.The winged-helix/forkhead protein myocyte nuclear factor beta(MNF-β) forms a co-repressor complex with mammalian sin3B[J].Biochem J.2000;345(Pt2):335-43.
    [265]Wotton D,Knoepfler PS,Laherty CD,et al.The Smad transcriptional corepressor TGIF recruits mSin3[J].Cell Growth Differ.2001;12(9):457-63.
    [268]Washburn BK,Esposito RE.Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast[J].Mol Cell Biol.2001;21(6):2057-69.
    [267]Ahringer J.NuRD and SIN3 histone deacetylase complexes in development[J].Trends Genet.2000;16(8):351-356.
    [268]Ayer DE.Histone deacetylases:transcriptional repression with SINers and NuRDs[J].Trends Genet.1999;9(5):193-8.
    [269] Ng HH, Bird A. Histone deacetylases: silencers for hire[J]. Trends Biochem Sci. 2000; 25(3): 121-6.
    [270] Svejstrup JQ, Vichi P, Egly JM. The multiple roles of transcription/repair factor TFIIH[J]. Trends Biochem Sci. 1996;21(9):346-50.
    [271] Egly JM. The 14th Datta Lecture. TFIIH: from transcription to clinic[J]. FEBS Lett. 2001; 498 (2-3): 124-8.
    [272] Le Page F, Kwoh EE, Avrutskaya A, et al. Transcription-coupled repair of 8-oxoGuanine:requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome[J]. Cell. 2000; 101 (2): 159-71.
    [273] Larochelle S, Pandur J, Fisher RP, et al. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity[J]. Genes Dev. 1998; 12(3):370-81.
    [274] Lee DK, Duan HO, Chang C. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator[J]. J Biol Chem. 2000;275(13):9308-13.
    [275] Talukder AH, Mishra SK, Mandal M, et al. MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions[J]. J Biol Chem. 2003:278(13):11676-85.
    [276] Pearson A and Greenblatt J. Modular organization of the E2F1 activation domain and its interaction with general transcription factors TBP and TFIIH[J]. Oncogene. 1997; 15: 2643- 2658.
    [277] Xiao H, Pearson A, Coulombe B, et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53[J]. Mol Cell Biol. 1994;14(10):7013-24.
    [278] Gerber HP, Hagmann M, Seipel K, et al. RNA polymerase II C-terminal domain required for enhancer-driven transcription[J]. Nature. 1995:374(6523):660-2.
    [279] Winkler GS, Araujo SJ, Fiedler U, et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair[J]. J Biol Chem. 2000;275(6): 4258-66.
    [280] Coin F, Bergmann E, Tremeau-Bravard A, et al. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH[J]. EMBO J. 1999; 18 (5): 1357-66.
    [281] Coin F, Marinoni JC, Rodolfo C, et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH[J]. Nat Genet. 1998; 20 (2): 184-8.
    [282] Graveley BR. Sorting out the complexity of SR protein functions[J]. RNA. 2000;6(9): 1197-211.
    [283] Krainer AR, Conway GC, Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells[J]. Genes & Dev. 1990:4:1158-1171.
    [284] Ge H, Manley JL. protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNAin vitro[J]. Cell. 1990;62:25-34.
    [285] Smith PJ, Zhang C, Wang J, et al. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers[J]. Hum Mol Genet. 2006:15(16):2490-508.
    [286] Kondo S, Yamamoto N, Murakami T, et al. Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA[J] .Genes Cells. 2004;9(2): 121-30.
    [287] Dirksen WP, Li X, Mayeda A, et al. Mapping the SF2/ASF binding sites in the bovine growth hormone exonic splicing enhancer[J]. J Biol Chem. 2000;275(37):29170-7.
    [288] Sun Q, Mayeda A, Hampson RK, et al. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer[J]. Genes Dev. 1993;7(12B):2598-608.
    [289] Huang Y, Yario TA, Steitz JA. A molecular link between SR protein dephosphorylation and mRNA export[J]. Proc Natl Acad Sci USA. 2004;101(26):9666-70.
    [290] Lai MC, Tarn WY. Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins[J]. J Biol Chem. 2004;279(30):31745-9.
    [291] Mayeda A, Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2[J]. Cell 1992;68:365-375.
    [292] Caceres JF, Stamm S, Helfman DM, et al. Regulation ofalternative splicing in vivo by overexpression of antagonistic splicing factors[J]. Science. 1994;265:1706-1709.
    [293] Stickeler E, Kittrell F, Medina D, et al. Stagespecific changes in SR splicing factors and alternative splicing in mammary tumorigenesis[J], Oncogene. 1999;18:3574-3582.
    [294] Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing[J]. Genes Dev. 1997; 11:334-344.
    [295] Caceres JF, Screaton GR, Krainer AR. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm[J]. Genes Dev. 1998;12:55-66.
    [296] Mercatante D, Kole R. Modification of alternative splicing pathways as a potential approach to chemotherapy[J]. Pharmacol Ther. 2000:85:237-243.
    [297] Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry[J]. Nat Rev Mol Cell Biol. 2002:3:195-205.
    [298] Black DL. Mechanisms of alternative pre-messenger RNA splicing[J]. Annu Rev Biochem. 2003:72:291-336.
    [299] Xing Y. Genomic analysis of RNA alternative splicing in cancers[J]. Front Biosci. 2007; 12: 4034-41.
    [300] Garcia-Blanco MA. Alternative splicing: therapeutic target and tool[J]. Prog Mol Subcell Biol. 2006:44:47-64.
    [301] Revil T, Shkreta L, Chabot B. Pre-mRNA alternative splicing in cancer: functional impact, molecular mechanisms and therapeutic perspectives[J]. Bull Cancer. 2006:93(9):909-19.
    [302] Sanvito F, Piatti S, Villa A, et al. The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly[J]. J Cell Biol. 1999:144:823-837.
    [303] Wood LC, Ashby MN, Grunfeld C, et al. Cloning of murine translation initiation factor 6 and functional analysis of the homologous sequence YPR016c in Saccharomyces cerevisiae [J]. J Biol Chem. 1999:274:11653-11659.
    [304] Si K, Maitra U. The Saccharomyces cerevisiae homologue of manmalian translation initiation factor 6 does not function as a translation initiation factor[J]. Mol Cell Biol. 1999; 19: 1416-1426.
    
    [305] Balbo A, Bozzaro S. Cloning of Dictyostelium eIF6 (p27BBP) and mapping its nucle(ol)ar localization subdomains[J]. Eur J Cell Biol. 2006:85(9-10):1069-78.
    [306] Donadini A, Giacopelli F, Ravazzolo R, et al. GABP complex regulates transcription of eIF6 (p27BBP), an essential trans-acting factor in ribosome biogenesis[J]. FEBS Lett. 2006; 580 (8): 1983-7.
    [307] Ceci M, Gaviraghi C, Gorrini C, et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly[J]. Nature. 2003:426(6966):579-84.
    [308] Shaw LM, Rabinovitz I, Wang HH, et al. Activation of phosphoinositide 3-OH kinase by the a6h4 integrin promotes carcinoma invasion[J]. Cell. 1997:91:949-960.
    [309]Savoia P,Trusolino L,Pepino E,et al.Expression and topography of integrins and basement membrane proteins in epidermal carcinomas:basal but not squamous cell carcinomas display loss of a6h4 and BM-600/nicein[J].J Invest Dermatol.1993;101:352-358.
    [310]Clarke CA,Lotz MM,Chao C,et al.Activation of the p21 pathway of growth arrest and apoptosis by the h4 integrin cytoplasmic domain[J].J Biol Chem.1995;270:22673-22676.
    [311]Tan Jh,Wooley JC,LeStorgeoun WM.Nuclear matrix-like filaments and fibrogranular complexes form through the rearrangement of specific nuclear ribonucleoproteins[J].Mol Biol Cell.2000;11:1547-1554.
    [312]Ceci M,Offenhauser N,Marchisio PC,et al.Formation of nuclear matrix filaments by p27(BBP)/eIF6[J].Biochem Biophys Res Commun.2002;295(2):295-9.
    [313]Tan JH,Wooley JC,LeStourgeon WM.Nuclear matrix-like filaments and fibrogranular complexes form through the rearrangement of specific nuclear ribonucleoproteins[J].Mol Biol Cell.2000;11(5):1547-54.
    [314]Sanvito F,Vivoli F,Gambini S,et al.Expression of a highly conserved protein,p27BBP,during the progression of human colorectal cancer[J].Cancer Res.2000;60(3):510-6.
    [315]Si K,Chaudhuri J,Chevesich J,et al.Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6[J].Proc Natl Acad Sci USA.1997;94(26):14285-90.
    [316]Biffo S,Sanvito F,Costa S,et al.Isolation of a novel h4 integrin-binding protein(p27BBP)highly expressed in epithelial cells[J].J Biol Chem.1997;272:30314-30321.
    [317]Si K,Chaudhuri J,Chevesich J,Maitra U.Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6[J].Proc Natl Acad Sci USA 1997;94:14285-14290.
    [318]XazminDA,Chinenov Y,karson E,et al.Comparative modeling of the N-terminal domain of the 67kDa laminin-binding protein:implications for putative ribosomal function[J].Biochem Biophys Res Commun.2003;300(1):161-6.
    [319]Sato M,Kinoshita K,Kaneda Y,et al.Analysis of nuclear localization of laminin binding protein precursor p40(LBP/p40)[J].Biochem Biophys Res Commun.1996;229(3):896-901.
    [320]Ozaki I,Yamamoto K,Mizuta T,et al.Differential expression of laminin receptors in human hepatocellular carcinoma[J].Gut.1998;43(6):837-42.
    [321]Ardini E,Tagliabue E,Magnifico A,et al.Co-regulation and physical association of the 67-kDa monomeric laminin receptor and the alpha6beta4 integrin[J].J Biol Chem.1997;272(4):2342-5.
    [322]Chen MS,Fornace A Jr,Laszlo A.Characterization of an HSP70 related clone encoding a 33kDaprotein with homology to a protein with associates with polysomes[J].Biochim Biophys Acta.1996;1297(2):124-6.
    [323]Castronovo V,Taraboletti G,Sobel ME.Functional domains of the 67-kDa luminin receptor precursor[J].J Biol Chem.1991;266(30):20440-6.
    [324]Jackers P,Minoletti F,Belotti D,et al.Isolation from a multigene family of the active human gene of the metastasis-associated multifunctional protein 37LRP/p40 at chrumosome 3p21.3[J].Oncogene.1996;13(3):495-503.
    [325]Narumi K,Inoue A,Tanaka M,et al.Inhibition of experimental metastasis of human fibrosarcuma cells by anti-recombinant 37-kDa laminin binding protein antibody[J].Jpn J Cancer Res.1999;90(4):425-31.
    [326]Rosenthal ET,Wordeman L.A protein similar to the 67 kDa laminin binding protein and p40is probably a component of the translational machinery in Urechis caupooocytes and embryos[J].J Cell Sci.1995;108(Pt1):245-56.
    [327]Demianova M,Formosa TG,Ellis SR.Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit[J].J Biol Chem 1996;271(19):11383-91.
    [328]Rieger R,Edenhofer F,Lasmezas CI,et al.The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells[J].Nat Med.1997;3(12):1383-8.
    [329]Aanstad P,Whitaker M.Predictability of dorso-ventral asymetry in the cleavage stage zebrafish embryo:an analysis using lithium sensitivity as a dorso-ventral marker[J].Mech Dev.1999;88(1):33-41.
    [330]Ferrara N,Davis-Smyth T.The biology of vascular endothelial growth factor[J].Endocr Rev.1997;18(1):4-25.
    [331]Salama RH,Muramatsu H,Zou K,et al.Midkine binds to 37-kDa laminin binding protein precursor,leading to nuclear transport of the complex[J].Exp Cell Res.2001;270(1):13-20.
    [332]Ford CL,Randal-Whitis L,Ellis SR.Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits[J]. Cancer Res. 1999;59(3):704-10.
    [333] Ardini E, Pesole G, Tagliabue E, et al. The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution[J]. Mol Biol Evol. 1998;15(8): 1017-25.
    [334] Dumbar TS, Gentry GA, Olson MO. Interaction of nucleolar phosphoprotein B23 with nucleic acids[J]. Biochemistry. 1989;28:9495-9501.
    [335] June Li, Daniel P. Sejas, et al. Nucleophosmin Regulates Cell Cycle Progression and Stress Response in Hematopoietic Stem/Progenitor Cells[J]. J Biol Chem. 2006:281:16536-16545.
    [336] Liu X, Liu Z, Jang SW, et al. Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival[J]. Proc Natl Acad Sci USA. 2007:104(23): 9679-84.
    [337] Ann JY, Liu X, Cheng D, et al. Nucleophosmin/B23, a nuclear PI (3,4, 5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD[J]. Mol Cell. 2005:18(4):435-45.
    [338] Yeh CW, Huang SS, Lee RP, et al. Ras-dependent recruitment of c-Myc for transcriptional activation of nucleophosmin/B23 in highly malignant Ul bladder cancer cells[J]. Mol Pharmacol. 2006; 70(4): 1443-53.
    [339] Yung BY. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells[J]. FEBS Lett. 2004:578(3): 211-6.
    [340] Zeller KI, Haggerty TJ, Barrett JF, et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation[J]. J Biol Chem. 2001;276(51): 48285-91.
    [341] Hsu CY, Yung BY. Down-regulation of nucleophosmin/B23 during retinoic acid-induced differentiation of human promyelocytic leukemia HL-60 cells[J]. Oncogene. 1998; 16(7): 915 -23.
    [342] Itahana K, Bhat KP, Jin A, et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation[J]. Mol Cell. 2003;12(5):1151-64.
    [343] Lindstrom MS, Zhang Y. B23 and ARF: friends or foes?[J]. Cell Biochem Biophys. 2006; 46(1): 79-90.
    [344] Gjerset RA. DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer[J]. J Mol Histol. 2006:37(5-7): 239-51.
    [345] Lim MJ, Wang XW. Nucleophosmin and human cancer [J]. Cancer Detect Prev. 2006; 30 (6): 481-90.
    [346] Naoe T, Suzuki T, Kiyoi H, et al. Nucleophosmin: a versatile molecule associated with hematological malignancies[J]. Cancer Sci. 2006:97(10):963-9.
    [347] Mrozek K, Dohner H, Bloomfield CD. Influence of new molecular prognostic markers in patients with karyotypically normal acute myeloid leukemia: recent advances [J]. Curr Opin Hematol. 2007.14 (2): 106-14.
    [348] Nicolini A, Carpi A, Tarro G. Biomolecular markers of breast cancer[J]. Front Biosci. 2006:11:1818-43.
    [349] Mrozek K, Dohner H, Bloomfield CD. Influence of new molecular prognostic markers in patients with karyotypically normal acute myeloid leukemia: recent advances [J]. Curr Opin Hematol. 2007; 14(2): 106-14.
    [350] Budhu AS, Wang XW. Loading and unloading: orchestrating centrosome duplication and spindle assembly by Ran/Crm1[J]. Cell Cycle. 2005:4(11): 1510-4.
    [351] Okuda M. The role of nucleophosmin in centrosome duplication[J]. Oncogene. 2002; 21(40): 6170-4.
    [352] Okuwaki M, Tsujimoto M, Nagata K. The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype[J]. Mol Biol Cell. 2002;13(6):2016-30.
    [353] Negi SS, Olson MO. Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23[J]. J Cell Sci. 2006; 119(Pt 17):3676-85.
    [354] Tarapore P, Shinmura K, Suzuki H, et al. Thr199 phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing[J]. FEBS Lett. 2006;580(2):399-409.
    [355] Alsayed Y, Uddin S, Mahmud N, et al. Activation of Racl and the p38 Mitogen-activated Protein Kinase Pathway in Response to All-trans-retinoic Acid[J]. J Biol Chem. 2001:276:4012- 4019.
    [356] Yung BY. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells[J]. FEBS Lett. 2004;578(3): 211-216.
    
    [357] Zeller KI, Haggerty TJ, Barrett JF, et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation[J]. J Biol Chem. 2001:276(51): 48285-48291.
    [358] Hyder SM, Stancle GM, Loose-Mitchell DS. Steroid hormone induced expression of oncogene encoded nuclearp roteins[J]. Crit Eukaryot Gene Expr. 1994;4;55-116.
    [359] Joerger AC, Fersht AR. Structure-function-rescue: the diverse nature of common p53 cancer mutants [J]. Oncogene. 2007,26(15): 2226-42.
    [360] Halaby MJ, Yang DQ. p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics[J]. Gene. 2007;395(1-2):1-7.
    [361] Papazoglu C, Mills AA. p53: at the crossroad between cancer and ageing[J]. J Pathol. 2007; 211(2): 124-33.
    [362] Lambert B, Buckle.M. Characterisation of the interface between nucleophosmin (NPM) and p53:Potential role in p53 stabilisation[J]. FEBS Letters. 2006:580:345-350.
    [363] Kurki S, Peltonen K, Latonen L, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation[J]. Cancer Cell. 2004; 5:465-475.
    [364] Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23[J]. Mol Cell Biol. 2004:24:985-996.
    [365] Korgaonkar C, Hagen J, Tompkins V, et al. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function[J]. Mol Cell Biol. 2005;25(4):1258-71.
    [366] Colombo E, Marine JC, Danovi D, et al. Nucleophosmin regulates the stability and transcriptional activity of p53[J]. Nat Cell Biol. 2002;4(7):529-533.
    
    [367] Yamasaki L. Role of the RB tumor suppressor in cancer [J]. Cancer Treat Res. 2003; 115:209-39.
    [368] Nevins JR. The Rb/E2F pathway and cancer[J]. Hum Mol Genet. 2001:10(7): 699-703.
    [369] Bosco EE, Knudsen ES. RB in breast cancer: at the crossroads of tumorigenesis and treatment [J]. Cell Cycle. 2007;6(6):667-71.
    [370] Chiao Yun Lin, Yu Chun Liang, Benjamin Yat-Ming Yung. Nucleophosmin/B23 regulates transcriptional activaRba modulating the promoter binding of NF-κB, E2F1 and pRB[J]. Cellular Signalling. 2006;18(11):2041-8.
    [371] Cress W D, Johnson D G, and Nevins J R. A genetic analysis of the E2F1 gene distinguishes regulation by Rb, pl07, and adenovirus E4[J]. Mol Cell Biol. 1993:13:6314-6325.
    [372] Nijtmans LG, de Jong L, Artal Sanz M, et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins[J]. EMBO J. 2000;19(11):2444-51.
    [373] Tatsuta T, Model K, Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria[J]. Mol Biol Cell. 2005; 16(1):248-59.
    [374] Sharma A, Qadri A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses [J]. Proc Natl Acad Sci USA. 2004:101(50): 17492-7.
    [375] Kolonin MG, Saha PK, Chan L, et al. Reversal of obesity by targeted ablation of adipose tissue[J]. Nat Med. 2004:10(6): 625-32.
    [376] Mishra S, Murphy LC, Nyomba BL, et al. Prohibitin: a potential target for new therapeutics[J]. Trends Mol Med. 2005:11(4):192-7.
    [377] McClung JK, Jupe ER, Liu XT, et al. Prohibitin: potential role in senescence, development, and tumor suppression[J]. Exp Gerontol. 1995:30(2):99-124.
    [378] Wang S, Nath N, Adlam M, et al . Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function[J]. Oncogene. 1999:18(23):3501-10.
    [379] Wu Y, Renard CA, Apiou F, et al. Recurrent allelic deletions at mouse chromosomes 4 and 14 in Myc-induced liver tumors[J]. Oncogene. 2002:21(10):1518-26.
    [380] Simile MM, De Miglio MR, Muroni MR, et al. Down-regulation of c-myc and Cyclin D1 genes by antisense oligodeoxy nucleotides inhibits the expression of E2F1 and in vitro growth of HepG2 and Morris 5123 liver cancer cells[J]. Carcinogenesis. 2004:25(3):333-41.
    [381] Hermeking H. The MYC oncogene as a cancer drug target [J]. Curr Cancer Drug Targets. 2003; 3 (3): 163-75.
    [382] Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes[J]. Proc Natl Acad Sci USA. 2002;99(9): 6274-9.
    [383] Coates PJ, Nenutil R, McGregor A, et al. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence [J]. Exp Cell Res. 2001:265(2): 262-73.
    [384] Edwards J, Krishna NS, Mukherjee R, et al. The role of c-Jun and c-Fos expression in androgen-Independent prostate cancer[J]. J Pathol. 2004:204(2):153-8.
    [385] Cheung TH, Leung JO, Chung TK, et al. c-fos overexpression is associated with the pathoneogenesis of invasive cervical cancer[J]. Gynecol Obstet Invest. 1997;43(3):200-3.
    [386] Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map[J]. Neurochem Int. 1998; 33 (4): 287-97.
    [387] Fusaro G, Dasgupta P, Rastogi S, et al. Prohibitin Induces the Transcriptional Activity of p53 and Exported from the Nucleus upon Apoptotic Signaling[J]. J Biol Chem. 2003;278(48): 47853-61.
    [388] Rastogi S, Joshi B, Fusaro G, et al. Camptothecin Induces Nuclear Export of Prohibitin Preferentially in Transformed Cells through a CRM-1-dependent Mechanism[J]. J Biol Chem. 2006:281:2951-2959.
    [389] Joshi B, Rastogi S, Morris M, et al. Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites[J]. Biochem J. 2007; 401(1): 155-66.
    [390] Wang S, Fusaro G, Padmanabhan J, et al. Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression [J]. Oncogene. 2002;21(55) :8388-96.
    [391] Wang S, Nath N, Fusaro G, et al. Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals[J]. Mol Cell Biol. 1999:19(11): 7447-60.
    [392] Wang S, Nath N, Adlam M, et al. Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function[J]. Oncogene. 1999;18(23):3501-10.
    [393] Peng J, Liang YY, Fang JC, et al Study on the relationship between two second-messenger pathways on the regulation of proliferation and differentiation in MGc 80-3 cells[J]. Shi Yan Sheng Wu Xue Bao. 1993; 26 (3): 187-195.
    [394] Gu SQ, Liang YY, Fan LR. Regulation of traditional Chinese medicine formulae bailong on cAMP-PKA and DAG-PKC signal pathways of human gastric cancer cells[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1997; 17(7):404-407.
    [395] Schwartz Z, Gilley RM, Sylvia VL, et al. The Effect of Prostaglandin E2 on Costochondral Chondrocyte Differentiation Is Mediated by Cyclic Adenosine 3', 5'-Monophosphate and Protein Kinase C[J]. Endocrinology. 1998:139:1825.
    
    [396] Kondo A, Mogi M, Koshihara Y, et al. Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenicsarcoma cells[J].Biochem Pharmacol.2001;61(3):319-326.
    [397]Esbrit P,Alvarez-Arroyo VM,De Miguel F,et al.C-Terminal Parathyroid Hormone-Related Protein Increases Vascular Endothelial Growth Factor in Humn Osteoblastic Cells[J].J Am Soc Nephrol.2000;11:1085.
    [398]Liu J,Bi G,Wen P,et al.Down-regulation of CD44 contributes to the differentiation of HL-60 cells induced by ATRA or HMBA[J].Cell Mol Immunol.2007;4(1):59-63.
    [399]Matushansk I,Radparvar F,Skoultchi AI,et al.Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-depedent kinase in G1[J].Proc Natl Acad Sci USA.2000;19:14317-14322.
    [400]Wang QH,Xie Y,Fan HH.HMBA-induced differentiation of myeloid leukemic cell lines is associated with altered G1 cell cycle regulators and related genes[J].Chin Med J(Engl).2004;117(3):453-5.
    [401]Vanegas N,Garcia-Sacristan A,Lopez-Fernandez LA,et al.Differential expression of Ran GTPase during HMBA-induced differentiation in murine erythroleukemia cells[J].Leuk Res.2003;27(7):607-15.
    [402]Nishimura R,Moriyama K,Yasukawa K,et al.Combination of interleukin-6 and soluble interleukin-6 receptors induces differentiation and activation of JAK-STAT and MAP kinase pathways in MG-63 human osteoblastic cells[J].J Bone Miner Res.1998;13(5):777-785.
    [403]Bellido T,Borba VZ,Roberson P,et al.Activation of the Janus kinase/STAT(signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation[J].Endocrinology.1997;138(9):3666-76.
    [404]Fu Y,Fang Z,Liang Y,et al.Overexpression of integrin betal inhibits proliferation of hepatocellular carcincinoma cell SMMC-7721 through preventing Skp2-dependent degradation of p27 via PI3K pathway[J].J Cell Biochem.2007;102(3):704-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700