3-RRRS并联机构的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对高精度、高速度及高敏捷性等高性能加工要求的并联机床的需求量的增加和机器人技术的发展,这些年来并联机床和并联机器人日益成为学术界及工程应用中的重点;因此并联机构的设计与研究也成为世界研究的热点,不断的涌现出各种不同自由度、不同结构类型的并联机构。
     本文以一种新型的六自由度3-RRRS型并联机构为研究对象,利用虚拟样机等技术对机构的结构设计,位姿分析、工作空间分析、运动学分析、动力学分析、参数化设计与分析及其优化设计等方面进行了较全面的研究。
     论文首先完成了该新型并联机构的结构设计,在此基础上建立了六自由度并联机构的位姿逆解方程和正解方程组,并分别通过数值算例验证了正反解的正确性。同时推导出了反应机构灵活度的雅可比矩阵。接着在基于运动学逆解的基础上采用极限边界搜索法利用MATLAB数学工具,绘制出了不同参数组合、不同姿态下的位置空间图谱,完成了空间的可视化分析,并利用可视化图谱对影响工作空间的各种因素一一作出了深入的分析,从而知道哪些因素是影响工作空间大小的主要因素。其次,利用ADAMS软件建立了动力学仿真模型,并对其进行了运动学正解和运动学逆解仿真,揭示了该类机构的运动规律及其空间运动能力,同时为过程控制提供了控制参数。接着进行了动力学分析,得知机构受力的变化规律,从而为机构构件的尺寸、形状及受力分析提供了重要依据。然后对机构进行了参数化分析和优化设计,最后根据优化指标值得出了最优的参数组合,为工程实际应用提供了参考依据。
As increasing demand of high accuracy, high speed and agility, and other high-performance processing requirements for parallel machine tools and the development of robot technology, over the years, PMT and parallel robot has increasingly become the academic and engineering applications in Focus, therefore the design and studies on parallel mechanism have also become the world's hot spots, and there constantly emerged in the various degrees of freedom, different types of parallel mechanisms.
     This article has improved the design for the existed parallel mechanism named by 3-RRRS,and has completed a more comprehensive study on many aspects by virtual prototyping techniques,such as design of the structure, posture analysis, the workspace analysis, kinematics analysis , Dynamic analysis ,parametic design and analysis and Optimal Design,and so on.
     The paper has improved the design of structure,and established forward and inversed equation on the base of parallel mechanism,and verified correctness of forward and inversed kinematic by numerical examples,and induced the Jacobii Matrix reflecting the flexibility of mechanism.Then the paper has completed the workspace of visual analysis by MATLAB and MATHEMATIC,and made a depth-analysis to know what factors affecting the workspace are major factors.Secondly,the paper has established a dynamic simulation model ,and made simulations on the forward and inversed kinematic to reveal the movement of such space movement and its ability. Then making a dynamic analysis to known the changed law of force on the bodies and to provide important reference following studies.Finally, the article has made a parametic design and its analysis to optimize the mechanism.All of aboved will provide pratical application of reference for the project and academic research.
引文
【1】C.M. Luh, F.A. Adkins, E.J. Haug, C.C. Qiu, Working capability analysis of Stewart platforms, Trans. ASME J. Mech. Des. 118 (2) (1996) 220–227.
    【2】Bonev I.The True Oringis of Parallel Robots,The Parallel Mechanisms Information Center.2002
    【3】M.A.Laribi,L.Romdhane,S.Zeghloul, Analysis and dimensional synthesis of DELTA robot for a prescribed workspace
    【4】L. Romdhane, Orientation workspace of fully parallel mechanisms, Eur. J. Mech. 13 (1994) 541–553.
    【5】P. Vischer, R. Clavel, Kinematic calibration of the parallel DELTA robot, Robotica 16 (1998) 207–218.
    【6】J.P. Merlet, Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries, Int.J. Robot. Res. 18 (9) (1999) 902–916.
    【7】C. Gosselin, Determination of the workspace of 6-DOF parallel manipulators, ASME J. Mech. Des. 112 (3) (1990) 331–336
    【8】XIN-JUN LIU. Kinematics, Dynamics and Dimensional Synthesis of a Novel 2-DoF Translational Manipulator. Journal of Intelligent and Robotic Systems 41: 205–224, 2004
    【9】J.P. Merlet, Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries, Int.J. Robot. Res. 18 (9) (1999) 902–916.
    【10】M.Z.A. Majid, Z. Huang, Y.L. Yao, Workspace analysis of a six-degrees of freedom, three-prismatic–prismatic–spheric-revolute parallel manipulator, Int. J. Adv. Manuf. Technol. 16 (6) (2000) 441–449.
    【11】C. Gosselin, Determination of the workspace of 6-DOF parallel manipulators, ASME J. Mech. Des. 112 (3) (1990) 331–336.
    【12】黄秀琴等.一种改进型三平移并联机构的运动学研究[J].机械科学与技术,2006,3.(03);1003-872
    【13】张曙(中) U.Heisel(德)著并联运动机床北京:机械工业出版社2003.4
    【14】吴光中等.3-PU*U*型平动并联机构的运动学分析[J].中国机械工程,2004,5.(09):1004—13
    【15】彭斌彬高峰.五轴并联机床的输入输出速度和力[J].机械工程学报,2006,9.(09):1001—226
    【16】胡福生,郝秀.3PSS并联机构的运动学分析[J].山东理工大学学报,2006,1(01):1672—619
    【17】徐礼钜,范守文.一种混联型虚拟轴机床的位置正解与工作空间分析[J].机械传动,2003,3(05):1004—2539
    【18】金振林,高峰.一种新颖的6自由度并联机床结构型式及其局部各向同性分析[J].机械设计.2001,18(7):19-2
    【19】汪琦王立平汪劲松李育文. 6一SPS型并联机床基于动态特性的优化设计[J]. 中国机械工程.2003,6(14):1004-132X
    【20】曹毅,黄真,周辉. 6/6一Stewart机构姿态奇异及姿态工作空间分析[J].现代制造工程.2005(6):1671-3133
    【21】黄真,孔令富,方跃法.并联机械人机构学理论及控制[M].北京:机械工业出版社,1997
    【22】曹毅,黄真,李艳文.3/6 SPS型Stewart并联机构奇异轨迹的性质识别[J].中国机械工程.2006(04):1004-132X
    【23】鲁开讲,韩玉强,高秀兰.6一PSS并联机床的运动学分析[J].机械设计与制造工程。2002,7(04):1007-9483
    【24】张彦斐,宫金良,李为民,高峰.一种6自由度冗余驱动并联机器人运动学分析及仿真.机械工程学报.2005,8(08):1027-1520
    【25】王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    【26】Msc.Software.MSC.ADAMS FSP基础培训教程
    【M】.北京:清华大学出版社,2004
    【27】徐礼钜,范守文.一种新型并联机床的刚度和固有特性的有限元分析[J】,机械设计与制造, 2003(1):102-103
    【28】郑晓虎.基于ADAMS的并联机构运动分析[J].现代制造工程.2004.(11):48—5O
    【29】郭旭伟,王知行.基于ADAMS的并联机床运动学和动力学仿真[J].中国制造业信息化,2003.(7):19-122
    【30】(美)MSC.Software著.邢俊文陶永忠译MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004.7-1
    【31】李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2007.9-240
    【32】范成建熊光名周明飞编著.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.30-270
    【33】游世明,陈思忠,梁贺明.基于ADAMS的并联机器人运动学和动力学仿真.计算机仿真. 2005.8, 22(8):181-185
    【34】郭旭伟,王知行.基于ADAMS的并联机床运动学和动力学仿真.现代设计与制造.2003.7,32(7): 119-122
    【35】澹凡忠,孙利民,姜军生.并联6-SPS机器人动力学分析.郑州工业大学学报. 2000.6 21(2):42-44
    【36】王奇志,徐心和.基于符号计算研究一类6-SPS并联机器人运动学正解问题.机械工程学报.1998, 27(2): 51-53
    【37】熊有伦主编.机器人技术基础.武汉1996.8,1-70
    【38】李军.邢俊文.覃文洁.ADAMS实例教程.北京2002.7,1-229
    【39】阳明盛,林建华. Mathmatica基础.大连2003.8,1-100
    【40】王洪波,黄真.六自由度并联机器人的拉格朗日方程.机器人. 1990, 90(1): 23-26
    【41】徐礼钜,林光春,熊先云等.三分支3 - RRRS并联机器人直接位置分析的符号解[J].机械。1999,26(1):1-3
    【42】梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报.1991, 27(2): 26-30
    【43】文福安,粱崇高,廖启征.并联机器人机掏位置正解中国机械工程1999,10(9):l0l1~10l3
    【44】曲义远,黄真.空间六自由度多回路机构位置的三维搜索方法.机器人, 1989, 89(5): 25-29
    【45】黄真.空间机构学.北京:机械工业出版社,1989:126-143
    【46】杜铁军.机器人误差补偿器研究.[燕山大学工学硕士学位论文].1994:12-65
    【47】B. Dasgupta and T. S. Mruthyunjaya. A Constructive Predictor-Corrector Algorithm for the Direct Position Kinematic Problem for a General 6-6 Stewart Platform. Mech. Mach. Theory, 1996, 31(6): 799-811
    【48】M. Raghavan. The Stewart Platform of General Geometry has 40 Configurations. In ASME Design and Automation Conf., Chicago, USA, 1991, 32(2): 397-402
    【49】C. W. Wampler, A. P. Morgan and A. J. Sommense. Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics. ASME J. of Mechanical Design, 1990, 112: 59-68
    【50】E. F. Fichter. Kinematics of a Parallel Connection Manipulator. In ASME Design Engineering Technology Conf., Cambridge (MA), U.K., 1984: 1-8
    【51】J. P. Merlet. Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry. Technical report, INRIA, Sophia Antipols, France,1988:66-70
    【52】E. F. Fichter. A Stewart Platform Based Manipulator: General Theory and Practical Construction. Int. J. of Robotics Research, 1986, 5(2): 157-181
    【53】A. Karger. Singularities and Self-Motions of Equiform Platform. Mech. Mach. Theory, 2001, 36: 801-815
    【54】J. C. Hudgens and D. Tesar. A Fully-Parallel Six Degree-of-Freedom Micromanipulator: Kinematic Analysis and Dynamic Control. In ASME Proc. of the 20th Biennial Mechanisms Conf., Kissimmee, USA, 1988: 29-37
    【55】V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. FISITA Ninth International Technical Congress,1962:117-137
    【56】D. Stewart. A Platform with Six Degrees of Freedom. IMechE,1965,180(15):371-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700