硫化叶菌Sulfolobus tokodaii解旋酶HerA的生化性质研究及体内功能的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古菌是与真核生物和细菌并列的第三种生命形式,被认为是真核生物和细菌的嵌合体,其代谢方式类似于细菌而遗传信息的加工则和真核生物类似。古菌大多数生活在高温、高压、极端pH、强离子辐射等极端环境下,其基因组更容易遭受环境的胁迫而产生各种DNA损伤。其中,DNA双链断裂(double-strand breaks,DSBs)是生物体最严重的DNA损伤方式之一,若不修复,将引起生物体基因组不稳定,进而导致生物体死亡。同源重组修复是生物体修复DSBs主要方式之一。在细菌中,同源重组修复主要包括RecBCD、RecFOR和SbcC-SbcD途径。在真核生物中,同源重组修复是由Mre11-Rad50介导的,但具体机制尚不清楚。在古菌中,没有发现RecBCD和RecFOR同源蛋白,但存在SbcC/Mre11和SbcD/Rad50同源蛋白,因此古菌中可能存在Mre11-Rad50介导的同源重组修复。Mre11具有3'-5'ssDNA核酸外切酶和核酸内切酶活性。Rad50是ABC(ATP-binding cassette)型ATPase。在真核生物Mre11-Rad50介导的同源重组修复中,除了Mre11和Rad50外,还有Nbs1(哺乳动物)/Xrs2(酿酒酵母)作为配体,形成MRN/MRX复合体共同参与双链断裂重组修复起始阶段3'-overhang结构的产生过程。而在古菌中,只发现了Mre11和Rad50同源蛋白,没有发现Nbs1/Xrs2配体的同源蛋白。在硫化叶菌Sufolobus tokodaii及其它许多嗜热古菌基因组中,与Mre11和Rad50同一个操纵子内存在另有两个开放阅读框(ORFs)。研究表明,古菌中的这两个ORF其中一个是核酸酶NurA,另一个是解旋酶HerA。HerA是一种新型的解旋酶,广泛存在于嗜热古菌中。其基因在基因组中的组织形式暗示该解旋酶与其关联蛋白Mre11和Rad50之间可能存在着功能上的联系,但是它们之间的关系目前仍然不清楚。NurA、HerA与Mre11/Rad50是否具有相互作用、相互作用的机制以及它们在双链断裂重组修复中的功能还不清楚。本论文旨在研究解旋酶HerA蛋白的体外生化性质、与Mre11之间的相互作用以及在体内可能参与的代谢过程,以期阐明解旋酶HerA在体内参与的生物学过程和功能,从而为真核生物中Mre11/Rad50介导同源重组修复机制提供启示。
     本研究中,我们首先克隆了S.tokodaii中HerA基因,并在大肠杆菌中异源表达和纯化了HerA蛋白(StoHerA)。在用分子筛纯化过程中我们发现StoHerA可以以六聚体或者七聚体的形式存在。ATPase活性检测表明StoHerA蛋白在没有DNA存在的情况下也有很高的活性(平均每个HerA分子每分钟水解约4.25个ATP分子)。同时StoHerA的ATPase活性可以被ssDNA,5'-overhang和钝端双链DNA(blunt-ended DNA)激活,并且更依赖双链DNA,与S.acidocaldarius和Pyrococcus abyssi中的同源蛋白类似:DNA结合实验表明,StoHerA更倾向结合具有次级结构的Holliday junction(HJ)和splayed-arm DNA(Y-型DNA);解旋酶活性检测发现StoHerA能够高效地解开HJ和splayed-arm DNA底物,也能对钝端双链进行解链,但是解链效率较低。
     同时,我们克隆了S.tokodaii中Mre11基因,在大肠杆菌中异源表达并纯化了StoMre11蛋白,通过pull-down和酵母双杂交的方法,证明了StoHerA和StoMre11之间存在着相互作用,并且HerA的ATPase活性和解旋酶活性可以被Mre11所激活。
     另外,我们对HerA的四个保守位点进行了点突变分析,发现位于Walker A和Walker B保守结构域的K153或E355突变为丙氨酸会导致其ATP酶活性和解旋酶活性丧失,而D175A和R380A定点突变体的ATP酶活性和解旋酶活性则大大减弱。其中,有意思的是位于walker B保守结构域的E355位点,该位点突变为丙氨酸,不仅导致ATP酶活性和解旋酶活性的丧失,而且也导致DNA结合能力的丧失。
     其次,我们利用目前应用较广的两种穿梭载体-基于病毒载体SSV1构建的病毒载体pMJ0503和基于质粒pRN1构建的质粒载体pJ-在古菌S.solfataricusPH1-16中分别表达带有组氨酸标签的StoHerA及其点突变体StoHerA(D175A)蛋白,并利用Ni~(2+)-NTA琼脂糖柱进行纯化,免疫印迹检测及质谱鉴定结果表明野生型StoHerA及其突变体StoHerA(D175A)蛋白在S.solfataricus PH1-16中得到了表达;同时在用Ni~(2+)-NTA琼脂糖柱纯化StoHerA的洗脱液中我们也发现了一些可能与StoHerA结合的蛋白,对SDS-PAGE的蛋白条带进行质谱鉴定,结果表明其中一些蛋白与DNA代谢相关,如核酸酶NurA(SSO2248)、古菌REP家族蛋白(SSO1515)等:另外一些蛋白与糖脂代谢相关,如假想的酯酶(SSO2979),酰基辅酶A合成酶(SSO1806),葡萄糖脱氢酶(SSO3204)和赖氨酰tRNA合成酶(SSO2979)等。对于病毒载体我们也在洗脱液中发现了一些可能结合的蛋白,包括DNA代谢相关蛋白Rep(SSO1515);信号转导蛋白(SSO0029);酰基辅酶A代谢相关蛋白酰基辅酶A合成酶(SSO1806)和酰基辅酶A脱氢酶(SSO2877);糖脂代谢相关蛋白古菌果糖1,6-二磷酸酶(SSO0286),假想的酯酶(SSO2979)以及氨基酸合成相关的赖氨酰tRNA合成酶(SSO2979)等。以上对SDS-PAGE蛋白条带的质谱鉴定结果暗示着StoHerA可能在体内和这些蛋白之间存在着直接或间接的相互作用。
     接着我们通过二维双向电泳(2-DE)的方法对洗脱液中的成分进行进一步分离。虽然由于样品选择的原因,洗脱液中的样品通过2-DE分析后我们没有发现HerA蛋白,但是一些DNA损伤相关蛋白如单链结合蛋白SSB(SSO2364)、DNA解旋酶XRCC2/XPD(Ta0057)、ASNC家族RNA聚合酶、转录因子(SSO0606)和TenA家族转录激活子(SSO2089)出现在质粒载体表达系统的样品中。而在病毒载体表达系统中我们发现了ABC转运系统ATP结合蛋白SS03093,这个结果暗示了StoHerA可能与该系统蛋白相互作用,同时也暗示着StoHerA可能参与了一些物质的转运过程,这个推测需要进一步的证据来证实。
     免疫共沉淀的结果显示在HerA过量表达的S.solfataricus PH 1-16体内StoHerA和酰基辅酶A合成酶(SSO1806)一块被其兔血清抗体免疫共沉淀下来,说明这两个蛋白可能存在直接或间接的相互作用,这与S.solfataricus PH 1-16中StoHerA蛋白的表达时鉴定的结果一致。
     遗传分析表明,在S.solfataricus PH 1-16表达HerA蛋白的转化子中,阿拉伯糖基因和HerA基因ST2106一块整合到S.solfataricus PH 1-16的基因组上。而基因组中插入突变的pyrF基因则可能发生了回复突变或者是与载体上的野生型pyrF基因发生了同源交换。
Archaea,like bacteria and eukaryotes,is a fundamentally distinct domain of life and it has been proved to be a mosaic of bacteria and eukaryotes:their core metabolic pathways resemble those of bacteria whereas their information-processing processes are distinctly eukaryotic.These organisms commonly reside in harsh conditions,like extremely high temperature,pressure,low pH or strong ionizing irradiation,or a combination of these,that threaten genome stability and produce various DNA damages.DNA double-strand break(DSB) is one of most severe damages in all organisms.If not properly processed,DSBs can cause genome instability and cells may turn to death.Organisms have evolved conserved mechanisms to repair DSBs, homologous recombination is one of the efficient pathways for processing DSBs.In bacteria,DSBs are repaired mainly by RecBCD,RecFOR and SbcC-SbcD complexes. Whereas eukaryotic Mre11/Rad50 complex(MR) with a third partner,Xrs2 in yeast and Nbs1 in vertebrates,is one of the main complexes that are involved in this process. However,the detailed mechanism is obscure.Mre11 and Rad50 homologues are present and conserved in the genomes of thermophilic archaea.Intriguingly,in many genomes of thermophilic archaea,Mre11 and Rad50 homologues are arranged in tandem together with two genes encoding a DNA helicase(HerA) and a nuclease (NurA).This gene organization indicates that HerA may functionally interact with this conserved complex.However,how HerA and NurA interact with Mre11 and Rad50 and what roles HerA and NurA play in Mre11/Rad50-mediated recombination pathway are still unclear now.In the present study,we will focus on the characterization of HerA from the hyperthermophilic archaeon Sulfolobus tokodaii (StoHerA) and the interaction between StoHerA and its related protein StoMre11 (Mre11 from S.tokodaii).By over-expression of StoHerA(or D175A) in the S. solfataricus PH1-16,we try to elucidate the function of StoHerA and biological pathway it may be involved in in vivo.These studies will give clues for the understanding of MRX complex-initiated DSB repair in eukarya.
     Firstly,we cloned herA gene from the hyperthermophilic archaeon S.tokodaii and expressed the protein(StoHerA) in Escherichia coli.After heat treatment and loading onto a Hitrap Q column,StoHerA was further purified by a superdex 200 gel filtration chromatography.Gel filtration analysis showed that StoHerA might form a hexamer or heptamer in solution.In order to know more about the biochemical properties of StoHerA,we assayed StoHerA enzymatic activities.Strong ATP hydrolysis activity was detected in the absence of DNA(4.25 ATP min~(-1) was hydrolyzed by one StoHerA molecule on the average).While 5'-overhang and blunt-ended dsDNA enhanced the ATPase activity strongly,only a slight stimulation was detected by ssDNA.These results showed that StoHerA was similar to HerA from S.acidocaldarius and MlaA(a homologue of HerA from Pyrococcus abyssi),regarding to the DNA dependence of the ATPase activity.The DNA binding ability of StoHerA was then determined by gel shift assay.The results indicated that StoHerA,like MlaA,prefers DNA substrates that have secondary structures.The helicase activity was assayed using dsDNA with 3'-overhang,5'-overhang,blunt-ended DNA,Holliday junction,and splayed-arm DNA substrates.StoHerA was able to unwind all of the substrates tested.It is interesting that StoHerA unwounds blunt-ended dsDNA,although with relatively low ability.Because in Mre11/Rad50 mediated repair of DSBs,a helicase should be present to generate 3'-overhang.StoHerA is therefore suitable to fulfil this function together with NurA,a 5'-3' nuclease linked to Mre11/Rad50.This result may indicate that the enzyme unwinds duplex DNA by direct interactions(helix destabilizing or active mechanism).Besides,StoHerA was able to unwind Holliday junction and splayed-arm DNA efficiently.These results indicate that StoHerA may be involved in the processing of recombination intermediates,which occurs in late stage of dsDNA break repair.StoHerA may also function in the migration of Holliday junctions,a process requiring enzymes binding and unwinding two dsDNA arms.
     Meanwhile,the mre11 gene was cloned from the hyperthermophilic archaeon S. tokodaii and expressed in E.coli.By pull-down assay and yeast two-hybrid analysis, we showed that the StoMre11 and StoHerA proteins had physical interaction.In addition,the ATPase and helicase activity of StoHerA were stimulated by StoMre11. In mammalian cells,it has been proposed that Mre11 is recruited to DNA damage site for repair,and possibly functions as part of the damage-signalling apparatus.It might be possible that,in archaea,through interaction with StoHerA,StoMre11 helps StoHerA localize to break point and improves its dsDNA unwinding activity.
     Furthermore,by site-directed mutagenesis,we found that the residues in the conserved motifs were all related to ATPase and helicase activities.Among them, K153 and E355 were essential for ATP hydrolysis.Interestingly,the conserved glutamic acid in Motif B was not only critical for the ATPase activity,but also essential for dsDNA binding.While loss or reduction of the ATPase or helicase activity of K153A,D175A,and R380A were perhaps solely related to the ATP hydrolysis,loss of the ATPase or helicase activity of E355A might be due to either the inactivation of ATP hydrolysis or the inability of dsDNA binding,or both.These results suggested that E355 and motifⅢmight be involved in coordination among ion chelating,ATP binding and hydrolysis,dsDNA binding,and helicase activities.
     Secondly,we used the modified plasmid vector pJ to express StoHerA in S. solfataricus PH1-16.The transformants were obtained and StoHerA protein was purified by Ni~(2+)-NTA agarose column chromatograph.Interestingly,a few closely related proteins were eluted together with StoHerA,for example,SsoNurA (SSO2248),Archaeal PaREP1,PaREP8(SSO1515).And some seemingly unrelated proteins,for example,esterase_lipase(SSO2979),fructose-1,6-bisphosphatase (SSO0286),were also eluted.Using the same method,the viral vector pMJ0503-StoHerA(D175A) was transformed into S.solfataricus PH1-16 for expression his-tagged D175A.A few proteins were co-eluted with D175A in the elution.These proteins included Archaeal PaREP1,PaREP8(SSO1515), signal-transduction protein(SSO0029),acyl-CoA synthetase(SSO1806),acyl-CoA dehydrogenase(SSO2877),esterase lipase(SSO2979),fructose-1,6-bisphosphatase (SSO0286) and lysyl-tRNA synthetase(SSO0090).
     Further,we performed two-dimension electrophoresis(2-DE) to analysis these proteins which were co-eluted with StoHerA.We did not find the StoHerA protein in sample from either plamid vector or viral vector.However,proteins such as single-stranded DNA binding protein(SSB)(SSO2364),AAA~+ ATPase family protein (SSO0176),RNA polymerase transcription factors(SSO0606) and TenA family transcription regulator(SSO0606),which might be involved in DNA repair,were found in the sample from the plasmid vector.In the sample uisng the viral vector system,we found ABC transporter ATP binding protein(SSO3093) and AAA ATPase family protein(SSO0176) besides some seeming unrelated protein.
     Moreover,by co-immunoprecipitation assay,we found that acyl-CoA synthetase (SSO1806) was able to be co-immunoprecipitated with StoHerA or SsoHerA.This result suggested that acyl-CoA synthetase(SSO1806) might interact with StoHerA or SsoHerA in vivo,in accordance with the results from 2-DE.
     By PCR with designed primers,we found that the arabinose promoter together with the gene for StoHerA has been integrated into the genome,while the wild type gene for pyrF in the vector has replaced the pyrF in the S.solfataricus PH1-16 which was mutated by a insertion sequence.This results indicated that our vector based on pJ might potentially be used for gene knock out which could be suitable for uracil selection,thus had a wild host range for application,although we need to investigate the location in the future.
引文
1.Fox,G.E.,et al.,Classification of methanogenic bacteria by 16S ribosomal RNA characterization.Proc Natl Acad Sci U S A,1977.74(10):p.4537-4541.
    2.Woese,C.R.and G.E.Fox,Phylogenetic structure of the prokaryotic domain:the primary kingdoms.Proc Natl Acad Sci U S A,1977.74(11):p.5088-90.
    3.Woese,C.R.,O.Kandler,and M.L.Wheelis,Towards a natural system of organisms:proposal for the domains Archaea,Bacteria,and Eucarya.Proc Natl Acad Sci U S A,1990.87(12):p.4576-9.
    4.Huber,R.,H.Huber,and K.O.Stetter,Towards the ecology of hyperthermophiles:biotopes,new isolation strategies and novel metabolic properties.FEMS Microbiol Rev,2000.24(5):p.615-23.
    5.Barns,S.M.,et al.,Perspectives on archaeal diversity,thermophily and monophyly from environmental rRNA sequences.Proc Natl Acad Sci U S A,1996.93(17):p.9188-93.
    6.Huber,H.,et al.,A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont.Nature,2002.417(6884):p.63-7.
    7.Baumann,C.,et al.,Estimation of genome sizes of hyperthermophiles.Extremophiles,1998.2(2):p.101-8.
    8.Brown,J.R.and W.F.Doolittle,Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.Proc Natl Acad Sci U S A,1995.92(7):p.2441-5.
    9.Allers,T.and M.Mevarech,Archaeal genetics-the third way.Nat Rev Genet,2005.6(1):p.58-73.
    10.Edgell,D.R.and W.F.Doolittle,Archaea and the origin(s) of DNA replication proteins.Cell,1997.89(7):p.995-8.
    11.Bell,S.D.and S.P.Jackson,Mechanism and regulation of transcription in archaea.Curr Opin Microbiol,2001.4(2):p.208-13.
    12.Kelman,L.M.and Z.Kelman,Archaea:an archetype for replication initiation studies? Mol Microbiol,2003.48(3):p.605-15.
    13.Sandman,K.and J.N.Reeve,Structure and functional relationships of archaeal and eukaryal histones and nucleosomes.Arch Microbiol,2000.173(3):p.165-9.
    14.Sartorius-Neef,S.and F.Pfeifer,In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum.Mol Microbiol,2004.51(2):p.579-88.
    15.Norais,C.,et al.,Genetic and physical mapping of DNA replication origins in Haloferax volcanii.PLoS Genet,2007.3(5):p.e77.
    16.Verhees,C.H.,et al.,The unique features of glycolytic pathways in Archaea.Biochem J,2003.375(Pt 2):p.231-46.
    17.Vieille,C.and G.J.Zeikus,Hyperthermophilic enzymes:sources,uses,and molecular mechanisms for thermostability.Microbiol Mol Biol Rev,2001.65(1):p.1-43.
    18.Niehaus,F.,et al.,Extremophiles as a source of novel enzymes for industrial application.Appl Microbiol Biotechnol,1999.51(6):p.711-29.
    19.Valentine,D.L.and W.S.Reeburgh,New perspectives on anaerobic methane oxidation.Environ Microbiol,2000.2(5):p.477-84.
    20.Pancost,R.D.,et al.,Lipid biomolecules in silica sinters:indicators of microbial biodiversity.Environ Microbiol,2005.7(1):p.66-77.
    21.Suzuki,T.,et al.,Sulfolobus tokodaii sp.nov.(f.Sulfolobus sp.strain 7),a new member of the genus Sulfolobus isolated from Beppu Hot Springs,Japan.Extremophiles,2002.6(1):p.39-44.
    22.Kawarabayasi,Y.,et al.,Complete genome sequence of an aerobic thermoacidophilic crenarchaeon,Sulfolobus tokodaii strain7.DNA Res,2001.8(4):p.123-40.
    23.Paques,F.and J.E.Haber,Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.Microbiol Mol Biol Rev,1999.63(2):p.349-404.
    24.Khanna,K.K.and S.P.Jackson,DNA double-strand breaks:signaling,repair and the cancer connection.Nat Genet,2001.27(3):p.247-54.
    25.Helleday,T.,et al.,DNA double-strand break repair:from mechanistic understanding to cancer treatment.DNA Repair(Amst),2007.6(7):p.923-35.
    26.O'Driscoll,M.and P.A.Jeggo,The role of double-strand break repair-insights from human genetics.Nat Rev Genet,2006.7(1):p.45-54.
    27.Karran,P.,DNA double strand break repair in mammalian cells.Curr Opin Genet Dev,2000.10(2):p.144-50.
    28.Arnaudeau,C.,C.Lundin,and T.Helleday,DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells.J Mol Biol,2001.307(5):p.1235-45.
    29.Michel,B.,et al.,Rescue of arrested replication forks by homologous recombination.Proc Natl Acad Sci U SA,2001.98(15):p.8181-8.
    30.d'Adda di Fagagna,F.,et al.,A DNA damage checkpoint response in telomere-initiated senescence.Nature,2003.426(6963):p.194-8.
    31.Haber,J.E.,The many interfaces of Mrell.Cell,1998.95(5):p.583-6.
    32.Kowalczykowski,S.C.,et al.,Biochemistry of homologous recombination in Escherichia coli.Microbiol Rev,1994.58(3):p.401-65.
    33.Karagiannis,T.C.and A.El-Osta,Double-strand breaks:signaling pathways and repair mechanisms.Cell Mol Life Sci,2004.61(17):p.2137-47.
    34.Sonoda,E.,et al.,Differential usage of non-homologous end-joining and homologous recombination in double strand break repair.DNA Repair(Amst),2006.5(9-10):p.1021-9.
    35.Dudasova,Z.,A.Dudas,and M.Chovanec,Non-homologous end-joining factors of Saccharomyces cerevisiae.FEMS Microbiol Rev,2004.28(5):p.581-601.
    36.Walker,J.R.,R.A.Corpina,and J.Goldberg,Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair.Nature,2001.412(6847):p.607-14.
    37.Cary,R.B.,et al.,A central region of Ku80 mediates interaction with Ku70 in vivo.Nucleic Acids Res,1998.26(4):p.974-9.
    38.Singleton,B.K.,et al.,The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit.Mol Cell Biol,1999.19(5):p.3267-77.
    39.Falck,J.,J.Coates,and S.P.Jackson,Conserved modes of recruitment of ATM,ATR and DNA-PKcs to sites of DNA damage.Nature,2005.434(7033):p.605-11.
    40.Chen,B.P.,et al.,Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks.J Biol Chem,2005.280(15):p.14709-15.
    41.Chan,D.W.,et al.,Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks.Genes Dev,2002.16(18):p.2333-8.
    42.Soubeyrand,S.,et al.,Threonines 2638/2647 in DNA-PK are essential for cellular resistance to ionizing radiation.Cancer Res,2003.63(6):p.1198-201.
    43.Chen,B.P.,et al.,Ataxia telangiectasia mutated(ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break.J Biol Chem,2007.282(9):p.6582-7.
    44.Ma,Y.,et al.,Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination.Cell,2002.108(6):p.781-94.
    45.van Gent,D.C.,J.H.Hoeijmakers,and R.Kanaar,Chromosomal stability and the DNA double-stranded break connection.Nat Rev Genet,2001.2(3):p.196-206.
    46.Ahnesorg,P.,P.Smith,and S.P.Jackson,XLF interacts with the XRCC4-DNA ligase Ⅳ complex to promote DNA nonhomologous end-joining.Cell,2006.124(2):p.301-13.
    47.Zhu,J.,et al.,Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice.Curr Biol,2001.11(2):p.105-9.
    48.Luo,G.,et al.,Disruption of mRad50 causes embryonic stem cell lethality,abnormal embryonic development,and sensitivity to ionizing radiation.Proc Natl Acad Sci U S A,1999.96(13):p.7376-81.
    49.Harrington,J.J.and M.R.Lieber,Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases:implications for nucleotide excision repair Genes Dev,1994.8(11):p.1344-55.
    50.Weterings,E.and D.J.Chen,The endless tale of non-homologous end-joining.Cell Res,2008.18(1):p.114-24.
    51.Szostak,J.W.,et al.,The double-strand-break repair model for recombination.Cell,1983.33(1):p.25-35.
    52.Connelly,J.C.,et al.,Overexpression,purification,and characterization of the SbcCD protein from Escherichia coli.J Biol Chem,1997.272(32):p.19819-26.
    53.Connelly,J.C.,E.S.de Lean,and D.R.Leach,DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli.Nucleic Acids Res,1999.27(4):p.1039-46.
    54.Wu,N.Z.,et al.,Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue.Cancer Res,1993.53(16):p.3765-70.
    55.Anderson,D.G.and S.C.Kowalczykowski,The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme.Genes Dev,1997.11(5):p.571-81.
    56.Roca,A.I.and M.M.Cox,RecA protein:structure,function,and role in recombinational DNA repair Prog Nucleic Acid Res Mol Biol,1997.56:p.129-223.
    57.Whitby,M.C.and R.G.Lloyd,Targeting Holliday junctions by the RecG branch migration protein of Escherichia coli.J Biol Chem,1998.273(31):p.19729-39.
    58.Connolly,B.,et al.,Resolution of Holliday junctions in vitro requires the Escherichia coli ruvC gene product.Proc Natl Acad Sci U S A,1991.88(14):p.6063-7.
    59.Smith,G.R.,Homologous recombination in E.coli:multiple pathways for multiple reasons.Cell,1989.58(5):p.807-9.
    60.Kowalczykowski,S.C.,Initiation of genetic recombination and recombination-dependent replication.Trends Biochem Sci,2000.25(4):p.156-65.
    61.Ivancic-Bace,I.,et al.,RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli.Genetics,2003.163(2):p.485-94.
    62.Amundsen,S.K.and G.R.Smith,Interchangeable parts of the Escherichia coli recombination machinery.Cell,2003.112(6):p.741-4.
    63.Khakhar,R.R.,et al.,RecQ helicases:multiple roles in genome maintenance.Trends Cell Biol,2003.13(9):p.493-501.
    64.Bachrati,C.Z.and I.D.Hickson,RecQ helicases:suppressors of tumorigenesis and premature aging.Biochem J,2003.374(Pt 3):p.577-606.
    65.D'Amours,D.and S.P.Jackson,The Mre11 complex:at the crossroads of dna repair and checkpoint signalling.Nat Rev Mol Cell Biol,2002.3(5):p.317-27.
    66.Connelly,J.C.and D.R.Leach,Tethering on the brink:the evolutionarily conserved Mre11-Rad50complex.Trends Biochem Sci,2002.27(8):p.410-8.
    67.Jackson,S.P.,Sensing and repairing DNA double-strand breaks.Carcinogenesis,2002.23(5):p.687-96.
    68.Hopfner,K.P.,et al.,Structural biology of Rad50 ATPase:ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily.Cell,2000.101(7):p.789-800.
    69.Hopfner,K.P.and J.A.Tainer,Rad50/SMC proteins and ABC transporters:unifying concepts from high-resolution structures.Curr Opin Struct Biol,2003.13(2):p.249-55.
    70.Moncalian,G.,et al.,The rad50 signature motif:essential to ATP binding and biological function.J Mol Biol,2004.335(4):p.937-51.
    71.Anderson,D.E.,et al.,Structure of the Rad50 x Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy.J Biol Chem,2001.276(40):p.37027-33.
    72.Paull,T.T.and M.Gellert,The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks.Mol Cell,1998.1(7):p.969-79.
    73.Hopfner,K.P.,et al.,Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase.Cell,2001.105(4):p.473-85.
    74.Trujillo,K.M.and P.Sung,DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50~*Mre11 complex.J Biol Chem,2001.276(38):p.35458-64.
    75.Lee,J.H.,et al.,Regulation of Mre11/Rad50 by Nbs1:effects on nucleotide-dependent DNA binding and association with ataxia-telangiectasia-like disorder mutant complexes.J Biol Chem,2003.278(46):p.45171-81.
    76.Trujillo,K.M.,et al.,Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends.J Biol Chem,2003.278(49):p.48957-64.
    77.Krogh,B.O.and L.S.Symington,Recombination proteins in yeast.Annu Rev Genet,2004.38:p.233-71.
    78.Williams,R.S.,et al.,Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair Cell,2008.135(1):p.97-109.
    79.Paull,T.T.and J.H.Lee,The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM,Cell Cycle,2005.4(6):p.737-40.
    80.Lee,J.H.and T.T.Paull,ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex.Science,2005.308(5721):p.551-4.
    81.You,Z.,et al.,ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1.Mol Cell Biol,2005.25(13):p.5363-79.
    82.Shiloh,Y.,ATM and related protein kinases:safeguarding genome integrity.Nat Rev Cancer,2003.3(3):p.155-68.
    83.Williams,R.S.,J.S.Williams,and J.A.Tainer,Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery,double-strand break signaling,and the chromatin template.Biochem Cell Biol,2007.85(4):p.509-20.
    84.Bressan,D.A.,et al.,Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11.Genetics,1998.150(2):p.591-600.
    85.Krogh,B.O.,et al.,Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity.Genetics,2005. 171(4):p.1561-70.
    86.Lewis,L.K.,et al.,Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells.Genetics,2004.166(4):p.1701-13.
    87.Zhu,Z.,et al.,Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.Cell,2008.134(6):p.981-94.
    88.Mimitou,E.P.and L.S.Symington,Sae2,Exo1 and Sgs1 collaborate in DNA double-strand break processing.Nature,2008.455(7214):p.770-4.
    89.Gangloff,S.,C.Soustelle,and F.Fabre,Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases.Nat Genet,2000.25(2):p.192-4.
    90.van Brabant,A.J.,et al.,Binding and melting of D-loops by the Bloom syndrome helicase.Biochemistry,2000.39(47):p.14617-25.
    91.Wu,L.and I.D.Hickson,The Bloom's syndrome helicase suppresses crossing over during homologous recombination.Nature,2003.426(6968):p.870-4.
    92.Karmakar,P.,et al.,BLM is an early responder to DNA double-strand breaks.Biochem Biophys Res Commun,2006.348(1):p.62-9.
    93.Ogawa,T.,et al.,Similarity of the yeast RAD51 filament to the bacterial RecA filament.Science,1993.259(5103):p.1896-9.
    94.Petukhova,G.,S.Stratton,and P.Sung,Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins.Nature,1998.393(6680):p.91-4.
    95.Baumann,P.,F.E.Benson,and S.C.West,Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro.Cell,1996.87(4):p.757-66.
    96.Benson,F.E.,P.Baumann,and S.C.West,Synergistic actions of Rad51 and Rad52 in recombination and DNA repair.Nature,1998.391(6665):p.401-4.
    97.New,J.H.,et al.,Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A.Nature,1998.391(6665):p.407-10.
    98.Sung,P.,Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase.Genes Dev,1997.11(9):p.1111-21.
    99.White,M.F.,et al.,Recognition and manipulation of branched DNA structure by junction-resolving enzymes.J Mol Biol,1997.269(5):p.647-64.
    100.Liu,Y.,et al.,RAD51C is required for Holliday junction processing in mammalian cells.Science,2004.303(5655):p.243-6.
    101.de los Santos,T.,et al.,The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast.Genetics,2003.164(1):p.81-94.
    102.Whitby,M.C.,F.Osman,and J.Dixon,Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4.J Biol Chem,2003.278(9):p.6928-35.
    103.Harmon,F.G,R.J.DiGate,and S.C.Kowalczykowski,RecQ helicase and topoisomerase Ⅲcomprise a novel DNA strand passage function:a conserved mechanism for control of DATA recombination.Mol Cell,1999.3(5):p.611-20.
    104.Ip,S.C.,et al.,Identification of Holliday junction resolvases from humans and yeast.Nature,2008.456(7220):p.357-61.
    105.Bult,C.J.,et al.,Complete genome sequence of the methanogenic archaeon,Methanococcus jannaschii.Science,1996.273(5278):p.1058-73.
    106.Aravind,L.,D.R.Walker,and E.V.Koonin,Conserved domains in DNA repair proteins and evolution of repair systems.Nucleic Acids Res,1999.27(5):p.1223-42.
    107.Seitz,E.M.,C.A.Haseltine,and S.C.Kowalczykowski,DNA recombination and repair in the archaea.Adv Appl Microbiol,2001.50:p.101-69.
    108.Constantinesco,F.,et al.,A bipolar DNA helicase gene,herA,clusters with rad50,mre11 and nurA genes in thermophilic archaea.Nucleic Acids Res,2004.32(4):p.1439-47.
    109.Hopfner,K.P.,et al.,Mre11 and Rad50 from Pyrococcus furiosus:cloning and biochemical characterization reveal an evolutionarily conserved multiprotein machine.J Bacteriol,2000.182(21):p.6036-41.
    110.Manzan,A.,et al.,MlaA,a hexameric ATPase linked to the Mre11 complex in archaeal genomes.EMBO Rep,2004.5(1):p.54-9.
    111.Constantinesco,F.,P.Forterre,and C.Elie,NurA,a novel 5'-3' nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea.EMBO Rep,2002.3(6):p.537-42.
    112.Iyer,L.M.,et al.,Comparative genomics of the FtsK-HerA superfamily of pumping ATPases:implications for the origins of chromosome segregation,cell division and viral capsid packaging.Nucleic Acids Res,2004.32(17):p.5260-79.
    113.Frols,S.,et al.,Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage.J Bacteriol,2007.189(23):p.8708-18.
    114.Quaiser,A.,et al.,The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius.BMC Mol Biol,2008.9:p.25.
    115.Hopkins,B.B.and T.T.Paull,The P.furiosus mre11/rad50 complex promotes 5' strand resection at a DNA double-strand break.Cell,2008.135(2):p.250-60.
    116.Seitz,E.M.,et al.,RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange.Genes Dev,1998.12(9):p.1248-53.
    117.Yang,S.,et al.,Archaeal RadA protein binds DNA as both helical filaments and octameric rings.J Mol Biol,2001.314(5):p.1077-85.
    118.Komori,K.,et al.,Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus.J Biol Chem,2000.275(43):p.33782-90.
    119.Fujikane,R.,et al.,Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon,Pyrococcus furiosus.J Biol Chem,2005.280(13):p.12351-8.
    120.Fujikane,R.,H,Shinagawa,and Y.Ishino,The archaeal Hjm helicase has recQ-like functions,and may be involved in repair of stalled replication fork.Genes Cells,2006.11(2):p.99-110.
    121.Hishida,T.,et al.,Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks.Genes Dev,2004.18(15):p.1886-97.
    122.Guy,C.P.and E.L.Bolt,Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands.Nucleic Acids Res,2005.33(11):p.3678-90.
    123.Komori,K.,et al.,Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks.J Biol Chem,2004.279(51):p.53175-85.
    124.Richards,J.D.,et al.,Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains.J Biol Chem,2008.283(8):p.5118-26.
    125.Komori,K.,et al.,Biochemical characterization of the hjc holliday junction resolvase of Pyrococcus furiosus.Nucleic Acids Res,2000.28(22):p.4544-51.
    126.Daiyasu,H.,et al.,Hjc resolvase is a distantly related member of the type Ⅱ restriction endonuclease family.Nucleic Acids Res,2000.28(22):p.4540-3.
    127.Kvaratskhelia,M.and M.F.White,Two Holliday junction resolving enzymes in Sulfolobus solfataricus.J Mol Biol,2000.297(4):p.923-32.
    128.Middleton,C.L.,et al.,Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje.Nucleic Acids Res,2004.32(18):p.5442-51.
    129.Matson,S.W.,D.W.Bean,and J.W.George,DNA helicases:enzymes with essential roles in all aspects of DNA metabolism.Bioessays,1994.16(1):p.13-22.
    130.Patel,S.S.and I.Donmez,Mechanisms of helicases.J Biol Chem,2006.281(27):p.18265-8.
    131.Roman,L.J.and S.C.Kowalczykowski,Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay.Biochemistry,1989.28(7):p.2863-73.
    132.Taylor,A.F.and G.R.Smith,Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli.J Mol Biol,1985.185(2):p.431-43.
    133.Tuteja,N.and R.Tuteja,Unraveling DNA helicases.Motif,structure,mechanism and function.Eur J Biochem,2004.271(10):p.1849-63.
    134.Stasiak,A.,et al.,The Escherichia coli RuvB branch migration protein forms double hexameric rings around DNA.Proc Natl Acad Sci U S A,1994.91(16):p.7618-22.
    135.Seigneur,M.,et al.,RuvAB acts at arrested replication forks.Cell,1998.95(3):p.419-30.
    136.Yarranton,G.T.and M.L.Gefter,Enzyme-catalyzed DNA unwinding:studies on Escherichia coli rep protein.Proc Natl Acad Sci U S A,1979.76(4):p.1658-62.
    137.Delagoutte,E.and P.H.von Hippel,Helicase mechanisms and the coupling of helicases within macromolecular machines.Part Ⅰ:Structures and properties of isolated helicases.Q Rev Biophys,2002.35(4):p.431-78.
    138.Lohman,T.M.and K.P.Bjornson,Mechanisms of helicase-catalyzed DNA unwinding.Annu Rev Biochem,1996.65:p.169-214.
    139.Ali,J.A.and T.M.Lohman,Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase.Science,1997.275(5298):p.377-80.
    140.Mechanic,L.E.,M.C.Hall,and S.W.Matson,Escherichia coli DNA helicase Ⅱ is active as a monomer.J Biol Chem,1999.274(18):p.12488-98.
    141.Bianco,P.R.and S.C.Kowalczykowski,Translocation step size and mechanism of the RecBC DNA helicase.Nature,2000.405(6784):p.368-72.
    142.Brock,T.D.,et al.,Sulfolobus:a new genus of sulfur-oxidizing bacteria living at low pH and high temperature.Arch Mikrobiol,1972.84(1):p.54-68.
    143.Snijders,A.P.,et al.,Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map,stable isotope labelling and DNA microarray analysis.Proteomies,2006.6(5):p.1518-29.
    144.Bell,S.D.,et al.,Temperature,template topology,and factor requirements of archaeal transcription.Proc Natl Acad Sci U S A,1998.95(26):p.15218-22.
    145.Condo,I.,et al.,Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus.Mol Microbiol,1999.34(2):p.377-84.
    146.Duggin,I.G.and S.D.Bell,The chromosome replication machinery of the archaeon Sulfolobus solfataricus.J Biol Chem,2006.281(22):p.15029-32.
    147.Berkner,S.and G.Lipps,Genetic tools for Sulfolobus spp.:vectors and first applications.Arch Microbiol,2008.190(3):p.217-30.
    148.She,Q.,et al.,The complete genome of the crenarchaeon Sulfolobus solfataricus P2.Proc Natl Acad Sci U S A,2001.98(14):p.7835-40.
    149.Chen,L,et al.,The genome of Sulfolobus acidocaldarius,a model organism of the Crenarchaeota.J Bacteriol,2005.187(14):p.4992-9.
    150.Andersson,A.F.,et al.,Global analysis of mRNA stability in the archaeon Sulfolobus.Genome Biol,2006.7(10):p.R99.
    151.Lundgren,M.and R.Bernander,Genome-wide transcription map of an archaeal cell cycle.Proc Natl Acad Sci U S A,2007.104(8):p.2939-44.
    152.Chong,P.K.and P.C.Wright,Identification and characterization of the Sulfolobus solfataricus P2proteome.J Proteome Res,2005.4(5):p.1789-98.
    153.Barry,R.C.,et al.,Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2.Electrophoresis,2006.27(14):p.2970-83.
    154.Aucelli,T.,et al.,A spreadable,non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus.Nucleic Acids Res,2006.34(17):p.e114.
    155.Cannio,R.,et al.,An autonomously replicating transforming vector for Sulfolobus solfataricus.J Bacteriol,1998.180(12):p.3237-40.
    156.Aravalli,R.N.and R.A.Garrett,Shuttle vectors for hyperthermophilic archaea.Extremophiles,1997.1(4):p.183-91.
    157.Contursi,P.,et al.,Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus.Extremophiles,2004.8(5):p.385-91.
    158.Jonuscheit,M.,et al.,A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector.Mol Microbiol,2003.48(5):p.1241-52.
    159.Stedman,K.M.,et al.,Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus:construction and testing of viral shuttle vectors.Genetics,1999.152(4):p.1397-405.
    160.Albers,S.V.,et al.,Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.Appl Environ Microbiol,2006.72(1):p.102-11.
    161.Berkner,S.,et al.,Small multicopy,non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus,model organisms of the(cren-)archaea.Nucleic Acids Res,2007.35(12):p.e88.
    162.Cline,S.W.and W.F.Doolittle,Efficient transfection of the archaebacterium Halobacterium halobium.J Bacteriol,1987.169(3):p.1341-4.
    163.Charlebois,R.L.,et al.,Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium.Proc Natl Acad Sci U S A,1987.84(23):p.8530-4.
    164.Patel,G.B.,et al.,Natural and Electroporation-Mediated Transformation of Methanococcus voltae Protoplasts.Appl Environ Microbiol,1994.60(3):p.903-907.
    165.Lucas,S.,et al.,Construction of a shuttle vector for,and spheroplast transformation of the hyperthermophilic archaeon pyrococcus abyssi.Appl Environ Microbiol,2002.68(11):p.5528-36.
    166.Schleper,C.,K.Kubo,and W.Zillig,The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus:demonstration of infectivity and of transfection with viral DNA.Proc Natl Acad Sci U S A,1992.89(16):p.7645-9.
    167.Metcalf,W.W.,et al.,A genetic system for Archaea of the genus Methanosarcina:liposome-mediated transformation and construction of shuttle vectors.Proc Natl Acad Sci U S A, 1997.94(6):p.2626-31.
    168.Arnold,H.P.,et al.,The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid anda virus.Mol Microbiol,1999.34(2):p.217-26.
    169.Kurosawa,N.and D.W.Grogan,Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome:properties and uses.FEMS Microbiol Lett,2005.253(1):p.141-9.
    170.Cammarano,P.,et al.,Insensitivity of archaebacterial ribosomes to protein synthesis inhibitors.Evolutionary implications.EMBO J,1985.4(3):p.811-6.
    171.Grogan,D.W.,Phenotypic characterization of the archaebacterial genus Sulfolobus:comparison of five wild-type strains.J Bacteriol,1989.171(12):p.6710-9.
    172.Aagaard,C.,et al.,A spontaneous point mutation in the single 23S rRNA gene of the thermophilic arachaeon Sulfolobus acidocaldarius confers multiple drug resistance.J Bacteriol,1994.176(24):p.7744-7.
    173.Sanz,J.L.,et al.,Using protein synthesis inhibitors to establish the phylogenetic relationships of the Sulfolobales order.J Mol Evol,1994.39(5):p.528-32.
    174.Cannio,R.,et al.,Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea:selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus.Extremophiles,2001.5(3):p.153-9.
    175.Grogan,D.W.and R.P.Gunsalus,Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway:results of biochemical-genetic study.J Bacteriol,1993.175(5):p.1500-7.
    176.Grogan,D.W.,Selectable mutant phenotypes of the extremely thermophilic archaebacterium Sulfolobus acidocaldarius.J Bacteriol,1991.173(23):p.7725-7.
    177.Kondo,S.,A.Yamagishi,and T.Oshima,Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid.J Bacteriol,1991.173(23):p.7698-700.
    178.Grogan,D.W.,Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius.J Bacteriol,1996.178(11):p.3207-11.
    179.Hansen,J.E.,A.C.Dill,and D.W.Grogan,Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius:intragenic recombination with minimal dependence on marker separation.J Bacteriol,2005.187(2):p.805-9.
    180.Reilly,M.S.and D.W.Grogan,Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange.J Bacteriol,2001.183(9):p.2943-6.
    181.Martusewitsch,E.,C.W.Sensen,and C.Schleper,High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements.J Bacteriol,2000.182(9):p.2574-81.
    182.Berkner,S.and G.Lipps,Mutation and reversion frequencies of different Sulfolobus species and strains.Extremophiles,2008.12(2):p.263-70.
    183.Cubellis,M.V.,et al.,Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene.Gene,1990.94(1):p.89-94.
    184.Worthington,P.,et al.,Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus.J Bacteriol,2003.185(2):p.482-8.
    185.Redder,P.and R.A.Garrett,Mutations and rearrangements in the genome of Sulfolobus solfataricus P2.J Bacteriol,2006.188(12):p.4198-206.
    186.Brugger,K.,et al.,Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements.Biochem Soc Trans,2004.32(Pt 2):p.179-83.
    187.Brugger,K.,et al.,Mobile elements in archaeal genomes.FEMS Microbiol Lett,2002.206(2):p.131-41.
    188.Schleper,C.,et al.,An insertion element of the extremely thermophilic archaeon Sulfolobus solfataricus transposes into the endogenous beta-galactosidase gene.Mol Gen Genet,1994.243(1):p.91-6.
    189.Grogan,D.W.,G.T.Carver,and J.W.Drake,Genetic fidelity under harsh conditions:analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius.Proc Natl Acad Sci U S A,2001.98(14):p.7928-33.
    190.Blount,Z.D.and D.W.Grogan,New insertion sequences of Sulfolobus:functional properties and implications for genome evolution in hyperthermophilic archaea.Mol Microbiol,2005.55(1):p.312-25.
    191.Berkner,S.and G.Lipps,An active nonautonomous mobile element in Sulfolobus islandicus REN1H1.J Bacteriol,2007.189(5):p.2145-9.
    192.Albers,S.V.and A.J.Driessen,Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome.Archaea,2008.2(3):p.145-9.
    193.Grogan,D.W.and J.E.Hansen,Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius.J Bacteriol,2003.185(4):p.1266-72.
    194.Prangishvili,D.A.,et al.,A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.FEBS Lett,1985.192(1):p.57-60.
    195.Sollner,S.,S.Berkner,and G.Lipps,Characterisation of the novel restriction endonuclease SuiI from Sulfolobus islandicus.Extremophiles,2006.10(6):p.629-34.
    196.Kletzin,A.,et al.,Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea.Genetics,1999.152(4):p.1307-14.
    197.Yeats,S.,P.McWilliam,and W.Zillig,A plasmid in the archaebacterium Sulfolobus acidocaldarius.EMBO J,1982.1(9):p.1035-1038.
    198.Grogan,D.,P.Palm,and W.Zillig,Isolate B12,which harbours a virus-like element,represents a new species of the archaebacterial genus Sulfolobus,Sulfolobus shibatae,sp.nov.Arch Microbiol,1990.154(6):p.594-9.
    199.Muskhelishvili,G.,P.Palm,and W.Zillig,SSV1-encoded site-specific recombination system in Sulfolobus shibatae.Mol Gen Genet,1993.237(3):p.334-42.
    200.Reiter,W.D.,P.Palm,and W.Zillig,Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol Ⅱ promoters.Nucleic Acids Res,1988.16(1):p.1-19.
    201.Keeling,P.J.,et al.,Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1.Plasmid,1996.35(2):p.141-4.
    202.Peng,X.,et al.,Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus.J Mol Biol,2000.303(4):p.449-54.
    203.Purschke,W.G.and G.Schafer,Independent replication of the plasmids pRN1 and pRN2 in the archaeon Sulfolobus islandicus.FEMS Microbiol Lett,2001.200(1):p.97-102.
    204.Berkner,S.and G.Lipps,Characterization of the transcriptional activity of the cryptic plasmid pRN1 from Sulfolobus islandicus REN1H1 and regulation of its replication operon.J Bacteriol,2007.189(5):p.1711-21.
    205.Zolghadr,B.,et al.,Identification of a system required for the functional surface localization of sugar binding proteins with class Ⅲ signal peptides in Sulfolobus solfataricus.Mol Microbiol,2007.64(3):p.795-806.
    206.Lubelska,J.M.,et al.,Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.Extremophiles,2006.10(5):p.383-91.
    207.Donmez,I.and S.S.Patel,Mechanisms of a ring shaped helicase.Nucleic Acids Res,2006.34(15):p.4216-24.
    208.Singleton,M.R.,et al.,Crystallization and preliminary X-ray analysis of RecG,a replication-fork reversal helicase from Thermotoga maritima complexed with a three-way DNA junction.Acta Crystallogr D Biol Crystallogr,2001.57(Pt 11):p.1695-6.
    209.Luban,J.and S.P.Goff,The yeast two-hybrid system for studying protein-protein interactions.Curr Opin Biotechnol,1995.6(1):p.59-64.
    210.Johzuka,K.and H.Ogawa,Interaction of Mre11 and Rad50:two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae.Genetics,1995.139(4):p.1521-32.
    211.Chamankhah,M.and W.Xiao,Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance.Nucleic Acids Res,1999.27(10):p.2072-9.
    212.Wei,T.,et al.,Physical and functional interaction between archaeal single-stranded DNA-binding protein and the 5'-3' nuclease NurA.Biochem Biophys Res Commun,2008.367(3):p.523-9.
    213.Frols,S.,et al.,UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation.Mol Microbiol,2008.70(4):p.938-52.
    214.Ponte-Sucre,A.,Availability and applications of ATP-binding cassette(ABC) transporter blockers.Appl Microbiol Biotechnol,2007.76(2):p.279-86.
    215.Albers,S.V.,et al.,Insights into ABC transport in archaea.J Bioenerg Biomernbr,2004.36(1):p.5-15.
    216.Lee,S.J.,et al.,The ABC of binding-protein-dependent transport in Archaea.Trends Microbiol,2007.15(9):p.389-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700