基于microRNA的RNA干扰抗乙型肝炎病毒的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙肝病毒感染是危害极大的全球性公共卫生问题,全世界约3.5亿感染者,每年死于乙肝及其并发症的人数超过100万人,目前仍缺乏有效的治疗药物。
     RNA干扰技术的应用使人们在抗病毒治疗领域有了新的发现,现已显示出潜在的应用前景。microRNA在小分子RNA研究中扮演着重要角色,可以通过与靶mRNA完全互补产生特异性切割或与3’UTR区非特异互补而使翻译过程受到抑制,从而达到沉默靶基因的目的。
     本研究利用RNA pol II启动子产生的miR155框架体系,构建针对HBV S区,X区的内源性miRNA,并经分子克隆方法产生针对S区的双靶点串联表达载体,体外转染hepG2.2.15细胞,结果表明对HBV的复制与表达均显示抑制作用。为体内研究奠定了基础。
Infection of Hepatitis B virus (HBV) is a severely world-wide public health problem. With more than 350 million people infected, Hepatitis B is widely prevalent and severely. Each year about 1 million deaths are commonly associated with cirrhosis, severe hepatitis or hepatocellular carcinoma (HCC).Although hepatitis B vaccines have been used for many years worldwide, HBV infection is still a big challenge to many countries and there is no ideal agent in the field of anti-HBV. Although recently some effective antiviral drugs have been developed, all of the treatments have their own shortages. Until now, interferon-αand nucleoside analogs, such as Iamivudine, are of the few drugs capable of inhibiting HBV replication. However, The recombinant interferons are suitable to few cases with HBV infection, and the low response efficiencies of patients with IFN in virology result in their limited usage. In addition lamivudine has been shown to have a inhibition of HBV replication, but the treatment may be failed due to the drug resistance causing by the escaping mutants with prolonged treatment. So, the need for new effective anti-HBV therapies is pressing.
     After antisensenucleic acids and ribozyme technology, RNA interference (RNAi) is a new gene therapy tool which play a important role in researching of virus, cancer, and genome function. It has high specificity and efficacy, by which double-stranded directs sequence-specific post-transcriptional silencing of homologous genes and the effective molecular is siRNA or miRNA. MicroRNAs (miRNAs) are an abundant class of small single-stranded non-coding RNAs (19-30 nucleotides long) that serve widespread functions in post-transcriptional gene silencing, induce the sequence-specific degradation of homologous messenger RNA (mRNA).
     The HBV genome is a partially double-stranded DNA molecule which has 3.2kb and replicates by reverse transcription of a pre-genomic RNA intermediate in a manner similar to that of the retroviruses. HBV genome overlaps obviously so that the synthesis of HBV proteins could be effectively inhibited by cutting its mRNA and pregenomic RNA on proper site.
     HepG2.2.15 cell line is a derivative of the human HepG2 hepatoma cell line, contains integrated HBV ayw DNA. This cell line can produce HBV mRNAs, antigens and viral particles and serve as a satisfactory in vitro model for investigation of HBV infection.
     Because polⅢis limited in application for its tissue specificity expression, we utilized pcDNA6.2-GW/EmGFP-miR vector which contain polⅡpromoter and express endogenous miRNA.
     In the present study, we developed miRNAs that specifically target the S antigen and X gene of HBV and explored the inhibitory effect of miRNAs on HBV replication and expression. The aim of this study was to provide some evidences for anti-HBV therapy by miRNA.
     Based on the sequence of HBV in GenBank two miRNAs were synthesized and cloned into pcDNA6.2-GW/EmGFP-miR. At the same time, unrelated miRNA was designed as control. After the construction of the recombinant expression vectors was confirmed by enzyme digestion, electrophoresis and gene sequencing, transfection into HepG 2.2.15 cells was carried out by liposome.
     The expression of HBsAg and HBeAg in the supernatant of HepG2.2.15 cells was assayed by enzyme-linked immunosorbentassay ( ELISA), the HBV DNA in the supernatant of HepG 2.2.15 cells was examined by Fluorescence Quantitative PCR(FC-PCR). The inhibitory effect of HBV gene expression and replication by the miRNAs was observed with different concentration of miRNAs and at the different time point post-transfection.
     The results are as following:
     1. One day after HepG 2.2.15 cells plating, HBsAg and HBeAg could be detected in cell culture media. The amount of HBsAg and HBeAg secretion increased with plating time prolonging.
     2. The expression vectors were transfected into HepG2 2.2.15 cells. The expression of HBsAg and HBeAg in the supernatant was inhibited at the different time point post-transfection. The peak of inhibitory effect was at 48h.
     3. The expression vectors were transfected into HepG 2.2.15 cells and inhibited the replication of HBV-DNA in the supernatant at the different time point post-transfection. The peak of inhibitory effect was at 48h.
     In summary, HBV-specific miRNA and exhibited high efficiency and specificity to suppress HBV gene replication and expression in HepG2.2.15 cells. Also, our results indicated that the anti-HBV effects of miRNAs were sequence- and dose-dependent.
引文
[1] W. M. Lee. Hepatitis B virus infection. N. Engl. J. Med. 337no. 1997;24,1733-1745.
    [2] J. Y. Lau and T. L. Wright. Molecular virology and pathogenesis of hepatitis B. Lancet. 1993;342(8883):1335-1340.
    [3] J. R. Wands and H. E. Blum. Primary hepatocellular carcinoma. N. Engl. J. Med. 1991;325(10):729-731.
    [4] Lee RC, Feinbaum RL, AmbrosV. The C.elegans heterochronic gene Lin-4 encodes smallRNAs with antisense complementarity to lin-14. Cell, 1993,75:843-854
    [5] Reinhart B J, Slack F J, Basson M.et aL. The 21-nucleotide let-7 RNA rogulates developmental timing in Caenorhabditis
    [6] Victor A, Bartel B, Bartel DP, et al.A uniform system for microRNA annotation[J]. RNA, 2003,9(3):277-279.
    [7] Lim LP, Lau NC,Weinstein EG, etc. The microRNAs of Caenorhabditis elegans[J]. Genes Dev 2003,17:991-1008.
    [8] Smallridge R. A small fortune [J]. Nat Rev Mol Cell Bio1, 2001,2:867.
    [9] Lau N C, Lim L P, Weinstein E G,et sLAn abundant class of tiny RNAs with probable regulatory role in Coenorhabditis elegans[J]. Science, 2001,294(5543):858-862
    [10] Lee Y, Kim M, Hen J, et al. MicroRNA genes are transcribed by RNA polymerise Il. EMBO J. 2004 Oct 13;23(20):4051
    [11] Lee Y, AhnC, Han J, et al.The nuclear RNese III Drosha inibates microRNA processing.Nature, 2003,425:415-419
    [12] Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res. 2008 Jan;25(1):72-86.
    [13] Kapadia S B, Brideau-Andersen A, Chisari F V. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. U.S.A. 2003;100(4):2014-2018.
    [14] Wilson, J. A., Jayasena, S., Khvorova, A. et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci. U.S.A. 2003;100(5):2783-2788.
    [15] G. A. Coburn and B. R. Cullen. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 2002;76(18):9225-9231.
    [16] I. M. Verma and N. Somia. Gene therapy-promises, problems and prospects. Nature. 1997;389(6648):239-242.
    [17] Mahato, R.I., Cheng, K., Guntaka, R.V.Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA.Expert Opin. Drug Deliv. 2005;2(1):3-28.
    [18] C. Seeger and W. S. Mason. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000;64(1):51-68.
    [19] Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1970;1(7649):695-698.
    [20] Blum HE, Zhang ZS, Galun E, von Weizs?cker F, Garner B, Liang TJ, Wands JR. Hepatitis B virus X protein is not central to the viral life cycle in vitro. J. Virol. 1992;66(2):1223-1227.
    [21] Yaginuma K, Shirakata Y, Kobayashi M, Koike K. Hepatitis B virus (HBV) particles are produced in a cell culture system by transient expression of transfected HBV DNA. Proc. Natl. Acad. Sci. U.S.A. 1987;84(9):2678-2682.
    [22] Shimazu T, Takada S, Ueno Y, Hayashi Y, Koike K. Post-transcriptional control of the level of mRNA by hepatitis B virus X gene in the transientexpression system using human hepatic cells. Genes Cells 1998;3(7):477-484.
    [23] J. Benn and R. J. Schneider. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc. Natl. Acad. Sci. U.S.A. 1994;91(22): 10350-10354.
    [24] Feitelson MA, Zhu MH, Duan LX, et al. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene .1993;8(5):1109-1117.
    [25] S. Takada, et al. Disruption of the function of tumorsuppressor gene p53 by the hepatitis B virus X protein and hepatocarcinogenesis. J. Cancer Res. Clin. Oncol. 1995;121(9-10):593-601.
    [26] Wang XW, Forrester K, Yeh H, et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. U.S.A. 1994;91(6):2230-2234.
    [27] Sirma H, Weil R, Rosmorduc O, et al. Cytosol is the prime compartment of hepatitis B virus X protein where it colocalizes with the proteasome. Oncogene. 1998;16(16):2051-2063.
    [28] S. Takada and K. Koike. X protein of hepatitis B virus resembles a serine protease inhibitor. Jpn. J. Cancer Res. 1990;81(12): 1191-1194.
    [29] Lee TH, Elledge SJ, Butel JS. Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J. Virol. 1995;69(2):1107-1114.
    [30] Chang C, Enders G, Sprengel R, Peters N, Varmus HE, Ganem D. Expression of the precore region of an avian hepatitis B virus is not required for viral replication. J. Virol. 1987;61(10):3322-3325.
    [31] Chen HS, Kew MC, Hornbuckle WE, et al. The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. J. Virol. 1992;66(9):5682-5684.
    [32] Milich DR, Chen MK, Hughes JL, et al. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence. J. Immunol. 1998;160(4):2013-2021.
    [33] Milich DR, James JE, Hughes, et al. Is a function of the secreted hepatitis B eantigen to induce immunologic tolerance in utero? Proc. Natl.Acad. Sci. U. S. A. 1990;87(17):6599-6603.
    [34] Ganem D, Pollack JR, Tavis J. Hepatitis B virus reverse transcriptase and its many roles in hepadnaviral genomic replication. Infect. Agents Dis. 1994;3(2-3):85-93.
    [35] J. Hu and C. Seeger. Expression and characterization of hepadnavirus reverse transcriptases. Methods Enzymol. 1996;275: 195-208.
    [36] R. Almeida and R. C. Allshire. RNA silencing and genome regulation. Trends Cell Biol. 2005;15(5):251-258.
    [37] Y. Zeng and B. R. Cullen. RNA interference in human cells is restricted to the cytoplasm. RNA. 2002;8(7):855-860.
    [38] Zhang H, Kolb FA, Jaskiewicz L, et al. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57-68.
    [39] Meister G,Landthaler M,Patkaniowska A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 2004;15(2):185-197.
    [40] G. Tang. siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 2005;30(2):106-114.
    [41] Jackson, A. L., Burchard, J., Schelter, J., et al. Widespread siRNA“off-target”transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179-1187.
    [42] Jackson AL, Burchard J, Schelter J, Chau BN, et al. Position-specific chemical modification of siRNAs reduces“off-target”transcript silencing. RNA 2006;12 (7):1197-1205.
    [43] Stark G R, Kerr I M, Williams B R, et al. How cells respond tointerferons. Annu. Rev. Biochem. 1998;67:227-264.
    [44] Akashi H, Miyagishi M, Yokota T et al. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol. Biosyst. 2005;1(5-6):382-390.
    [45] Watanabe T, Sudoh M, Miyagishi M et al. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. Gene Ther. 2006;13(11):883-892.
    [46] Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by shortinterfering RNAs. Nat. Cell Biol. 2003;5(9):834-839.
    [47] M. Sioud, et al. Suppression of immunostimulatory siRNAdriven innate immune activation by 2’-modified RNAs. Biochem. Biophys. Res. Commun. 2007;361(1):122-126.
    [48] C. R. Allerson, et al. Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 2005;48(4):901-904.
    [49] J. A. Hoerter and N. G. Walter. Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 2007;13(11):1887-1893.
    [50] Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically modified RNA. Biochemistry. 2003;42(26):7967-7975.
    [51] D.A. Braasch, Z. Paroo, A. Constantinescu, G. Ren, et al. Biodistri- bution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 2004;14(5):1139-1143.
    [52] Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31(11):2705-2716.
    [53] Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of anendogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-178.
    [54] Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Molec. Ther. 2006;13(3):494-505.
    [55] Peng J, Zhao Y, Mal J, et al. Inhibition of hepatitis B virus replication by various RNAi constructs and their pharmacodynamic properties.J. Gen. Virol. 2005;86(Pt 12):3227-3234.
    [56] Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 2005;23(8):1002-1007.
    [57] Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006;34(10):e73.
    [58] Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 2007;25(10):1149-1157.
    [59] Derfus AM, Chen AA, Bhatia SN, et al.Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem. 2007;18(5):1391-1396.
    [60] Lee SH, Kim SH, Park TG. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNAPEG conjugate and cationic fusogenic peptide. Biochem.Biophys. Res. Commun. 2007;357(2):511-516.
    [61] Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett. 2004;14(19):4975-4997.
    [62] McNamara JO 2nd, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 2006;24 (8):1005-1015.
    [63] Mahato RI, Rolland A, Tomlinson E.Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm. Res. 1997;14(7): 853-859.
    [64] Morrisey DV, Blanchard K,Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 2005;41(6):1349-1356.
    [65] Mahato, R. I., Smith, L. C., Rolland, A.Pharmaceutical perspectives of nonviral gene therapy. Adv. Genet. 1999;41:95-156.
    [66] Managit C, Kawakami S, Yamashita. F, Hashida M. Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes. J. Pharm. Sci. 2005;94(10):2266-2275.
    [67] Hattori Y, Kawakami S, Yamashita F,. Hashida M. Controlled biodistribution of galactosylated liposomes and incorporated probucol in hepatocyte-selective drug targeting. J. Control. Release. 2000;69(3): 369-377.
    [68] L. A. Sliedregt, et al. Design and synthesis of novel amphiphilic dendritic galactosides for selective targeting of liposomes to the hepatic asialoglycoprotein receptor. J. Med. Chem. 1999;42(4): 609-618.
    [69] F. Dasi, M. Benet, J. Crespo, A. Crespo and S.F. Alino, Asialofetuin liposome-mediated human alpha1-antitrypsin gene transfer in vivo results in stationary long-term gene expression. J. Mol. Med. 2001;79(4):205-212.
    [70] Kamps JA, Morselt HW, Swart PJ, Meijer DK, et al. Massive targeting of liposomes, surfacemodified with anionized albumins, to hepatic endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 1997; 94(21):11681-11685.
    [71] P. Opanasopit, M. Sakai, M. Nishikawa, S. Kawakami, et al. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J. Control. Release. 2002;80(1-3): 283-294.
    [72] Kawakami, Sato A, NishikawamI, et al. Mannose receptor-mediatedgene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther. 2000;7(4):292-299.
    [73] Yuan Zhang, Xian Rong Qi, Yan Gao, Lai Wei, et al. Mechanisms of co-modified liver-targeting liposomes as gene delivery carriers based on cellular uptake and antigens inhibition effect. J. Control. Release. 2007;117(2):281-290.
    [74] Han, S., Mahato, R. I., Sung, Y. K. et al. Development of biomaterials for gene therapy.Molec. Ther. 2000;2(4):302-317.
    [75] Santhakumaran LM, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res. 2004;32(7):2102-2112.
    [76] Hollins AJ, Benboubetra M, Omidi Y, et al. Evaluation of generation 2 and 3 poly (propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting the epidermal growth factor receptor. Pharm. Res. 2004;21(3),458-466.
    [77] Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyeth- ylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12(5): 461-466.
    [78] Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 2006;17(7):751-766.
    [79] Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 2005;7(1):E61-E77.
    [80] Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim. SW, Mahato RI. Novel branched poly(ethylenimine)-cholesterolwater-soluble lipopolymers for gene delivery.Biomacromolecules. 2002;3(6):1197-1207.
    [81] Wen WH, Liu JY, Qin WJ et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology. 2007;46(1):84-94.
    [82] Giladi H, Ketzinel-Gilad M, Rivkin L, et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Molec. Ther. 2003;8(5):769-776.
    [83] Klein C, Bock C T, Wedemeyer H, et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology. 2003;125(1):9-18.
    [84] O. Milhavet, et al. RNA interference in biology and medicine. Pharmacol. Rev. 2003;55(4):629-648.
    [85] Ui-Tei, K., Naito, Y., Takahashi, F., et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference.Nucleic Acids Res. 2004;32(3):936-948.
    [86] Naito, Y., Yamada, T., Ui-Tei, K., Morishita, S., and Saigo, K. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 32(Web Server issue): 2004;W124- W129.
    [87] B. Yuan, R. Latek, M. Hossbach, T. Tuschl and F. Lewitter, siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 32(Web Server issue): 2004;W130-W134.
    [88] Henschel A, Buchholz F, Habermann B. DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32(Web Server issue): 2004;W113-W120.
    [89] A.D. Judge, V. Sood, J. R. Shaw, D. Fang, K. McClintock, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 2005;23(4):457-462.
    [90] Dykxhoorn, D. M. Novina, C. D. and Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev., Mol. Cell Biol. 2003;4(6):457-467.
    [91] R M Schiffelers, M C Woodle, P V Scaria. Pharmaceutical prospects for RNA interference. Pharm. Res. 2004;21(1):1-7.
    [92] Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30(8):1757-1766 (2002). Chen, Cheng, and Mahato.
    [93] H. Hohjoh. RNA interference (RNA(i)) induction with various types of synthetic oligonucleotide duplexes in cultured human cells. FEBS Lett. 2002;521(1-3):195-199.
    [94] Konishi M, Wu CH, Wu GY. Inhibition of HBV replication by siRNA in a stable HBV-producing cell line. Hepatology. 2003;38(4):842-850.
    [95] Hamasaki K, Nakao K, Matsumoto K, et al. Short interfering RNA- directed inhibition of hepatitis B virus replication. FEBS Lett. 2003;543(1-3):51-54.
    [96] G. Y. Wu and C. H. Wu. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J. Biol. Chem. 1992;267(18):12436-12439.
    [97] Wu HL, Huang LR, Huang CC, et al. RNA interference- mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology 2005;128(3):708-716.
    [98] A. Shlomai and Y. Shaul. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. 2003;37(4):764-770.
    [99] Uprichard S L, Boyd B, Althage A, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc. Natl. Acad. Sci. U.S.A. 2005;102(3):773-778.
    [100] Ying C, De CE, Neyts J. Selective inhibition of hepatitis B virus replication by RNA interference. Biochem. Biophys. Res. Commun.2003;309 (2):482-484.
    [101] Chen Y, Du D, Wu J, et al. Inhibition of hepatitis B virus replication by stably expressed shRNA. Biochem. Biophys. Res. Commun. 2003;311(2):398- 404.
    [102] Liu J, Guo Y, Xue C F, et al. Effect of vector-expressed siRNA on HBV replication in hepatoblastoma cells. World J. Gastroenterol. 2004;(13):1898-1901.
    [103] Moore MD, McGarvey MJ, Russell RA, et al. Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors.J. Gene Med. 2005;7(7):918-925.
    [104] Ren G L, Bai X F, Zhang Y, et al. Stable inhibition of hepatitis B virus expression and replication by expressed siRNA. Biochem. Biophys. Res.Commun. 2005;335(4):1051-1059.
    [105] Cheng T L, Chang W W, Su I J, et al. Therapeutic inhibition of hepatitis B virus surface antigen expression by RNA interference. Biochem. Biophys. Res. Commun. 2005;336(3):820-830.
    [106] Brummelkamp T R, Bernards R, Agami R A, et al. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550-553.
    [107] Paddison P J, Caudy A A, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;6(8):948-58.
    [108] Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2002;9(3):1443-448.
    [109] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;11(6836):494-98.
    [110] Ni Q, Chen Z, Yao HP, et al.Inhibition of human La protein by RNAinterference downregulates hepatitis B virus mRNA in 2.2.15 cells. World J. Gastroenterol. 2004;10(14):2050-2054.
    [111] Yang ZG, Chen Z, Ni Q, et al. Inhibition of hepatitis B virus surface antigen expression by small hairpin RNA in vitro. World J. Gastroenterol. 2005;11(4):498-502.
    [112] Tomar RS, Matta H, Chaudhaty PM. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene. 2003;22(36):5712-5715.
    [113] LJ Zhao, H Jian, H Zhu .Specific gene inhibition by adenovirus- mediated expression of small interfering RNA. Gene. 2003;316:137-141.
    [114] E. Devroe and P. A. Silver. Retrovirus-delivered siRNA. BMC Biotechnol. 2002;2:15.
    [115] Matta H, Hozayev B, Tomat R, et al. Use of lentiviral vectors for delivery of small interfering RNA. Cancer Biol. Ther. 2003;2(2):206-210.
    [116] Li GQ, Xu WZ, Wang JX, Deng WW, Li D, Gu HX. Combination of small interfering RNA and lamivudine on inhibition of human B virus replication in HepG2.2.15 cells. World J. Gastroenterol. 2007;13(16):2324-2327.
    [117] S. Carmona, A. Ely and C. Crowther et al. Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Molec. Ther. 2006;13(2):411-421.
    [118] Chen CC, Ko TM, Ma HI et al. Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther. 2007;14(1):11-19.
    [119] Sun Y, Li Z, Li L, Li J, et al. Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors. Int. J. Mol. Med. 2007;19(4):705-711.
    [120] Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2, a linkbetween genetic and biochemical analyses of RNAi. Science 2001;293(5532):1146-1150.
    [121] Chen Zhe, Xu Ze-feng, Ye Jing-jia,Yao Hang-ping, Zheng Shu, Ding Jia-yi. Combination of small interfering RNAs mediates greater inhibition of human hepatitis B virus replication and antigen expression. J. Zhejiang Univ. Sci. B. 2005;6(4):236-41.
    [122] Weinberg MS, Ely A, Barichievy S, Crowther C, Mufamadi S, Carmona S, Arbuthnot P. Specific inhibition of HBV replication in vitro and in vivo with expressed long hairpin RNA. Molec. Ther. 2007;15(3):534-541.
    [123] Jarczak D, Korf M, Beger C, Manns MP, Kruger M. Hairpin ribozymes in combination with siRNAs against highly conserved hepatitis C virus sequence inhibit RNA replication and protein translation from hepatitis C virus subgenomic replicons. FEBS J. 2005;272(22):5910-5922.
    [124] Lau GK, Tsiang M, Hou J, et al. Long-term therapy of chronic hepatitis B with lamivudine. Hepatology. 2000;32(4 Pt 1):828-834.
    [125] Ying RS, Zhu C, Fan XG, Li N, Tian XF, Liu HB,. Zhang BX.Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antivir. Res. 2007;73(1):24-30.
    [126] Zhang J, Yamada O, Sakamoto T, et al. Down regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitic C virus. Virology, 320(1):135-143 (2004). RNAi for Treating Hepatitis B Viral Infection.
    [1] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymeraseⅡ. Embo J, 2004,23(20):4051-4060.
    [2] Xia X G, Zhou H, Samper E, et al. PolⅡ-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the geneknockout in mice.PLoS Genet, 2006,2(1):e10.
    [3] Huang S L, Wu Y, Yu H, et al. Inhibition of Bcl-2 expression by a novel tumor-specific RNA interference system increases chemosensitivity to 5-fluorouracil in HeLa cells. Acta Pharmacol Sin, 2006,27(2):242-248.
    [4] Lin S L, Chang S J, Ying S Y. Transgene-like animal models using intronic microRNAs. Methods Mol Biol, 2006,342(4):321-334.
    [5] Chen W, Liu M, Jiao Y, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol, 2006,80(7):3559-3566.
    [6] Samakoglu S, Lisowski L, Budak-Alpdogan T, et al. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat Biotechnol, 2006,24(1):89-94.
    [7] Zhou H, Xia X G, Xu Z. An RNA polymeraseⅡconstruct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res, 2005,33(6):e62.
    [8] Chung K H, Hart C C, Al-Bassam S, et al. Polycistronic RNA polymeraseⅡexpression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res, 2006,34(7):e53.
    [9] Grimm D, Streetz K L, Jopling C L, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006,441(7092):537-541.
    [10] Kim V N. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 2005,6(5):376-385.
    [11] Calin G A, Croce C M. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006,6(11):857-866.
    [12] Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify human cancers. Nature, 2005,435(7043):834-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700