吲哚胺2,3-双加氧酶在乳腺癌中的表达及其与肿瘤血管形成关系的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究吲哚胺2,3-双加氧酶(Indoleamine 2,3-dioxygenase,IDO)在乳腺癌中的表达及相应组织内的CD31、CD105标记的肿瘤微血管密度(microvessel density, MVD),明确乳腺癌中IDO蛋白的表达与临床病理特征的关系及其预后的意义,同时寻找IDO与MVD之间的关系。利用Transwell小室,建立表达IDO的肿瘤细胞MCF-7与人脐静脉内皮细胞HUVEC共培养模型,检测肿瘤细胞分泌的IDO对HUVEC的增殖、CD105表达情况及成管能力的影响,探讨IDO在乳腺癌血管形成过程中发挥的作用及可能机制。
     方法:
     1.收集天津医科大学附属肿瘤医院2004年1月手术切除的乳腺癌石蜡切片40例,免疫组织化学法检测IDO、CD31、CD105的表达情况,观察IDO表达与临床病理特征的关系及其预后的意义,同时分析IDO表达与MVD的关系。
     2.半定量RT-PCR法检测IDO基因的表达情况,筛选表达IDO的乳腺癌细胞系。
     3.建立表达IDO的人乳腺癌细胞系MCF-7与人脐静脉内皮细胞HUVEC共培养模型,利用IDO抑制剂1-甲基色氨酸(1-MT)阻滞IDO活性,细胞计数法检测MCF-7分泌的IDO作用后HUVEC增殖情况,流式细胞仪检测CD105表达率变化,基质胶实验观察HUVEC形成管样结构能力的变化情况。
     结果:
     1.免疫组化结果显示乳腺癌组织中IDO蛋白表达率为67.5%(27/40),低表达或不表达率为32.5%(13/40)。乳腺癌组织中IDO表达水平与患者临床分期和腋窝淋巴结转移密切相关(P<0.05)。
     2.乳腺癌组织中IDO蛋白高表达组的患者3年、5年无瘤生存率均低于IDO蛋白不表达或低表达组,分别为88.9%(24/27)与100%(13/13)、85.2%(23/27)与92.3%(12/13),但差异无统计学意义。
     3.乳腺癌组织中IDO表达水平与CD105标记的MVD(MVD-CD105)正相关(rs=0.659,P<0.05),与CD31标记的MVD(MVD-CD31)无关。
     4.RT-PCR结果显示:人乳腺癌细胞系MDA-MB-231、MDA-MB-435S、MDA-MB-453、SK-Br-3、MCF-7、T47D、ZR-75-1中,MCF-7、MDA-MB-435S、T47D的IDO表达水平较其余细胞系高。
     5.利用Transwell小室,建立表达IDO的人乳腺癌细胞系MCF-7与人脐静脉内皮细胞HUVEC共培养模型,使用IDO抑制剂1-甲基色氨酸(1-MT)阻滞IDO活性,通过倒置显微镜观察细胞形态,同时利用细胞计数法绘制HUVEC细胞生长曲线发现:MCF-7共培养后HUVEC增殖明显,加入1-MT后这种增殖作用几乎完全被抑制。
     6.流式细胞检测结果显示:HUVEC细胞表达CD105,48h表达率最高;MCF-7共培养后促进HUVEC细胞表面CD105的表达,48h作用最明显;加入1-MT后CD105的表达率降低。
     7.基质胶成管实验结果显示:HUVEC可以形成管样结构;MCF-7共培养后,管样结构形成增加,24h作用最明显;加入1-MT组几乎无管样结构形成。
     结论:
     1.乳腺癌组织中IDO蛋白表达率为67.5%(27/40),且其表达水平与肿瘤临床分期和腋窝淋巴结转移密切相关(P<0.05),IDO高表达组的3年、5年无瘤生存率均低于IDO不表达或低表达组,但差异无统计学意义。提示肿瘤组织中IDO的表达水平与乳腺癌的进展和转移相关。
     2.乳腺癌组织中IDO表达与MVD-CD105正相关(rs=0.659,P<0.05),与MVD-CD31无关,提示IDO可能通过促进肿瘤新生血管形成进而加速肿瘤的进展,同时说明CD105标记的肿瘤新生血管可能较CD31所标记的血管对肿瘤转移的意义更大。
     3.人乳腺癌细胞系MDA-MB-231、MDA-MB-435S、MDA-MB-453、SK-Br-3、MCF-7、T47D、ZR-75-1中,MCF-7、MDA-MB-435S、T47D的IDO表达水平较其余细胞系高。
     4.肿瘤细胞分泌的IDO可以促进HUVEC的增殖、活化并提高其形成管样结构的能力,进一步验证了IDO对肿瘤组织中新生血管的形成具有一定促进作用。
Objective:
     To investigate the expression of Indoleamine 2,3-dioxygenase (IDO) in breast cancer and its correlation to clinicopathologic factors and prognosis. To investigate the expression of CD31、CD105 which can be used as markers of MVD. To investigate the relationship between IDO and MVD. Furthermore, using a co-culture system of MCF-7 and HUVEC, we will evaluate the effects of IDO on proliferation of HUVEC in vitro. We also detected the CD105 of HUVEC after the co-culturing. Moreover, IDO expression can promote the formation of vessel-like structures in vitro. These findings suggest that IDO may promote angiogenesis in vitro.
     Methods:
     1. The paraffin blocks of 40 cases of breast cancer were collected from Tianjin cancer hospital. Immunohistochemistry was used to detect the expression of IDO、CD31 and CD105 proteins in previous tissues, then to seek the relationship between them. We investigated the relationship between IDO and clinicopathologic factors and prognosis.
     2. RT-PCR was used to detect the mRNA of IDO in human breast cancer cell lines, such as MDA-MB-231、MDA-MB-435S、MDA-MB-453、SK-Br-3、MCF-7、T47D、ZR-75-1.
     3. Using a co-culture system of MCF-7 and HUVEC, we evaluate the effects of IDO on proliferation、the expression of CD105、the formation of vessel-like structures of HUVEC in vitro.
     Results:
     1. The overexpression ratio of IDO in breast cancer is 67.5%(27/40), and expression of IDO was closely associated with clinical stage and lymph nodes metastasis.
     2. The disease-free survival rate in patients with overexpression of IDO was lower than that in patients with negative or low expression of IDO (P>0.05)
     3. The expression of IDO was positively correlated with MVD-CD105 (P <0.05).
     4. RT-PCR results showed that human breast cancer cell lines MCF-7、MDA-MB-435S、T47D are high expression of IDO. MDA-MB-231、MDA-MB-453、SK-Br-3、ZR-75-1 are low or no expression of IDO.
     5. Using a co-culture system of MCF-7 and HUVEC, IDO can promote the proliferation、the expression of CD105、the formation of vessel-like structures of HUVEC in vitro.
     Conclusion:
     1. The overexpression ratio of IDO in breast cancer is 67.5%.Expression of IDO was associated with clinical stage and lymph nodes metastasis.
     2. In breast cancer, the expression of IDO may be in relation to increase MVD, which suggested that IDO maybe induced tumor angiogenesis, then to promote cancer cells metastasis.Meanwhile, CD105 is a better marker than CD31 in cancer.
     3. Using a co-culture system of MCF-7 and HUVEC, we evaluate the effects of IDO on proliferation the expression of CD105、the formation of vessel-like structures of HUVEC in vitro.
引文
[1]S. Eva Singletary, Geoffrey L.Robb, Gabriel N. Hortobagyi. Advanced therapy of breast cancer [M]. Ontario, Canada, B.C.DECKER, INC:67.
    [2]Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism [J]. Science,1998,281(5380):1191-1193.
    [3]Folkman J. Tumor angiogenesis:therapeutic implication. N Engl J Med,1971,285(21):1182-1186
    [4]Murray JD, Carlson GW, Mclaughlin K, et al. Tumor angiogenesis as a prognostic significance in laryngeal cancer [J]. Am J Surg,1997,174 (5):523-526.
    [5]Hagedorn HG, Nerlich AG.Microvessel density and endothelial basement membrane composition in laryngeal squamous cell carcinoma. Acta Otolaryngol, 2000,120(7):891-898.
    [6]Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism [J]. Science,1998,281(5380):1191-1193.
    [7]Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J]. Nat Med,2003,9(10):1269-1274.
    [8]Munn DH, Sharma MD, Hou D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes[J]. J Clin Invest 2004, 114(2):280-290.
    [9]Astigiano S, Morandi B, Costa R, et al. Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer[J]. Neoplasia, 2005,7(4):390-396.
    [10]魏丽娟,于津浦,丛义滋,等.吲哚胺2,3-双加氧酶参与乳腺癌患者免疫耐受的机制研究.中国免疫学杂志,2009,25(11):987-990转995.
    [11]Ke Pan, Hui Wang, Min-shan Chen,et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol,2008,
    [12]Chen W, Liang X, Peterson AJ, et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation[J]. J Immunol,2008,181(8):5396-5404.
    [13]Fallarino F, Grohmann U, Hwang KW,et al. Modulation of tryptophan catabolism by regulatory T cells[J]. Nat Immunol,2003,4 (12):1206-1212.
    [14]Yunyuan Li, Edward E. Tredget, Abdi Ghaffari, et al. Local Expression of Indoleamine 2,3-Dioxygenase Protects Engraftment of Xenogeneic Skin Substitute[J]. Journal of Investigative Dermatology,2006,126,128-136.
    [15]Bergers, G., Brekken, R., McMahon, G,et al. Matrixmetalloproteinase-9 triggers the angiogenic switch during carcinogenesis.Nat [J]. Cell Biol.2000,2,737-744.
    [16]Rodriguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc [J]. Natl. Acad. Sci. USA 98,2001,12485-12490.
    [17]Li yang, Jianhua Huang, Xiubao Ren, et al. Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CDllb+myeloid cells that promote metastasis[J]. Cancer Cell.2008,13(1):23-35.
    [18]Padua D, Zhang XH, Wang Q, et al.TGF beta primes breast tumors for lung metastasis seeding through angiopoietinlike-4. Cell 2008,133:66-77.
    [19]Curti A, Aluigi M,Pandolfi S,et al. Acute myeloid leukemiacells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase [J]. Leukemia, 2007,21 (2):353.
    [20]Antonio Curti,Simona Pandolfi, Barbara Valzasina, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+T regulatory cells[J]. Blood.2007,109:2871-2877.
    [21]Vaios K, Maria Z, Theodora K, et al. Indoleamine 2,3-Dioxygenase (IDO) Expression in Lung Cancer[J]. Cancer Biology & Therapy,2007; 6(8):1258-1262.
    [22]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3 [J]. Science,2003; 299(5609):10572-1061.
    [23]Curti A, Aluigi M,Pandolfi S,et al. Acute myeloid leukemiacells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase [J]. Leukemia, 2007,21 (2):353.
    [24]Antonio Curti,Simona Pandolfi, Barbara Valzasina, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+T regulatory cells[J]. Blood.2007,109:2871-2877.
    [25]Bourdeau A, Faughnan ME, Letarte M. Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia [J].Trends Cardiovasc Med,2000,10 (7):279-285.
    [26]Miller DW, Graulich W, Karges B, et al. Elevated exprssion of endoglin, a component of the TGF-beta-receptor complex, correlates with prolifration of tumor endothelial cells [J]. Int J Cancer,1999,81 (4):568-572.
    [27]Brewer CA, Setterdahl JJ, Li MJ, et al. Endoglin expression as a measure of microvessel density in cervical cancer[J]. Obstet Gynecol,2000,96(2):224-228
    [28]Akagi K, Ikeda Y,Sumiyoshi Y, et al. Estimation of angiogenesis with anti-CD 105 immunostaining in the process of colorectal cancer development [J]. Surgery,2002,131 (1 Suppl):109.-113
    [29]Hansen S, Sorensen FB, Vach W, et al. Micrevessel density compared with the Chalkley count in a prognostic study of angiogenesis in breast cancer paTie-2nts. Histopathology,2004,5:428-436.
    [30]Geng JG. Interaction of vascular endothelial ceils with leukocytes.platelets, and cancer ceils in inflammation, thrombosis。and cancer growth and metastasis. Acta Pharmacol Sin,2003,12:1297-1300.
    [31]Penalva LO, Burdick MD。Lin SM。et al. RNA-binding proteins to asseSS gene expression states of CO-cultivated ceils in response to tumor ceils. Mol Cancer, 2004,3:24.
    [32]Colette C, Dales JP, StephaneGarcia, et al. Tumor Neoangiogenesis by CD31 and CD 105 Expression Evaluation in Breast Carcinoma Tissue Microarrays [J] Clinical Cancer Research.2004; 9(10):5815-5819.
    [33]Kumar S, Ghellal A, Li C, et al.Breast carcinoma:Vescular density determined using CD105 antibody correlates with tumor prognosis [J]. Cancer Research,1999, 59:856-861
    [34]Matsuno F, Haruta Y, Kondo M, et al. Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies [J]. Clin Cancer Res,1999,5 (2):371-382
    [35]Deryugina EI, Soroceanu L,Strongin AY. Up-regulation of ovascular endothelial growth factor by membrane-type Ⅰ matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis.Cancer Res,2002,62 (2):580-588.
    [36]Bergers, G., Brekken, R., McMahon, G.,et al. Matrixmetalloproteinase-9 triggers the angiogenic switch during carcinogenesis.Nat [J]. Cell Biol.2000,2,737-744.
    [37]Rodriguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc [J]. Natl. Acad. Sci. USA 98,2001,12485-12490.
    [38]Ferrara N, Gerber HP, le Couter J. The biology of VEGF and its receptors. Nat Med,2003,9:669-676.
    [39]OReilly MS, Holmgren L, Shing Y, et al. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell,1994,79:315-328.
    [40]Pia N, Liang X, Raghu K. Endogenous inhibitors of angiogensis.Cancer Res, 2005,65:3967-3979.
    [41]Akagi K, Ikeda Y, Sumiyoshi Y, et al. Estimation of angiogenesis with anti-CD105 immunostaining in the process of colorectal cancer development [J].Surgery,2002,131(1 Suppl):S109-13.
    [42]Charpin C, Dales JP, Garcia S, et al. Tumor neoangiogenesis by CD31 and CD105 expression evaluation in breast carcinoma tissue microarrays[J]. Clin Cancer Res,2004,10(17):5815-5819.
    [43]Parrott JA, Nilsson E, Mo-her R, et al. Stromal-epithelial interactions in the progression of ovarian cancer:influence and source of tumor stromal cells. Mol Cell Endoerinol.2001,175:29-39.
    [44]郑苇杭,曹诗运.Hela培养上清液对hUVEC细胞增殖的影响.南华大学学报·医学版,2009,37(3):292-294.
    [45]辇伟奇,陈芳琳,敖绪军,等.CXCR4阳性Lewis肺癌细胞具有促发新生血管形成的特征.重庆医学,2009,38(22):2825-2826转2830.
    [46]Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis:a new significant and independent prognostic indicator in early-stage breast carcinoma[J]. Natl Cancer Inst,1992,84(24):1875-1887.
    [1]Suri2Payer E, Amar A Z, Thornton AM, et al. CD4+CD25+cells inhibit both the induction and effector function of auto-reactive T cells and represent a unique lineage of immune regulatory cells. J Immunol,1998; 160:1212 1218.
    [2]Papiernik M, de-Moraes M L, Pontoux C, et al. Regulatory CD4+T cells: expression of IL-2R 2achain, resistance to clonal deletion and IL-2 dependency. Int Immunol,1998; 10:371-378.
    [3]Sakaguchi S. Naturally arising Foxp3+expressingCD25+CD4+regulatory T cells in immunological tolerance to self and non-self [J]. Nat Immunol,2005;699(4):345-352.
    [4]Faria A M,Weiner H L. Oral tolerance[J]. Immunol Rev,2005;206:232-259.
    [5]Groux H,O'Garra A, Bigler M, et al. A CD4+T2cell subset inhibits anti-genspecific T cell responses and prevents colitiss [J]. Nature,1997; 3899(6652):737-742.
    [6]Ng W F,Duggan P J, Ponchel F, et al. Human CD4 (+) CD25 (+) cells:a naturally occurring population of regulatory T cells [J]. Blood,2001; 98(9):2736-2744.
    [7]Thornton AM, Shevach EM:Suppressor effector function of CD4+CD25+ immune regulatory T cells is antigen nonspecific[J].J Immunol,2000; 164(1):183-219.
    [8]Yoshida R, Nukiwa T, Watanabe Y, et al.Regulation of in doleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice[J].Arch Biochem Biophys,1980,203(1):343-51.
    [9]Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance; immuno suppression by starvation [J].Immunol Today,1999,20(10):469-473.
    [10]Frumento G, Rotondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine2,3-dioxygenase[J].J Exp Med,2002,15(8):646-653.
    [11]Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cell mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase [J].Immunity,2005,22(5):633-642.
    [12]Fallarino F, Grohmann U, You S, et al.The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells[J].J Immunol,2006,176(11):6752-6761.
    [13]Orabona C, Puccetti P, Vacca C, et al. Toward the identification a tolerogenic signature in IDO-competent dendritic cells Blood,2006,107(7):2846-2854.
    [14]Munn DH, Sharma MD, Mellor AL. ligation of B7-1/B7-2 by human CD4+T cells triggers indoleamine2,3-dioxygenase activity in dendritic cells[J].J Immunol,2004,172(7):4100-4110.
    [15]Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol,2003,4(12):1206-1212.
    [16]Finger EB, Bluestone JA. When ligand becomes receptor-tolerance via B7 signaling on DCs [J].Nat Immunol,2002,3(11):1056-1057.
    [17]Liyanage UK, Coedegebuure PS, Moore TT, et al. Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma[J]. J Immunother, 2006,29(4):416-424.
    [18]Curti A, Aluigi M, Pandolfi S, et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine2,3-dioxygenase[J].Leukemia,2007,21 (2):3.53-356.
    [19]温文胜,张哲,谢莹,等.鼻咽癌患者外周血中CD4+CD25+调节性T细胞的检测.广西医科大学学报.2007,24(3):379-381.
    [20]张育超,王惠英,罗招凡.胃癌患者外周血CD4+CD25+调节性T细胞的变化.实用医学杂志.2007,23(17):2675-2676.
    [21]陈凌,沈柱,伍津津,等.不同病程寻常型银屑病患者外周血中CD4+CD25high调节性T细胞的比较与分析.细胞与分子免疫学杂志.2007,23(10):934-940.
    [22]Schroecksnadel K,Winkler C,Fuith L C,et al. Tryptophan degradation in patient s with gynecological cancer corre2 lates with immune activation[J]. Cancer,
    [23]Brandacher G, Perathoner A, Ladurner R,et al. Prognos2tic value of indoleamine 2,3-dioxygenase expression incolorectal cancer:effect on tumor2infiltrating T cells[J]. Clin Cancer Res,2006,12 (4):1144.
    [24]Nakamura T,Shima T, Saeki A,et al. Expression of indoleamine 2,3-dioxygenase and the recruitment of Foxp3 expressing regulatory T cells in the development and progression of uterine cervical cancer[J]. Cancer Sci.2007,98 (6):874.
    [25]谢启超,王玲俐,朱 波,等.IDO基因转染对小鼠Lewis肺癌细胞侵袭和转移的影响研究.重庆医学.2007,36(20):2026-2028,2031.
    [26]Quentmeir H, Drexler HG, Fleckenstein D, et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 2001; 15:1286-1292.
    [27]Reche PA, Soumelis V, Gorman DM, et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 2001; 167: 336-343.
    [28]Quentmeier H, Drexler HG, Fleckenstein D,etal. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation [J].Leukemia 2001,15(8):1286-1292.
    [29]Norihiko Watanabel, Yi-Hong Wangl, Heung Kyu Leel, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+regulatory T cells in human thymus. Nature 2005; 436:1181-1185.
    [30]Watanabe N, Wang Y H,Lee H K et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+regulatory T cells in human thymus [J].Nature,2005;436(7045):1181-1185.
    [31]Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+T cell mediated suppression by dendritic cells. Science 2003;299:1033-6.
    [32]Fehervari Z, Sakaguchi S. Control of Foxp3+CD25+CD4+regulatory cell activation and function by dendritic cells. Int Immunol 2004;16:1769-80.
    [33]Kubo T, Hatton RD, Oliver J, Liu X, Elson CO, Weaver CT. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells.J Immunol.2004;173:7249-58.
    [34]卢凯华,李晓曦,等.17β-雌二醇对小鼠淋巴结,脾脏和胸腺调节性T细胞及Foxp3表达得影响.东南大学学报.2008,27(2):125-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700