鸭肠炎病毒及其致弱毒株基因组的分子特征和生物学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭病毒性肠炎(Duck viral enteritis, DVE),又名鸭瘟(Duck plague, DP),是鸭、鹅及其它雁形目禽类的一种急性、接触性传染病,其特征是血管损伤、组织出血、消化道粘膜损伤、淋巴器官受损和实质性器官退行性病变,死亡率高,造成重大经济损失。该病的病原为鸭肠炎病毒(Duck enteritis virus, DEV),又称为鸭瘟病毒,属于疱疹病毒科、甲型疱疹病毒亚科、马立克病毒属、鸭疱疹病毒1型。本研究利用鸡胚成纤维细胞(Chicken embryo fibroblast, CEF),将我国鸭肠炎病毒强毒参考株(DEV CSC)进行连续传代致弱,分析了强、弱毒株的全基因组序列特征以及致弱毒株的生物学特性,以期揭示DEV在体外传代致弱的分子基础;构建出DEV gE和gI基因的缺失毒株,分析了gE和gI基因对病毒毒力的影响,旨在为揭示DEV的分子致病机理奠定基础以及为开发DEV基因缺失疫苗提供科学依据。
     利用454测序平台,对DEV CSC进行了全基因组序列测定。结果表明,DEV CSC基因组全长162,131bp,共78个ORF,编码76个蛋白。全基因组比较发现,DEV CSC与2000年四川分离的DEV CHv株同源性高达99.99%,只有21个核苷酸替换(15个非同义和6个同义)和52个核苷酸缺失或插入,除了在UL41中有3个核苷酸连续插入外,其余核苷酸缺失或插入均在非编码区内;大部分非同义突变(10/15)位于基因组的5’末端。DEV CSC与2005年德国分离的DEV2085株的同源性为98.92%,主要差异是DEV2085株的UL区的5’端连续缺失1,170bp。与DEV CSC相比,鸡胚传代致弱株DEV K p63基因组短4,040bp,在UL区的5’端利3’端分别缺失3,513bp和528bp;76个ORF中有63个ORF的核苷酸序列完全一致,2个ORF(UL56和US10)在C端有移框变异,UL2连续缺失176个氨基酸。
     将DEV CSC经CEF连续传80代,进行全基因组序列测定,分析了基因组和生物学特性的变化。结果表明,前4代无明显细胞病变,第5代出现少量蚀斑样细胞病变,随代次增加,出现细胞病变时间提前;第25代蚀斑面积显著减小(p<0.01),随后蚀斑面积稳定,各代次间无明显差异;第80代毒(DEV p80)基因组全长为160,328bp。与亲本病毒DEV CSC基因组相比,DEV p80基因组的145,818-147,618nt连续缺失共1,801bp,导致US7(gI)基因3’端和US8(gE)基因5’端缺失,此外,还有12个点突变,其中8个位于预测的ORF内,导致LORF4、UL51、UL9、UL7、UL4和US3共6个蛋白存在单个氨基酸变异。经临床症状、体温、病毒血症、泄殖腔排毒、大体病变、组织学病变、免疫组化和荧光定量PCR检测,比较了传代前后DEV致病性的差异,结果显示,DEV p80接种鸭未出现体温明显升高或临床症状,对消化道和淋巴器官无明显病理学损伤,消化道和淋巴器官中病毒拷贝数明显下降,表明DEV p80对鸭无致病性。攻毒保护试验结果表明,DEV p80具有良好的免疫原性,鸭免疫后5d,即可100%抵抗致死性强毒的攻击。
     gI和gE基因是疱疹病毒重要的毒力决定因子。为了证实gI和gE基因对DEV毒力的影响,以DEV CSC为亲本病毒,应用同源重组技术,构建出一株缺失145,818~147,618nt的重组病毒DEV-△US78-GFP,并比较了重组病毒及其亲本病毒的体内体外生物学特性。结果表明,重组病毒DEV-△US78-GFP在DEF中产生的蚀斑明显小于亲本病毒(p<0.001):一步生长曲线也有所不同,DEV-△US78-GFP在细胞和上清中病毒含量峰值均为亲本病毒1/80左右,且到达峰值的时间分别延迟了24h和36h;重组病毒DEV-AUS78-GFP接种4周龄鸭,未出现明显的临床症状和大体病变。这些结果表明,gI利/或gE对DEV在细胞间传播和细胞中的复制有重要影响,是DEV重要的毒力决定因子。
     综上所述,本研究完成了我国鸭肠炎病毒强毒参考株的全基因组序列测定与分析;发现DEV经鸡胚成纤维细胞连续传代可导致gI和gE基因的缺失,失去对鸭的致病力,并具有良好的免疫原性;构建了缺失gI和gE基因的DEV突变株,经体内、体外试验证实,与其他疱疹病毒一样,DEV gI和/或gE基因对病毒在细胞间传播和毒力具有重要影响。本研究结果为DEV的分子致病机理以及基因缺失疫苗开发提供了科学依据。
Duck viral enteritis, also known as duck plague, is an acute, contagious and lethal disease of ducks, geese and swans. The disease causes high mortality in domestic and wild waterfowl, resulting in significant economic losses. The causative agent of this disease is duck enteritis virus (DEV). DEV taxonomically belongs to the species Anatid herpesvirus1, in the genus Mardivirus, subfamily Alphaherpesvirinae, family Herpesviridae. In this paper, to explain the molecular basis of attenuation of DEV via in vitro serial passages, the virulent reference strain of DEV (DEV CSC) in China was serially passaged in chicken embryo fibroblast (CEF), then the genomic characteristics and biological properties were compared between the attenuated mutant and its parental virus. A DEV rtcombinant strain with a deletion in both gl and gE genes was constructed to identify the role of DEV gl and gE genes in determining viral virulence and their affect on virus growth in the tissue cell. The aim of this paper is to advance our understanding the molecular basis for the pathogenesis and develop a gene-deleted vaccine to control duck plague.
     DEV CSC genome was sequenced on a pyrosequencing platform, the Genome Sequencer20(GS20) system (454Life Sciences). The DEV CSC genome was162,131bp long and contained78predicted open reading frames (ORFs), which encoded76putative proteins. The DEV CSC genome sequence was compared with the published genome sequences of DEV. There was99.99%homology of genome sequence between CSC and CHv isolated in Sichuan in2000. Twenty-one nucleotide substitutions (15non-synonymous and6synonymous) and52nucleotide deletions/insertions were detected. Except one3-bp insertion in UL41, all other deletions/insertions were in non-coding regions. Most of the non-synonymous substitutions (n=10) were in the5'end of genome. There was98.92%gene sequence identity between DEV CSC and DEV2085isolated in German in2005, mainly because of1,170-bp deletion at5'end of the unique long (UL) in DEV2085. Compared with DEV CSC genome, DEV K p63, which was attenuated by serial passages in chicken embryo, was4,040bp shorter in length mainly because of3,513-bp and528-bp deletions at the5'and3'ends of UL, respectively. At the nucleotide level,63of the76ORFs in the DEV CSC genome were100%identical to the ORFs in the DEV K p63genome. Two ORFs (UL56and US10) had frame-shift mutations in the C-terminal regions, while UL2had a176-aa deletion in DEV K p63.
     To gain a better understanding of the genetic changes needed for attenuation, DEV CSC was attenuated by serial passages in CEF, then the complete genome sequence of the80th passage was determined and compared with its parental virus. Moreover, the in vitro and in vivo properties were described. Cytopathogenicity was not discernible during the first4serial passages. However, at the5th passage DEV p5, minute and discernible plaques were observed after72hours postinoculation. Cytopathogenicity increased with virus passage. The average plaques size of DEV p25was significantly smaller than DEV p20(p<0.01), however, there was not significantly different from DEV p25to DEV p80. The complete genome sequence of DEV p80was determined and compared with its parental virus. DEV p80genome is160,328bp in length. An1,801-bp deletion from145,818to147,618nt was identified in the genome of DEV p80, which affected two genes encoding gl and gE. Moreover, there were12base substitutions, which led to6ami no acid conversions existed in open reading frames LORF4, UL51, UL9, UL7, UL4and US3. DEV p80and its parental virus were inoculated intramuscularly to ducks to compare their pahogenicity with respect to induction of clininal sign, rectal temperature, viremia, virus shedding, gross and histopathologic lesion, immunohistochemical and real time PCR detection. None of the ducks inoculated with DEV p80showed either obvious elevation of rectal temperature or any clinical sign.There was no obviously gross and histopathologic lesion in disgestive tract and lymphoid organs, and the copies of DEV DNA were lower than ducks inoculated with DEV CSC. Moreover, DEV p80protected ducks from lethal DEV challenge as soon as5days postinoculation.
     In other herpesviruses, gI and gE genes have benn reported to be important virulence factors. To identify the role of DEV gI and gE genes in determining viral virulence, a DEV recombinant DEV-△US78-GFP with a deletion in both gI and gE genes was constructed. The recombinant was assayed in vitro and in vivo. The average sizes of DEV-AUS78-GFP plaques were significantly smaller than its parent(p<0.001). On the other hand, the growth curves were different. The virus titer in both cell and supernatant were less80-fold than its parent, and the time to reach a peak was late24hours and36hours, respectively. Four weeks ducks inoculated with DEV-AUS78-GFP did not show clininal sign and gross lesion. These results suggest intact DEV gI and gE genes are important factors in efficient cell-cell viral spread in vitro and for expression of DEV virulence.
     Taken together, we finished the complete genome sequence of DEV CSC. To our knowledge, It was first reported that there was an1,801-bp deletion in both gI and gE genes in the mutant attenuated by serial passages in CEF. The attenuated mutant was avirulent in natural host ducks and protected ducks from lethal DEV challenge. We constructed a DEV recombinant with a deletion in both gI and gE genes, and comfirmed DEV gI and gE genes are important factors in efficient cell-cell viral spread in vitro and for expression of DEV virulence as shown for other herpesviruses. The present study is contributed to our understanding the molecular basis for the pathogenesis and development a gene-deleted vaccine to control duck plague.
引文
[1]Afonso, C.L., Tulman, E.R., Lu, Z., Zsak, L., Rock, D.L., Kutish, G.F.,2001. The genome of turkey herpesvirus. J. Virol.75,971-978.
    [2]An, R., Li, H., Han, Z., Shao, Y., Liu, S., Kong, X.,2008. The UL31 to UL35 gene sequences of Duck enteritis virus correspond to their homologs in herpes simplex virus 1. Acta Virol.52,23-30.
    [3]Aoki, T., Hirono, I., Kurokawa, K., Fukuda, H., Nahary, R., Eldar, A., Davison, A.J., Waltzek, T.B., Bercovier, H., Hedrick, R.P.,2007. Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J. Virol.81,5058-5065.
    [4]Aravind, S., Patil, B.R., Dey, S., Mohan, C.M.,2012. Recombinant UL30 antigen-based single serum dilution EL1SA for detection of duck viral enteritis. J. Virol. Methods 185,234-238.
    [5]Arnold, K., Bordoli, L., Kopp, J., Schwede, T.,2006. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics 22,195-201.
    [6]Awasthi, S., Zumbrun, E.E., Si, H., Wang, F., Shaw, C.E., Cai, M., Lubinski, J.M., Barrett, S.M., Balliet, J.W., Flynn, J.A., Casimiro, D.R., Bryan, J.T., Friedman, H.M.,2012. Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread. J. Virol.86,4586-4598.
    [7]Baudet, A.E.R.F.,1923. Mortality in ducks in the Netherlands caused by a filterable virus. Fowl plague. Tijdschr. Diergeneeskd.50,455-459.
    [8]Besemer, J., Lomsadze, A., Borodovsky, M.,2001. GeneMarkS:a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res.29,2607-2618.
    [9]Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., Schwede, T.,2009. Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc.4,1-13.
    [10]Breese, S.S., Jr., Dardiri, A.H.,1968. Electron microscopic characterization of duck plague virus. Virology 34,160-169.
    [11]Burgess, E.C., Ossa, J., Yuill, T.M.,1979. Duck plague:a carrier state in waterfowl. Avian Dis. 23,940-949.
    [12]Burgess, E.C., Yuill, T.M.,1981. Vertical transmission of duck plague virus (DPV) by apparently healthy DPV carrier waterfowl. Avian Dis.25,795-800.
    [13]Burgess, E.C., Yuill, T.M.,1983. The influence of seven environmental and physiological factors on duck plague virus shedding by carrier mallards. J. Wildl. Dis.19,77-81.
    [14]Cai, M.S., Cheng, A.C., Wang, M.S., Chen, W.P., Zhang, X., Zheng, S.X., Pu, Y., Lou, K.P., Zhang, Y., Sun, L., Wang, L.L., Zhu, D.K., Luo, Q.H., Chen, X.Y.,2010. Characterization of the duck plague virus UL35 gene. Intervirology 53,408-416.
    [15]Cai, M.S., Cheng, A.C., Wang, M.S., Zhao, L.C., Zhu, D.K., Luo, Q.H., Liu, F., Chen, X.Y, 2009a. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene. Intervirology 52,266-278.
    [16]Cai, M.S., Cheng, A.C., Wang, M.S., Zhao, L.C., Zhu, D.K., Luo, Q.H., Liu, F., Chen, X.Y., 2009b. His6-tagged UL35 protein of duck plague virus:expression, purification, and production of polyclonal antibody. Intervirology 52,141-151.
    [17]Chang, H., Cheng, A., Wang, M., Guo, Y., Xie, W., Lou, K.,2009. Complete nucleotide sequence of the duck plague virus gE gene. Arch. Virol.154,163-165.
    [18]Chang, H., Cheng, A., Wang, M., Jia, R., Zhu, D., Luo, Q., Chen, Z., Zhou, Y., Liu, F., Chen, X.,2011a. Immunofluorescence analysis of duck plague virus gE protein on DPV-infected ducks. Virol. J.8,19.
    [19]Chang, H., Cheng, A., Wang, M., Xiang, J., Xie, W., Shen, F., Jia, R., Zhu, D., Luo, Q., Zhou, Y., Chen, X.,2011b. Expression and immunohistochemical distribution of duck plague virus glycoprotein gE in infected ducks. Avian Dis.55,97-102.
    [20]Chang, H., Cheng, A., Wang, M., Zhu, D., Jia, R., Liu, F., Chen, Z., Luo, Q., Chen, X., Zhou, Y,2010. Cloning, expression and characterization of gE protein of duck plague virus. Virol. J.7,120.
    [21]Chen, L., Yu, B., Hua, J., Ye, W, Ni, Z., Yun, T., Deng, X., Zhang, C.,2013. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain. Virol. J. 10,328.
    [22]Cheng, A., Zhang, S., Zhang, X., Wang, M., Zhu, D., Jia, R., Chen, X.,2012. Prokaryotic expression and characteristics of duck enteritis virus UL29 gene. Acta Virol.56,293-304.
    [23]Cohen, J.I., Nguyen, H.,1997. Varicella-zoster virus glycoprotein I is essential for growth of virus in Vero cells. J. Virol.71,6913-6920.
    [24]Converse, K.A., Kidd, G.A.,2001. Duck plague epizootics in the United States,1967-1995. J. Wildl. Dis.37,347-357.
    [25]Damiani, A.M., Matsumura, T., Yokoyama, N., Mikami, T., Takahashi, E.,2000. A deletion in the gI and gE genes of equine herpesvirus type 4 reduces viral virulence in the natural host and affects virus transmission during cell-to-cell spread. Virus Res.67,189-202.
    [26]Dardiri, A.H.,1969. Attenuation of duck plague virus and its propagation in cell culture. Arch. Gesamte Virusforsch.27,55-64.
    [27]Davison, A.J.,1998. The genome of salmonid herpesvirus 1. J. Virol.72,1974-1982.
    [28]Davison, A.J.,2010. Herpesvirus systematics. Vet. Microbiol.143,52-69.
    [29]Davison, A.J., Cunningham, C., Sauerbier, W., McKinnell, R.G.,2006. Genome sequences of two frog herpesviruses. J. Gen. Virol.87,3509-3514.
    [30]Delhon, G., Moraes, M.P., Lu, Z., Afonso, C.L., Flores, E.F., Weiblen, R., Kutish, G.F., Rock, D.L.,2003. Genome of Bovine Herpesvirus 5. J. Virol.77,10339-10347.
    [31]Deng, M.Y., Burgess, E.C., Yuill, T.M.,1984. Detection of duck plague virus by reverse passive hemagglutination test. Avian Dis.28,616-628.
    [32]Devlin, J.M., Browning, G.F., Gilkerson, J.R.,2006. A glycoprotein I-and glycoprotein E-deficient mutant of infectious laryngotracheitis virus exhibits impaired cell-to-cell spread in cultured cells. Arch. Virol.151,1281-1289.
    [33]DeZeeuw, F.A.,1930. Nieuwe gevallen van eendenpest en de specificiteit van het virus. Tijdschr. Diergeneeskd.57,1095-1098.
    [34]Dingwell, K.S., Brunetti, C.R., Hendricks, R.L., Tang, Q., Tang, M., Rainbow, A.J., Johnson, D.C.,1994. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J. Virol.68,834-845.
    [35]Dolan, A., Jamieson, F.E., Cunningham, C., Barnett, B.C., McGeoch, D.J.,1998. The genome sequence of herpes simplex virus type 2. J. Virol.72,2010-2021.
    [36]Ensser, A., Thurau, M., Wittmann, S., Fickenscher, H.,2003. The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 314,471-487.
    [37]Ettinger, J., Geyer, H., Nitsche, A., Zimmermann, A., Brune, W., Sandford, G.R., Hayward, G.S., Voigt, S.,2012. Complete genome sequence of the english isolate of rat cytomegalovirus (Murid herpesvirus 8). J. Virol.86,13838.
    [38]Fedurco, M., Romieu, A., Williams, S., Lawrence,I., Turcatti, G.,2006. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res.34, e22.
    [39]Ficinska, J., Bienkowska-Szewczyk, K., Jacobs, L., Plucienniczak, G., Plucienniczak, A., Szewczyk, B.,2003. Characterization of changes in the short unique segment of pseudorabies virus BUK-TK900 (Suivac A) vaccine strain. Arch. Virol.148,1593-1612.
    [40]Flowers, C.C., O'Callaghan, D.J.,1992. The equine herpesvirus type 1 (EHV-1) homolog of herpes simplex virus type 1 US9 and the nature of a major deletion within the unique short segment of the EHV-1 KyA strain genome. Virology 190,307-315.
    [41]Garcia, M., Volkening, J., Riblet, S., Spatz, S.,2013. Genomic sequence analysis of the United States infectious laryngotracheitis vaccine strains chicken embryo origin (CEO) and tissue culture origin (TCO). Virology 440,64-74.
    [42]Gardner, R., Wilkerson, J., Johnson, J.C.,1993. Molecular characterization of the DNA of Anatid herpesvirus 1. lntervirology 36,99-112.
    [43]Gomi, Y., Sunamachi, H., Mori, Y., Nagaike, K., Takahashi, M., Yamanishi, K.,2002. Comparison of the Complete DNA Sequences of the Oka Varicella Vaccine and Its Parental Virus. J. Virol.76,11447-11459.
    [44]Goodman, L.B., Loregian, A., Perkins, G.A., Nugent, J., Buckles, E.L., Mercorelli, B., Kydd, J.H., Palu, G., Smith, K.C., Osterrieder, N., Davis-Poynter, N.,2007. A point mutation in a herpesvirus polymerase determines neuropathogenicity. PLoS Pathog.3, e160.
    [45]Guex, N., Peitsch, M.C.,1997. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis 18,2714-2723.
    [46]Guex, N., Peitsch, M.C., Schwede, T.,2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer:a historical perspective. Electrophoresis 30 Suppl 1, S162-173.
    [47]Hubner, S.O., Oliveira, A.P., Franco, A.C., Esteves, P.A., Silva, A.D., Spilki, F.R., Rijsewijk, F.A.M., Roehe, P.M.,2005. Experimental infection of calves with a gI, gE, US9 negative bovine herpesvirus type 5. Comp. Immunol. Microbiol. Infect. Dis.28,187-196.
    [48]Hansen, W.R., Brown, S.E., Nashold, S.W., Knudson, D.L.,1999. Identification of duck plague virus by polymerase chain reaction. Avian Dis.43,106-115.
    [49]Hansen, W.R., Nashold, S.W., Docherty, D.E., Brown, S.E., Knudson, D.L.,2000. Diagnosis of duck plague in waterfowl by polymerase chain reaction. Avian Dis.44,266-274.
    [50]Hart, J., Ackermann, M., Jayawardane, G., Russell, G., Haig, D.M., Reid, H., Stewart, J.P., 2007. Complete sequence and analysis of the ovine herpesvirus 2 genome. J. Gen. Virol.88,28-39.
    [51]He, Q., Cheng, A., Wang, M., Xiang, J., Zhu, D., Zhou, Y., Jia, R., Chen, S., Chen, Z., Chen, X.,2012. Replication kinetics of duck enteritis virus UL16 gene in vitro. Virol. J.9,281.
    [52]He, Q., Cheng, A., Wang, M., Zhu, D., Zhou, Y, Jia, R., Chen, S., Chen, Z., Chen, X.,2013. Recombinant UL16 antigen-based indirect ELISA for serodiagnosis of duck viral enteritis. J. Virol. Methods 189,105-109.
    [53]He, Q., Yang, Q., Cheng, A., Wang, M., Xiang, J., Zhu, D., Jia, R., Luo, Q., Chen, Z., Zhou, Y, Chen, X.,2011. Expression and characterization of UL16 gene from duck enteritis virus. Virol. J.8, 413.
    [54]Hu, Y., Zhou, H., Yu, Z., Chen, H., Jin, M.,2009. Characterization of the genes encoding complete US 10, SORF3, and US2 proteins from duck enteritis virus. Virus Genes 38,295-301.
    [55]Huang, J., Jia, R., Wang, M., Shu, B., Yu, X., Zhu, D., Chen, S., Yin, Z., Chen, X., Cheng, A., 2014. An attenuated duck plague virus vaccine induces both systemic and mucosal immune responses to protect ducks against virulent DPV infection. Clin. Vaccine Immunol.
    [56]Huang, Y.X.,1959. Study on duck plague-like disease. J South China Agric Univ.1,1-12.
    [57]Islam, M.R., Khan, M.A.,1995. An immunocytochemical study on the sequential tissue distribution of duck plague virus. Avian Pathol 24,189-194.
    [58]Islam, M.R., Nessa, J., Halder, K.M.,1993. Detection of duck plague virus antigen in tissues by immunoperoxidase staining. Avian Pathol 22,389-393.
    [59]Jacobs, L., Rziha, H.J., Kimman, T.G., Gielkens, A.L., Van Oirschot, J.T.,1993. Deleting valine-125 and cysteine-126 in glycoprotein gI of pseudorabies virus strain NIA-3 decreases plaque size and reduces virulence in mice. Arch. Virol.131,251-264.
    [60]Ji, J., Du, L.Q., Xie, Q.M., Cao, Y.C., Zuo, K.J., Xue, C.Y., Ma, J.Y., Chen, F., Bee, Y.Z.,2009. Rapid diagnosis of duck plagues virus infection by loop-mediated isothermal amplification. Res. Vet. Sci.87,53-58.
    [61]Jia, R., Cheng, A., Wang, M., Qi, X., Zhu, D., Ge, H., Luo, Q., Liu, F., Guo, Y, Chen, X., 2009a. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J. Virol. Methods 161,38-43.
    [62]Jia, R., Cheng, A., Wang, M., Xin, H., Guo, Y., Zhu, D., Qi, X., Zhao, L., Ge, H., Chen, X., 2009b. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes 38, 96-103.
    [63]Jia, R., Cheng, A., Wang, M., Zhu, D., Ge, H., Xin, H., Liu, F., Luo, Q., Guo, Y., Qi, X., Yin, Z., Chen, X.,2009c. Cloning, expression, purification and characterization of UL24 partial protein of duck enteritis virus. Intervirology 52,326-334.
    [64]Johnson, D.C., Webb, M., Wisner, T.W., Brunetti, C.,2001. Herpes simplex virus gE/gl sorts nascent virions to epithelial cell junctions, promoting virus spread. J. Virol.75,821-833.
    [65]Kaashoek, M.J., Moerman, A., Madic, J., Rijsewijk, F.A., Quak, J., Gielkens, A.L., van Oirschot, J.T.,1994. A conventionally attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine. Vaccine 12,439-444.
    [66]Kaashoek, M.J., Rijsewijk, F.A.M., Ruuls, R.C., Keli, G.M., Thiry, E., Pastoret, P.P., Van Oirschot, J.T.,1998. Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gI and gE gene. Vaccine 16,802-809.
    [67]Kalaimathi, R., Janakiram, D.,1989. Adaptation of a virulent strain of duck plague virus to chicken embryo fibroblast cell culture. Indian Vet. J.66,1001-1004.
    [68]Kalaimathi, R., Janakiram, D.,1990. Propagation of duck plague virus in chick embryo fibroblast cell culture. Indian Vet. J.67,299-302.
    [69]Kaleta, E.F., Kuczka, A., Kuhnhold, A., Bunzenthal, C., Bonner, B.M., Hanka, K., Redmann, T., Yilmaz, A.,2007. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza A virus of the subtype Asia H5N1. Dtsch. Tierarztl. Wochenschr.114,3-11.
    [70]Kehm, R., Rosen-Wolff, A., Darai, G.,1996. Restitution of the UL56 gene expression of HSV-1 HFEM led to restoration of virulent phenotype; deletion of the amino acids 217 to 234 of the UL56 protein abrogates the virulent phenotype. Virus Res.40,17-31.
    [71]Kingham, B.F., Zelnik, V, Kopacek, J., Majerciak, V, Ney, E., Schmidt, C.J.,2001. The genome of herpesvirus of turkeys:comparative analysis with Marek's disease viruses. J. Gen. Virol.82, 1123-1135.
    [72]Klupp, B.G, Hengartner, C.J., Mettenleiter, T.C., Enquist, L.W.,2003. Complete, Annotated Sequence of the Pseudorabies Virus Genome. J. Virol.78,424-440.
    [73]Kocan, R.M.,1976. Duck plague virus replication in muscovy duck fibroblast cells. Avian Dis. 20,574-580.
    [74]Kritas, S.K., Pensaert, M.B., Mettenleiter, T.C.,1994. Invasion and spread of single glycoprotein deleted mutants of Aujeszky's disease virus (ADV) in the trigeminal nervous pathway of pigs after intranasal inoculation. Vet. Microbiol.40,323-334.
    [75]Kruger, J.M., Sussman, M.D., Maes, R.K.,1996. Glycoproteins gl and gE of feline herpesvirus-1 are virulence genes:safety and efficacy of a gl-gE deletion mutant in the natural host. Virology 220,299-308.
    [76]Lee, L.F., Wu, P., Sui, D., Ren, D., Kamil, J., Kung, H.J., Witter, R.L.,2000. The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proc. Natl. Acad. Sci. U. S. A.97,6091-6096.
    [77]Li, H., Liu, S., Han, Z., Shao, Y., Chen, S., Kong, X.,2009a. Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily Alphaherpesvirinae. Genet Mol Biol 32,121-128.
    [78]Li, H., Liu, S., Kong, X.,2006. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV):a proof for the classification of DEV. Virus Genes 33, 221-227.
    [79]Li, L., Cheng, A., Wang, M., Xiang, J., Yang, X., Zhang, S., Zhu, D., Jia, R., Luo, Q., Zhou, Y., Chen, Z., Chen, X.,2011. Expression and characterization of duck enteritis virus gl gene. Virol. J.8, 241.
    [80]Li, Y, Huang, B., Ma, X., Wu, J., Li, F., Ai, W, Song, M., Yang, H.,2009b. Molecular characterization of the genome of duck enteritis virus. Virology 391,151-161.
    [81]Lian, B., Xu, C., Cheng, A., Wang, M., Zhu, D., Luo, Q., Jia, R., Bi, F., Chen, Z., Zhou, Y., Yang, Z., Chen, X.,2010. Identification and characterization of duck plague virus glycoprotein C gene and gene product. Virol. J.7,349.
    [82]Lin, M., Jia, R., Wang, M., Gao, X., Zhu, D., Chen, S., Liu, M., Yin, Z., Wang, Y., Chen, X., Cheng, A.,2014. Molecular Characterization of Duck Enteritis Virus CHv Strain UL49.5 protein and its Colocalization with Glycoprotein M. J. Vet. Sci. Epub, Apr 2.
    [83]Lin, W., Lam, K.M., Clark, W.E.,1984. Isolation of an apathogenic immunogenic strain of duck enteritis virus from waterfowl in California. Avian Dis.28,641-650.
    [84]Liu, F., Ma, B., Zhao, Y, Zhang, Y., Wu, Y.H., Liu, X., Wang, J.,2008a. Characterization of the gene encoding glycoprotein C of duck enteritis virus. Virus Genes 37,328-332.
    [85]Liu, J., Chen, P., Jiang, Y., Wu, L., Zeng, X., Tian, G., Ge, J., Kawaoka, Y, Bu, Z., Chen, H., 2011. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks. J. Virol.85,10989-10998.
    [86]Liu, S., Chen, S., Li, H., Kong, X.,2007. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV). Gene 401,88-96.
    [87]Liu, S., Li, H., Li, Y, Han, Z., Shao, Y, An, R., Kong, X.,2008b. Phylogeny of duck enteritis virus:evolutionary relationship in the family Herpesviridae. Intervirology 51,151-165.
    [88]Liu, X., Han, Z., Shao, Y., Yu, D., Li, H., Wang, Y., Kong, X., Liu, S.,2010. Identification of a novel linear B-cell epitope in the UL26 and UL26.5 proteins of Duck Enteritis Virus. Virol. J.7,223.
    [89]Liu, X., Liu, S., Li, H., Han, Z., Shao, Y., Kong, X.,2009. Unique sequence characteristics of genes in the leftmost region of unique long region in duck enteritis virus. Intervirology 52,291-300.
    [90]Liu, X., Wei, S., Liu, Y., Fu, P., Gao, M., Mu, X., Liu, H., Xing, M., Ma, B., Wang, J.,2013. Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus. Vaccine.
    [91]Lomniczi, B., Watanabe, S., Ben-Porat, T., Kaplan, A.S.,1984. Genetic basis of the neurovirulence of pseudorabies virus. J. Virol.52,198-205.
    [92]Lu, L., Cheng, A., Wang, M., Jiang, J., Zhu, D., Jia, R., Luo, Q., Liu, F., Chen, Z., Chen, X., Yang, J.,2010. Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate. Virol. J.7,83.
    [93]Mallory, S., Sommer, M., Arvin, A.M.,1997. Mutational analysis of the role of glycoprotein I in varicella-zoster virus replication and its effects on glycoprotein E conformation and trafficking. J. Virol.71,8279-8288.
    [94]Mallory, S., Sommer, M., Arvin, A.M.,1998. Analysis of the glycoproteins I and E of varicella-zoster virus (VZV) using deletional mutations of VZV cosmids. J. Infect. Dis.178 Suppl 1, S22-26.
    [95]Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W, Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman,,K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F., Rothberg, J.M.,2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437,376-380.
    [96]Matsumura, T., Kondo, T., Sugita, S., Damiani, A.M., O'Callaghan, D.J., Imagawa, H.,1998. An Equine Herpesvirus Type 1 Recombinant with a Deletion in the gE and gl Genes Is Avirulent in Young Horses. Virology 242,68-79.
    [97]Matsumura, T., O'Callaghan, D.J., Kondo, T., Kamada, M.,1996. Lack of virulence of the murine fibroblast adapted strain, Kentucky A (KyA), of equine herpesvirus type 1 (EHV-1) in young horses. Vet. Microbiol.48,353-365.
    [98]Matsumura, T., Smith, R.H., O'Callaghan, D.J.,1993. DNA sequence and transcriptional analyses of the region of the equine herpesvirus type 1 Kentucky A strain genome encoding glycoprotein C. Virology 193,910-923.
    [99]Maxam, A.M., Gilbert, W.,1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. U.S. A.74,560-564.
    [100]McGeoch, D.J., Dalrymple, M.A., Davison, A.J., Dolan, A., Frame, M.C., McNab, D., Perry, L.J., Scott, J.E., Taylor, P.,1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol.69 (Pt 7),1531-1574.
    [101]Mettenleiter, T.C., Lomniczi, B., Sugg, N., Schreurs, C, Ben-Porat, T.,1988. Host cell-specific growth advantage of pseudorabies virus with a deletion in the genome sequences encoding a structural glycoprotein. J. Virol.62,12-19.
    [102]Mettenleiter, T.C., Lukacs, N., Rziha, H.J.,1985. Pseudorabies virus avirulent strains fail to express a major glycoprotein. J. Virol.56,307-311.
    [103]Mettenleiter, T.C., Zsak, L., Kaplan, A.S., Ben-Porat, T., Lomniczi, B.,1987. Role of a structural glycoprotein of pseudorabies in virus virulence. J. Virol.61,4030-4032.
    [104]Mori,1., Liu, B., Goshima, F., Ito, H., Koide, N., Yoshida, T., Yokochi, T., Kimura, Y., Nishiyama, Y,2005. HF10, an attenuated herpes simplex virus (HSV) type 1 clone, lacks neuroinvasiveness and protects mice against lethal challenge with HSV types 1 and 2. Microbes Infect. 7,1492-1500.
    [105]Neidhardt, H., Schroder, C.H., Kaerner, H.C.,1987. Herpes simplex virus type 1 glycoprotein E is not indispensable for viral infectivity. J. Virol.61,600-603.
    [106]Otsuka, H., Xuan, X.,1996. Construction of bovine herpesvirus-1 (BHV-1) recombinants which express pseudorabies virus (PRV) glycoproteins gB, gC, gD, and gE. Arch. Virol.141,57-71.
    [107]Palmeira, L., Machiels, B., Lete, C., Vanderplasschen, A., Gillet, L.,2011. Sequencing of bovine herpesvirus 4 v.test strain reveals important genome features. Virol. J.8,406.
    [108]Pan, H., Cao, R., Liu, L., Niu, M., Zhou, B., Chen, P., Hu, J.,2008. Molecular cloning and sequence analysis of the duck enteritis virus UL5 gene. Virus Res.136,152-156.
    [109]Petrovskis, E.A., Timmins, J.G., Gierman, T.M., Post, L.E.,1986. Deletions in vaccine strains of pseudorabies virus and their effect on synthesis of glycoprotein gp63. J. Virol.60,1166-1169.
    [110]Plummer, P.J., Alefantis, T., Kaplan, S., O'Connell, P., Shawky, S., Schat, K.A.,1998. Detection of duck enteritis virus by polymerase chain reaction. Avian Dis.42,554-564.
    [111]Pritchard, L.I., Morrissy, C, Van Phuc, K., Daniels, P.W., Westbury, H.A.,1999. Development of a polymerase chain reaction to detect Vietnamese isolates of duck virus enteritis. Vet. Microbiol.68,149-156.
    [112]Pyles, R.B., Thompson, R.L.,1994. Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. J. Virol.68,4963-4972.
    [113]Qi, X., Yang, X., Cheng, A., Wang, M., Zhu, D., Jia, R.,2008. Quantitative analysis of virulent duck enteritis virus loads in experimentally infected ducklings. Avian Dis.52,338-344.
    [114]Rebordosa, X., Pinol, J., Perez-Pons, J.A., Lloberas, J., Naval, J., Serra-Hartmann, X., Espuna, E., Querol, E.,1996. Glycoprotein E of bovine herpesvirus type 1 is involved in virus transmission by direct cell-to-cell spread. Virus Res.45,59-68.
    [115]Rosen-Wolff, A., Lamade, W., Berkowitz, C., Becker, Y, Darai, G.,1991. Elimination of UL56 gene by insertion of LacZ cassette between nucleotide position 116030 to 121753 of the herpes simplex virus type 1 genome abrogates intraperitoneal pathogenicity in tree shrews and mice. Virus Res. 20,205-221.
    [116]Saldanha, C.E., Lubinski, J., Martin, C., Nagashunmugam, T., Wang, L., van Der Keyl, H., Tal-Singer, R., Friedman, H.M.,2000. Herpes simplex virus type 1 glycoprotein E domains involved in virus spread and disease. J. Virol.74,6712-6719.
    [117]Sandhu, T.S., Metwally, S.A.,2008. Duck Virus Enteritis(Duck Plague) in:Saif, Y.M. (Ed.), Diseases of poultry,12th ed. Blackwell Publishing, Singapore, pp.384-393.
    [118]Sanger, F., Nicklen, S., Coulson, A.R.,1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A.74,5463-5467.
    [119]Sanger, F., Nicklen, S., Coulson, A.R.,1992. DNA sequencing with chain-terminating inhibitors.1977. Biotechnology 24,104-108.
    [120]Savva, R., McAuley-Hecht, K., Brown, T., Pearl, L.,1995. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373,487-493.
    [121]Schumacher, D., Tischer, B.K., Reddy, S.M., Osterrieder, N.,2001. Glycoproteins E and I of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J. Virol.75, 11307-11318.
    [122]Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.,2003. SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Res.31,3381-3385.
    [123]Shawky, S.,2000. Target cells for duck enteritis virus in lymphoid organs. Avian Pathol 29, 609-616.
    [124]Shawky, S., Sandhu, T., Shivaprasad, H.L.,2000. Pathogenicity of a low-virulence duck virus enteritis isolate with apparent immunosuppressive ability. Avian Dis.44,590-599.
    [125]Shen, A.M., Ma, G.P., Cheng, A.C., Wang, M.S., Luo, D.D., Lu, L.T., Zhou, T., Zhu, D.K., Luo, Q.H., Jia, R.Y., Chen, Z.L., Zhou, Y., Chen, X.Y.,2010a. Transcription phase, protein characteristics of DEV UL45 and prokaryotic expression, antibody preparation of the UL45 des-transmembrane domain. Virol. J.7,232.
    [126]Shen, C., Cheng, A., Wang, M., Sun, K., Jia, R., Sun, T., Zhang, N., Zhu, D., Luo, Q., Zhou, Y., Chen, X.,2010b. Development and evaluation of an immunochromatographic strip test based on the recombinant UL51 protein for detecting antibody against duck enteritis virus. Virol. J.7,268.
    [127]Shen, C., Cheng, A., Wang, M., Xu, C., Jia, R., Chen, X., Zhu, D., Luo, Q., Cui, H., Zhou, Y., Wang, Y., Xu, Z., Chen, Z., Wang, X.,2010c. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks. Avian Dis.54,939-947.
    [128]Shen, C., Guo, Y, Cheng, A., Wang, M., Zhou, Y, Lin, D., Xin, H., Zhang, N.,2009a. Characterization of subcellular localization of duck enteritis virus UL51 protein. Virol. J.6,92.
    [129]Shen, C.J., Cheng, A.C., Wang, M.S., Guo, Y.F., Zhao, L.C., Wen, M., Xie, W., Xin, H.Y, Zhu, D.K.,2009b. Identification and characterization of the duck enteritis virus UL51 gene. Arch. Virol. 154,1061-1069.
    [130]Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D., Church, G.M.,2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309,1728-1732.
    [131]Sinzger, C., Knapp, J., Schmidt, K., Kahl, M., Jahn, G,1999. A simple and rapid method for preparation of viral DNA from cell associated cytomegalovirus. J. Virol. Methods 81,115-122.
    [132]Spatz, S.J., Petherbridge, L., Zhao, Y., Nair, V.,2007. Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek's disease virus. J. Gen. Virol.88, 1080-1096.
    [133]Spatz, S.J., Rue, C., Schumacher, D., Osterrieder, N.,2008. Clustering of mutations within the inverted repeat regions of a serially passaged attenuated gallid herpesvirus type 2 strain. Virus Genes 37,69-80.
    [134]Spatz, S.J., Schat, K.A.,2011. Comparative genomic sequence analysis of the Marek's disease vaccine strain SB-1. Virus Genes 42,331-338.
    [135]Spatz, S.J., Volkening, J.D., Gimeno, I.M., Heidari, M., Witter, R.L.,2012a. Dynamic equilibrium of Marek's disease genomes during in vitro serial passage. Virus Genes 45,526-536.
    [136]Spatz, S.J., Volkening, J.D., Keeler, C.L., Kutish, GF., Riblet, S.M., Boettger, C.M., Clark, K.F., Zsak, L., Afonso, C.L., Mundt, E.S., Rock, D.L., Garcia, M.,2012b. Comparative full genome analysis of four infectious laryngotracheitis virus (Gallid herpesvirus-1) virulent isolates from the United States. Virus Genes 44,273-285.
    [137]Spieker, J.O., Yuill, T.M., Burgess, E.C.,1996. Virulence of six strains of duck plague virus in eight waterfowl species. J. Wildl. Dis.32,453-460.
    [138]Sussman, M.D., Maes, R.K., Kruger, J.M., Spatz, S.J., Venta, P.J.,1995. A feline herpesvirus-1 recombinant with a deletion in the genes for glycoproteins gI and gE is effective as a vaccine for feline rhinotracheitis. Virology 214,12-20.
    [139]Thureen, D.R., Keeler, C.L., Jr.,2006. Psittacid herpesvirus 1 and infectious laryngotracheitis virus:Comparative genome sequence analysis of two avian alphaherpesviruses. J. Virol.80,7863-7872.
    [140]Tirabassi, R.S., Enquist, L.W.,2000. Role of the pseudorabies virus gI cytoplasmic domain in neuroinvasion, virulence, and posttranslational N-linked glycosylation. J. Virol.74,3505-3516.
    [141]Trapp, S., Osterrieder, N., Keil, G.M., Beer, M.,2003. Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome:analysis of glycoprotein E and G double deletion mutants. J. Gen. Virol.84,301-306.
    [142]Tulman, E.R., Afonso, C.L., Lu, Z., Zsak, L., Rock, D.L., Kutish, G.F.,2000. The genome of a very virulent Marek's disease virus. J. Virol.74,7980-7988.
    [143]Turcatti, G., Romieu, A., Fedurco, M., Tairi, A.P.,2008. A new class of cleavable fluorescent nucleotides:synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res.36, e25.
    [144]Tyler, S., Severini, A., Black, D., Walker, M., Eberle, R.,2011. Structure and sequence of the saimiriine herpesvirus 1 genome. Virology 410,181-191.
    [145]Ushijima, Y., Luo, C., Goshima, F., Yamauchi, Y., Kimura, H., Nishiyama, Y.,2007. Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect.9,142-149.
    [146]van Beurden, S.J., Bossers, A., Voorbergen-Laarman, M.H., Haenen, O.L., Peters, S., Abma-Henkens, M.H., Peeters, B.P., Rottier, P.J., Engelsma, M.Y.,2010. Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J. Gen. Virol.91,880-887.
    [147]van Engelenburg, F.A., Kaashoek, M.J., Rijsewijk, F.A., van den Burg, L., Moerman, A., Gielkens, A.L., van Oirschot, J.T.,1994. A glycoprotein E deletion mutant of bovine herpesvirus 1 is avirulent in calves. J. Gen. Virol.75 (Pt 9),2311-2318.
    [148]Wang, J., Hoper, D., Beer, M., Osterrieder, N.,2011. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res.160,316-325.
    [149]Wang, J., Osterrieder, N.,2011. Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Res.159, 23-31.
    [150]Wang, M., Lin, D., Zhang, S., Zhu, D., Jia, R., Chen, X., Cheng, A.,2012. Prokaryotic expression of the truncated duck enteritis virus UL27 gene and characteristics of UL27 gene and its truncated product. Acta Virol.56,323-328.
    [151]Wei, S., Liu, X., Ma, B., Wu, Y., Liu, Y., Gao, M., Fu, P., Wang, J.,2013. The US2 protein is involved in the penetration and cell-to-cell spreading of DEV in vitro. J. Basic Microbiol.
    [152]Wen, Y., Cheng, A., Wang, M., Ge, H., Shen, C., Liu, S., Xiang, J., Jia, R., Zhu, D., Chen, X., Lian, B., Chang, H., Zhou, Y.,2010. A Thymidine Kinase recombinant protein-based ELISA for detecting antibodies to Duck Plague Virus. Virol. J.7,77.
    [153]Whealy, M.E., Card, J.P., Robbins, A.K., Dubin, J.R., Rziha, H.J., Enquist, L.W.,1993. Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J. Virol.67,3786-3797.
    [154]Whitfeld, P.R.,1954. A method for the determination of nucleotide sequence in polyribonucleotides. Biochem. J.58,390-396.
    [155]Wolf, K., Burke, C.N., Quimby, M.C.,1976. Duck viral enteritis:a comparison of replication by CCL-141 and primary cultures of duck embryo fibroblasts. Avian Dis.20,447-454.
    [156]Wozniakowski, G., Samorek-Salamonowicz, E.,2013. First survey of the occurrence of duck enteritis virus (DEV) in free-ranging Polish water birds. Arch. Virol.
    [157]Wu, Y., Cheng, A., Wang, M., Yang, Q., Zhu, D., Jia, R., Chen, S., Zhou, Y., Wang, X., Chen, X.,2012. Complete genomic sequence of Chinese virulent duck enteritis virus. J. Virol.86,5965.
    [158]Wu, Y., Cheng, A., Wang, M., Zhang, S., Zhu, D., Jia, R., Luo, Q., Chen, Z., Chen, X.,2011a. Characterization of the duck enteritis virus UL55 protein. Virol. J.8,256.
    [159]Wu, Y., Cheng, A., Wang, M., Zhang, S., Zhu, D., Jia, R., Luo, Q., Chen, Z., Chen, X.,2011b. Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene. Virol. J.8,266.
    [160]Xiang, J., Cheng, A., Wang, M., Zhang, S., Zhu, D., Jia, R., Chen, S., Zhou, Y., Wang, X., Chen, X.,2012. Computational identification of microRNAs in Anatid herpesvirus 1 genome. Virol. J.9, 93.
    [161]Xiang, J., Ma, G., Zhang, S., Cheng, A., Wang, M., Zhu, D., Jia, R., Luo, Q., Chen, Z., Chen, X.,2010. Expression and intracellular localization of duck enteritis virus pUL38 protein. Virol. J.7, 162.
    [162]Xiang, J., Zhang, S., Cheng, A., Wang, M, Chang, H., Shen, C., Zhu, D., Jia, R., Luo, Q., Chen, Z., Chen, X.,2011. Expression and characterization of recombinant VP19c protein and N-terminal from duck enteritis virus. Virol. J.8,82.
    [163]Xie, W., Cheng, A., Wang, M., Chang, H., Zhu, D., Luo, Q.,2010. Molecular cloning and characterization of the UL31 gene from duck enteritis virus. Mol. Biol. Rep.37,1495-1503.
    [164]Xie, W., Cheng, A., Wang, M., Chang, H., Zhu, D., Luo, Q., Jia, R., Chen, X.,2009. Expression and characterization of the UL31 protein from duck enteritis virus. Virol. J.6,19.
    [165]Xin, H.Y., Cheng, A.C., Wang, M.S., Jia, R.Y., Shen, C.J., Chang, H.,2009. Identification and characterization of a duck enteritis virus US3-like gene. Avian Dis.53,363-369.
    [166]Yang, F.L., Jia, W.X., Yue, H., Luo, W., Chen, X., Xie, Y., Zen, W., Yang, W.Q.,2005. Development of quantitative real-time polymerase chain reaction for duck enteritis virus DNA. Avian Dis.49,397-400.
    [167]Yao, Y, Smith, L.P., Petherbridge, L., Watson, M., Nair, V.,2012. Novel microRNAs encoded by duck enteritis virus. J. Gen. Virol.93,1530-1536.
    [168]Yong, H., Xiaokun, L., Zhong, Z., Meilin, J.,2013. Glycoprotein C plays a role in the adsorption of duck enteritis virus to chicken embryo fibroblasts cells and in infectivity. Virus Res.
    [169]Yuan, G.P., Cheng, A.C., Wang, M.S., Liu, F., Han, X.Y., Liao, Y.H., Xu, C.,2005. Electron microscopic studies of the morphogenesis of duck enteritis virus. Avian Dis.49,50-55.
    [170]Zerboni, L., Berarducci, B., Rajamani, J., Jones, C.D., Zehnder, J.L., Arvin, A.,2011. Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis. J. Virol.85,98-111.
    [171]Zhang, S., Ma, G., Xiang, J., Cheng, A., Wang, M., Zhu, D., Jia, R., Luo, Q., Chen, Z., Chen, X.,2010a. Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis. Virol. J.7,168.
    [172]Zhang, S., Xiang, J., Cheng, A., Wang, M., Li, X., Li, L., Chen, X., Zhu, D., Luo, Q., Chen, X.,2010b. Production, purification and characterization of polyclonal antibody against the truncated gK of the duck enteritis virus. Virol. J.7,241.
    [173]Zhang, S., Xiang, J., Cheng, A., Wang, M., Wu, Y., Yang, X., Zhu, D., Jia, R., Luo, Q., Chen, Z., Chen, X.,2011. Characterization of duck enteritis virus UL53 gene and glycoprotein K. Virol. J.8, 235.
    [174]Zhao, L.C., Cheng, A.C., Wang, M.S., Yuan, G.P., Jia, R.Y., Zhou, D.C., Qi, X.F., Ge, H., Sun, T.,2008. Identification and characterization of duck enteritis virus dUTPase gene. Avian Dis.52, 324-331.
    [175]Zhao, Y., Wang, J.W.,2009. Characterization of duck enteritis virus US6, US7 and US8 gene. Intervirology 53,141-145.
    [176]Zhao, Y., Wang, J.W., Liu, F., Ma, B.,2009a. Molecular analysis of US10, S3, and US2 in duck enteritis virus. Virus Genes 38,243-248.
    [177]Zhao, Y., Wang, J.W., Ma, B., Liu, F.,2009b. Molecular analysis of duck enteritis virus US3, US4, and US5 gene. Virus Genes 38,289-294.
    [178]Zhu, H., Li, H., Han, Z., Shao, Y., Wang, Y, Kong, X.,2011. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1. Virol. J.8, 156.
    [179]Zimmermann, W., Broil, H., Ehlers, B., Buhk, H.J., Rosenthal, A., Goltz, M.,2001. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. J. Virol.75,1186-1194.
    [180]蔡宝祥.家畜传染病(第四版).北京:中国农业出版社,2003,330-333.
    [181]陈淑红.鸭肠炎病毒部分基因组序列的克隆与分析:[博士].东北农业大学,2006.
    [182]程安春,汪铭书,刘菲,宋涌,袁桂萍,韩晓英,徐超,廖永洪,文明,周伟光,贾仁仁勇.鸭瘟病毒弱毒株在免疫雏鸭体内的分布和排毒规律.中国兽医学报,2005,25(3):231-233,258.
    [183]程安春,汪铭书,文明,周伟光,郭宇飞,贾仁勇,徐超,袁桂萍,刘一尘.鸭病毒性肠炎病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定.高技术通讯,2006,16(9):948-953.
    [184]范书才,李虹,史大庆,康凯.鸭瘟灭活疫苗效力试验和安全试验.中国预防兽医学报,2009a,31(7):553-557.
    [185]范书才,李虹,朱良全,康凯.鸭瘟灭活疫苗种毒筛选及生产用种毒种子批的建立.中国预防兽医学报,2009b,31(6):458-461.
    [186]甘孟候.中国禽病学.北京:中国农业出版社,2000,444-454.
    [187]郭霄峰,廖明,辛朝安.鸭瘟病毒北京株UL6和UL7基因的克隆及序列测定.畜牧兽医学报,2002a,33(6):615-618.
    [188]郭霄峰,廖明,严英华,李剑峰,辛朝安.利用PCR检测鸭瘟病毒.中国兽医科技,2002b,32(4):13-16.
    [189]郭宇飞,程安春,汪铭书,贾仁勇,文明,周伟光,周毅,陈孝跃.鸭胚成纤维细胞中鸭瘟强毒的增殖特性研究.病毒学报,2008,24(5):352-357.
    [190]贺东生,赵.,苏丹萍.鸭瘟病毒及其核酸的电镜观察.中国畜禽传染病,1998,20(1):13-14.
    [191]胡薛英,谷长勤,程国富,周诗其,苏敬良,杨健.应用单克隆抗体的免疫组织化学法研究雏鸭体内鸭瘟病毒的分布.中国预防兽医学报,2006,28(3),320-322.
    [192]黄培堂.分子克隆试验指南(第3版).北京:科学出版社,2003,1271-1321.
    [193]黄引贤.拟鸭瘟的研究.华南农学院学报,1959,1:67-78.
    [194]黄引贤,何承健,丘宴明.鸭瘟病毒通过鸭胚传代的某些特性.家畜传染病,1986,2:2-4.
    [195]黄引贤,欧守杼,邝荣禄,林维庆.鸭瘟病毒的研究.华南农学院学报,1980,1(1):21-36.
    [196]姜甜甜,张大丙.鸭瘟强毒与疫苗毒的囊膜糖蛋白序列比较.中国兽医杂志,2013 49(2):3-7.
    [197]靳艳玲,罗薇,刘内生,于学辉,杨晓农,龙虎.雏鸭鸭瘟病毒的分离鉴定.四川畜牧兽医,2006,33(1):19-21.
    [198]李成,谷守林,姜绍德,郝桂玉,张坦,蔡虹,黄金华.鸭瘟鸡胚化疫苗毒的电镜观察.中国畜禽传染病,1996,1:50-51.
    [199]李玉峰.鸭肠炎病毒基因组的序列测定与分析:[博士学位论文].北京:中国农业大学,2007.
    [200]李玉峰,欧阳文军,周秋平,黄兵,马秀丽,宋敏训,杨汉春.鸭瘟病毒部分基因的克隆与序列分析.中国兽医杂志,2007,43(3):5-7.
    [201]刘菲,程安春,汀铭书,宋涌,廖永洪,袁桂萍,韩晓英,徐超.鸭瘟病毒强毒株在急性人工感染成年鸭病例体内分布规律.中国兽医学报,2004,24(3):228-230.
    [202]马秀丽,宋敏训,王莉莉,艾武,李峰,李玉峰,黄兵,牟建青,李新华.间接ELISA检测鸭瘟抗体的研究和应用.山东农业科学,2005,1:62-64.
    [203]潘华奇,曹瑞兵,刘磊,孙海亮,姬向波,陈勇军,陈溥言.鸭瘟病毒gB蛋白N端主要抗原域的表达及间接ELISA检测.微生物学报,2008,48(1):98-102.
    [204]齐雪峰.鸭瘟强、弱毒株在感染鸭体内的动态分布及免疫应答:[博士学位论文].雅安:四川农业大学,2008.
    [205]齐雪峰,程安春,汪铭书,杨晓燕,贾仁勇,陈孝跃.鸭瘟病毒抗体间接ELISA检测试剂盒的研制.中国兽医科学,2007,37(8):690-694.
    [206]齐雪峰,罗薇,杨晓燕.应用ELISA检测鸭瘟抗体的研究.现代畜牧兽医,2004,12:32-33.
    [207]齐雪峰,罗薇,杨晓燕,刘内生.鸭瘟病理组织学动态观察.中国预防兽医学报,2006,28(1):44-47.
    [208]乔代蓉.限制性内切酶分析鸭瘟病毒DNA.四川农业大学学报,1992,1:172-177.
    [209]孙翠英.鹅的鸭瘟病的诊治.山东畜牧兽医,2013,6:27-28.
    [210]孙昆峰.鸭瘟病毒gC基因疫苗在鸭体内分布规律及gC、gE基因缺失株的构建和生物学特性的初步研究:[博士学位论文].雅安:四川农业大学,2013.
    [211]索化夷,汤承,岳华,汤明,景波,韩鹏.实时荧光定量TaqMan-PCR检测鸭瘟病毒方法的建立.中国预防兽医学报,2006,28(3):332-335,340.
    [212]王春俊.一例鹅感染鸭瘟的诊治.河南畜牧兽医(综合版),2011,1:49-50.
    [213]王静,郭霄峰,谢太深,吴明,洪洁心.鸡胚成纤维细胞培养鸭瘟病毒的试验.中国兽医科技,2001,10:21-22.
    [214]文明.DEV基因文库构建、核衣壳蛋白基因的发现及克隆与表达:[博士].四川农业大学,2005.
    [215]杨晓燕,程安春,汪铭书,齐雪峰,郭宇飞,葛忠源,黄永成,张素辉,胡骑,于波,周登春,陈孝跃.鸭瘟病毒强毒株在感染鸭实质器官内的增殖与分布.中国兽医学报,2008,143(11):1254-1258.
    [216]杨晓燕,罗薇,齐雪峰.应用PCR检测成年鸭体内鸭瘟强毒的分布.中国兽医科技,2004,34(1):66-69.
    [217]殷震,刘景华,1997.动物病毒学(第二版).北京:科学出版社,1073-1081.
    [218]余克伦,陆光进,贺东升.鸭瘟病毒的某些分子生物学特性.病毒学报,.1993,3:284-286.
    [219]岳华,杨发龙,景波,汤承,张焕容.鸭瘟病毒在雏鸭体内的动态定量分布及其潜伏部位研究.中国预防兽医学报,2007,29(9):671-675.
    [220]翟中和,丁明孝.一种核内DNA病毒(鸭瘟病毒)在细胞质内的发生途径.中国科学(B辑化学生物学农学医学地学),1982,2:121-129.
    [221]张克明.鹅群发生鸭瘟的防治.畜牧兽医科技信息,2010,5:121.
    [222]张坤,刁有祥,鞠小军.鸭瘟病毒环介导等温扩增(LAMP)快速检测方法的建立与应用.中国兽医学报,2013,33(4):520-525.
    [223]张梅芳,温燕辉.育肥鹅感染鸭瘟的诊治.福建畜牧兽医,2007,29(1):47-47.
    [224]张新富,胡永浩,柳金雄,陈普成,邬丽,姜永萍,陈化兰.鸭瘟病毒疫苗株在免疫SPF鸭体内的生长动力学检测.中国兽医科学,2011,41(5):514-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700