道路微波除冰效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路积冰危害道路交通和人的生命安全。有效除冰,尤其是高速公路、桥梁、机场跑道等重要设施除冰,一直是世界上地处高纬地区国家关注的问题。2008年初发生在我国南方地区的冰雪灾害暴露出我国在道路除冰方法的研究方面亟需加强。道路微波除冰作为一种新型环保除冰方法,受到人们的广泛关注。本文对道路微波除冰技术进行了深入的理论与试验研究,得出的主要结论如下:
     1.基于微波加热理论,利用CST、MATLAB及ANSYS软件,将三维微波加热模型应用于道路微波除冰仿真,仿真与试验结果一致。
     2.仿真研究表明微波除冰效率低的原因是冰吸收热能在冰层下0-30mm范围内,245GHz微波加热沥青混凝土深度约120mm,沥青混凝土吸收微波产生大量的热能没有全部用于融化路面结合处冰层,相当部分的热能用于加热路面深层;提出了以冰层和路面结合处温度到达0℃的时间作为微波除冰效率的判定依据,给出了停止微波加热的时刻。
     3.对微波频率、微波电场强度、加热模式及波导口距路面高度进行了仿真和试验研究,结果表明:微波频率对除冰效率的影响最大,增加微波频率,能够有效提高除冰效率,应用5.8GHz微波相对于2.45GHz微波提高除冰效率3-5倍;间歇式加热好于持续加热除冰效果,采用间歇式加热,每次间歇时间为10秒钟时加热除冰效果最好;在加热结束30s左右除冰,效果最佳;同等条件下,增加微波电场强度来提高微波除冰效率作用不大;波导口加热距离路面50mm时,除冰效率较高。
     4.对道路材料影响除冰效率进行了研究,仿真和实验研究结果表明水泥混凝土除冰效率是沥青混凝土的3-4倍;仿真结果表明应用铁磁性道路材料能够有效提高微波除冰效率,2.45GHz微波加热含磁铁矿石骨料40%的沥青混凝土与不含磁铁矿石骨料相比,效率提高了7倍;实验结果表明在沥青混凝土上覆盖吸波材料后,提高除冰效率约5倍。
     5.仿真得出5.8GHz微波加热磁铁矿石骨料体积比为1:4沥青混凝土时,除冰效率能够实现微波除冰工程应用。
     6.对环境温度、冰层杂质、冰厚进行了仿真和试验研究。结果表明:环境温度-5℃的除冰效率约是-20℃时的4.7倍;冰层底部存在土类杂质有助于提升除冰效率,冰层底部含土类杂质的试样是无杂质试样除冰效率的2-3倍;冰层厚度对除冰效率影响甚小,体现了微波除厚冰层的优势。
Ice on the road does harm to the safety of traffic and people.To clear the ice on the roadeffectively,in particular on highways,bridges,airport runways and other important facilities thishas been a major concern by worldwide countries in the high altitudes.Ice and snow disasterhave occurred in the southern most regions of our country in 2008,exposing what a means ofdeicing is much need take out to research.Microwave deicing is to be considered as a new typeof environmentally deicing method.The paper researched the technology of microwave deicingby theory and experimentation.The main conclusions are as follows:
     1.Based on the theory of microwave heating CST,MATLAB and ANSYS software wereused to achieve the simulation of microwave deicing by three-dimensional model of microwaveheating.The results of simulation were the same to all experimental results.
     2.The simulation results showed the reason for low efficiencies being that the road iceabsorbed sources of energy limited to asphalt concrete 0-30mm depth.Heating asphalt concreteusing 2.45GHz is nearly 120mm in depth.Asphalt concrete absorbs microwaves and produces alarge amount of heat,but not all the heat is used to promote the melting of the ice at the roadjunctions.A considerable portion of the heat was used to heat the road to a given depth.At thetime when the combination of ice and the pavement temperatures reaches 0℃it was proposed asthe indicators of microwave deicing efficiency.The stop time of microwave heating of deicing isgiven too.
     3.The frequencies,electric field intensity of microwaves,the heating modes of microwavesand distances between road and waveguide outlet were researched by simulation andexperimentation.The results showed that the microwave frequencies have the largest impact onthe deicing efficiencies.Improving the microwave frequencies can improve the efficiency ofmicrowave deicing.Compared with 2.45GHz,5.8GHz improves the efficiency of microwavedeicing 3-5 times.Intermittent heating effects are better than the continued deicing methods.When using intermittent heating,the time interval of 10 seconds of heating is the best.Thedeicing effect is best at the end of a 30 second heating cycle after the heating.With the samecircumstances,improving the microwave deicing efficiency is not practical to change themicrowave electric field strength.The deicing efficiency is highest when the distance between road and waveguide outlet is 50mm.
     4.The road material affecting the deicing efficiency was researched.The simulation andexperimental results showed that the concrete deicing efficiency is 3-4 times that of asphaltconcrete.The simulation results also showed that the magnetic material can increase theefficiency of the microwave deicing.Compared to ordinary asphalt concrete pavement,asphaltconcrete appended with magnetite material at the ratio of 40% can improve the deicing efficiencyup to 7 times.With the use of magnetic material overlays the efficiency improves by as much as 5times.
     5.The simulation results showed that when 5.8GHz heating of asphalt concrete appendedwith magnetite material at the ratio of 1:4,the microwave deicing efficiency can achieveengineering applications.
     6.The environmental temperature,thickness of ice and impurity content of ice were studiedby simulation and experiment.The results showed that the deicing efficiency at -5℃is about 4.7times than at -20℃.The impurities of soil type existed at the bottom of ice enhanced themicrowave deicing efficiency.The deicing efficiency of the sample with the impurities of soiltype existing at the bottom of the ice is 2-3 times of the sample no impurities.The thickness ofice has a small impact on deicing efficiencies which reflects the advantage of microwaves toremove thick ice.
引文
[1]巢清尘.气候异常对交通运输影响的对策研究.灾害学,2000,15(3):79-84.
    [2]王智明,张连富,张天蔚.中国除雪机械现状及发展趋势[J].筑路机械与施工机械化,1999,16(8):4-5.
    [3]唐相伟,焦生杰,高子渝,等.微波除冰国内外研究现状[J].筑路机械及施工机械化2007,24(11):1-4.
    [4]唐相伟,焦生杰,高子渝,等.微波除冰应用及分析[J].筑路机械及施工机械化,2008,25(7):15-18.
    [5]靳长征,白晨.浅谈道路结冰的清除[J].河南交通科技,1996,13(5):45-46.
    [6]王振.国内除雪除冰机械刍议,工程机械,2002,33(07):46-47.
    [7]陆季挺,靳长征.高速公路快速除雪作业[J].筑路机械与施工机械化,1999,16(6):43-45.
    [8]唐祖全.导电混凝土融雪化冰机理分析[J].混凝土,2001,23(7):8-11.
    [9]张润利,贺杰.现代除冰技术[J].交通世界,2004,11(2):60-62
    [10]黄淑琴.路面加盐除冰[J].公路,1996(8):44-46.
    [11]洪乃丰.我国北方地区冬季撒盐的利害分析与对策[J].低温建筑技术,2003(3):12-13.
    [12]代琳琳,赵晓明.融雪剂的环境污染与控制对策[J].安全与环境工程,2004,11(4):31-33,41.
    [13]张长荣.振动压裂式破冰雪机的研制[J].筑路机械与施工机械化,1999,16(8):16-17.
    [14]张先璞,谢德民.CB-1600型除冰机的研制[J].黑龙江交通科技,1996(4):30-31.
    [15]程宪春,苗忠,闫钰锋.ZH1200型组合式破冰除雪机设计[J].长春大学学报,2002,12(1):12-14.
    [16]金星,纪锋,张明志,等.冰面除雪机螺旋输送器参数探讨[J].水产学杂志,1998,11(1):59-64.
    [17]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及分析[J].公路,2007(5): 170-175.
    [18]曲春雷.直升机防(除)冰技术研究[A].第十八届(2002)全国直升机年会论文[C].2002:339-345.
    [19]常士楠,刘达经,袁修干.直升机旋翼桨叶防/除冰系统防护范围研究[J].航空动力学报,2007,22(3):360-364.
    [20]Hopstock,D.M.“Microwave-absorbing road construction and repair material.”[R].Duluth:University of Minnesota Duluth,2003.
    [21]Hopstock,D.M.,and Zanko,L.M.“Minnesota taconite as a microwave-absorbing road aggregate material for deicing and pothole patching applications.”[J].Northland Transporter,2004(3).
    [22]Wuori,A.F.,Ed.,1993.Ice-Pavement Bond Disbonding——Surface Modification and Disbonding,Strategic Highway Research Program Rpt.SHRP-H-644,National Research Council,Washington,DC.Available on-line at http://gulliver.trb.org/publications/shrp/SHRPH-644.pdf.
    [23]Wuori A F.Ice-Pavement bond disbanding-surface modification and disbanding[R].Strategic Highway Research program Rpt,SHRP-H-644,National Research Council,Washington,DC,1993.
    [24]Wuori A F.Ice-Pavement bond disbanding-surface modification and disbanding[R].Strategic Highway Research program Rpt,SHRP-H-644,National Research Council,Washington,DC,1993.
    [25]Lindroth D P,Berglund W R,Wingquist C F.Microwave thawing of frozen soils and gravels[J].Journal of Cold Regions Engineering,1995,9(2):53-63.
    [26]Walkiewica J W,D P Lindroth,A E Clark.Improved grind ability of taconite ores by microwave heating[R].U.S.Bureau of Mines Report of Investigations955,1995.
    [27]关明慧,徐宇工,卢太金,等.微波加热技术在清除道路积冰中的应用[J].北方交通大学学报,2003,27(4):79-83.
    [28]李笑,徐宇工,刘福利.微波除冰方法研究[J].哈尔滨工业大学学报,2003,35(11):1342-1343.
    [29]徐宇工,李笑,宁智,等.微波加热清除道路结冰的方法和微波除冰车[P].中国专利: 02125427.3,2004-01-28.
    [30]徐宇工,李笑,宁智,等.一种微波除冰车[P].中国专利:CN02243786.X,2004-03-10.
    [31]美的集团有限公司.磁控管微波消除路面冰雪的方法[P].中国:200710027333,2007-09-05.
    [32]美的集团有限公司.一种除雪机[P].中国:200520059734,2006-08-02
    [33]应四新.微波加热与微波干燥[M].北京:国防工业出版社,1976.
    [34]张兆镗,钟若青.微波加热技术基础[M].北京:电子工业出版社,1988.
    [35]黄玉兰.电磁场与微波技术[M].北京:人民邮电出版社,2007.
    [36]王保志.微波技术与工程天线[M].北京:人民邮电出版社,1991.
    [37]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理学与高薪技术,2004,33(6):438-442
    [38]朱守正.温变参数材料微波加热的数值模拟[J].电子学报,1994(09):28-34.
    [39]陈先法.微波加热器[J].杭州食品科技,199227(1):43-44.
    [40]金敬福.材料冻粘特性及矿车冻粘规律试验研究[D].长春:吉林大学,2004.
    [41]杨晓东,金敬福.冰的粘附机理与抗冻粘技术进展[J].长春理工大学学报,200225(4):17-19.
    [42]金敬福,丛茜,杨晓东.常用工程材料的冻黏特性及冻黏界面破坏形态[J].吉林大学学报(工学版),2005,35(5):486-489.
    [43]杨晓东,尚广瑞,金敬福.Q235钢表面PTFE涂层的冻粘试验[J].吉林大学学报(工学版),2004,34(2):272-276.
    [44]RARATY L E,TABOR D.The adhesion and strength properties of ice[J].Proc Roy Soc,1958,24(5):184-201.
    [45]Jellinek,H.H.G.Adhesive properties of ice[J].Journal of Colloid Science,1959,(14):268-280.
    [46]SONWAL KAR Nishikant,SUNDER Shyam S,SHARMA S K.Ice/solid adhesion analysis using low2temperature raman microprobe shear apparatus[J].Applied Spectroscopy,1993,(47):1585-1593.
    [47]CROUTCH V K,HARTL EY R A.Adhesion of ice to coatings and the performance of ice release coatings[J].Journal of Coatings Technology,1992,(64):41-53.
    [48]ANDREWS E H.Adhesion of ice to a flexible substrate[J].Journal of Material Science,1984,(19):73-81.
    [49]任拴全,刘亚娟,胡辰.间歇式沥青混合料再生拌和设备加热形式的探讨[J].养护机械与施工技术,2007,(3):30-32
    [50]朱松青,史金飞,王鸿翔.微波现场加热再生关键问题研究[J].公路交通科技,2007,24(9):28-31.
    [51]王亦方,吴祥应,胡斌杰,等.家用微波炉炉腔内电磁场分布的解析计算[J].华南理工大学学报(自然科学版),2000,28(2):75-80.
    [52]朱松青,史金飞,王鸿翔.沥青路面现场微波加热再生模型与实验[J].东南大学学报(自然科学版),2006,36(3):393-396.
    [53]李红群.微波应用于沥青路面养护的试验研究[J].中外公路,2007,27(1):299-232
    [54]EPRI Industrial Program.Microwave progress for asphalt pavement recycling[R].Los Angles:EPRI Industrial-Environment & Energy Management,1992.
    [55]宫彦军,吴振森,戴振宏.基于凸面几何学的凸体Yee元胞建模[J].清华大学学报(自然科学版),2007,47(9):1521-1525.
    [56]纪海翔.基于FDTD的微波加热模型分析[D].西安.西安电子科技大学,2004.
    [57]葛德彪,阎玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002
    [58]闫丽萍,黄卡玛,刘长军,等.微波加热FDTD模拟中时间压缩因子的研究[J].四川大学学报(自然科学版),2003,40(2):395-398.
    [59]李万莉,于睿坤,朱福民.沥青路面再生机微波加热机理及数值模拟[J].同济大学学报(自然科学版),2007,35(4):492-490.
    [60]孙铜生,史金飞,朱松青,等.沥青路面微波现场热再生热电场模型[J].交通运输工程学报,2008,8(3):46-51.
    [61]李勇.微波场中温度分布的数值模拟研究[D].云南:云南师范大学,2006.
    [62]宋燎原.微波加热系统设计及谐振腔内电磁场分布研究[D].东营:中国石油大学,2007.
    [63]李万莉.高等级公路快速养护方法及设备[M].北京:人民交通出版社,2005.
    [64]崔慧军,陈津,冯秀梅,等.微波场中含碳铬矿粉升温特性曲线数值模拟[J].中国冶金,2007,17(1):30-34.
    [65]秦妍,李维仲.利用移动网格技术模拟冰融化过程中的传热问题[J].热科学与技术,2005,4(3):213-218.
    [66]樊玲.结冰融冰过程的数值模拟[D].南京:南京航空航天大学,2005.
    [67]楼启华.沥青与沥青混合料的加热与控制[J].交通科技,2005,(5):100-102
    [68]王绍林.微波加热原理及其应用[J].物理,1997(4):232-236.
    [69]张兆镗.关于工业微波炉设计中的几个问题[J].第十二届全国微波能应用学术会议论文集,2005.
    [70]Cyclean,Inc.Apparatus for control of recycled asphalt production[P].US patent:No.5,303,999,Apr.19,1994.
    [71]Dennis M.Sullivan,Electromagnetic simulation using the FDTD method[M].N J:IEEE Press,2000.
    [72]David M.Pozar.微波工程[M].第三版.张肇仪,周乐柱,吴德明,等.北京:电子工业出版社,2006.
    [73]F.Torres and B.Jeko.Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media[J].IEEE Trans.Microwave Theory Tech.vol.45:108-117,1997.
    [74]John Radomsky,Cedar Park.Method and apparatus for treating asphaltic concrete paving materials[P].US patent..No.4,957,434,Sep.18,1990.
    [75]罗桑,钱振东,王建伟,等.沥青路面结构温度场有限元数值计算研究[J].东南大学研究生学报,2006,4(1):56-58.
    [76]孙振邦.微波加热技术在公路养护机械上的运用[J].中国公路学会筑路机械学会第十四次学术年会.
    [77]李迎.内燃机流固藕合传热问题数值仿真与应用研究[D].杭州:浙江大学,2006.
    [78]叶君永,黄卡玛.随机相位和随机频率微波加热效应的数值模拟[J].强激光与粒子束,2004,16(12):1576-1580.
    [79]姜洪舟.无机胶凝材料微波加热过程的数学模拟研究[D].武汉:武汉理工大学,2006.
    [80]陈光.扫雪除冰车红外线加热系统设计及加热过程的数值模拟[D].大连:大连理工大学,2003.
    [81]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [82]谭建国.使用ANSYS6.0进行有限元分析[M].北京.北京大学出版社,2002
    [83]唐相伟,焦生杰,高子渝,等.冬季道路微波除冰效率研究[J].中国工程机械学报,2008,6(1):105-110.
    [84]贺庆强,张勤河,刘克强,等.H型钢开坯过程的热力耦合有限元分析[J].系统仿真学报,2007,19(1):19-21.
    [85]朱敏波,钟杨帆,段宝岩.星载天线在轨热变形多因素影响仿真分析[J].系统仿真学报,2007,19(6):1376-1378.
    [86]张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007.
    [87]M.Costa,D.Buddhi,A.Oliva.Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction[J].Energy Conversion & Management(0196-8904),1998,39:319-330.
    [88]V.R.Voller.Fast implicit finite-difference method for the analysis of phase change problems[J].Numerical Heat Transfer,part:B(1040-7790),1990,17:155-169.
    [89]V.R.Voller,C.Prakash.A fixed grid numerical modeling methodology for convectiondiffusion mushy region phase-change problems[J].International Journal of Heat and Mass Transfer(0017-9310),1987,30(8):1709-1719.
    [90]焦生杰,唐相伟,高子渝,等.微波除冰效率关键技术研究[J].中国公路学报,2008,21(6):121-126.
    [91]吴万胜,唐相伟,郑积相.微波技术在公路养护上的应用[J].筑路机械与施工机械化,2006,23(1):1-4.
    [92]薛亮,郝培文,邹天义,等.微波、红外再生沥青混合料路用性能研究[J].公路,2007(2):149-152
    [93]薛亮,郝培文,邹天义,等.微波加热沥青混合料特性研究[J].公路,2006(12):188-192
    [94]王绍林.微波加热工艺及国外专利精选[M].北京:专利文献出版社,1995.
    [95]曹亚东.旧沥青混合料热再生技术的应用研究[J].上海建设科技,2005(5):15-7.
    [96]陈启宗.国外沥青混凝土再生搅拌设备的发展[J].工程机械与维修,2001(10):40-43.
    [97]龚克.矩形波导微波化学反应系统的研究[D].南京:东南大学,2005.
    [98]吴金花,史金飞,朱松青,等.沥青路面微波热再生实验系统及仿真优化[J].交通与计算机,2008,26(3):111-113.
    [99]Tang Xiang-wei,Jiao Sheng-jie,Gao Zi-yu,and et al.STUDY OF 5.8 GHz MAGNETRON INMICROWAVE DEICING[J].Journal of Electromagnetic Waves and Applications,2008,22(10):1351-1360.
    [100]Tang Xiang-wei,Jiao Sheng-jie,Gao Zi-yu,and et al.STUDY OF 5.8 GHz MAGNETRON INASPHALT PAVEMENT MAINTENANCE[J].Journal of Electromagnetic Waves and Applicati ons,2008,22(14-15):1975-1984.
    [101]Whittington H.and others.Conduction of electricity through concrete[J].Magazine of Concrete Research(0024-9831),1981,33(114):48-60.
    [102]高子渝,焦生杰.微波加热旧沥青混合料的应用研究[J].养护机械与施工技术,2006,23(10):29-31.
    [103]马如宏.微波加热技术在沥青路面现场维修中的应用[J].盐城工学院学报(自然科学版),2002,15(4):38-40.
    [104]焦生杰,唐相伟,高子渝,等.环境温度对道路微波除冰效率的影响[J].长安大学学报[自然科学版],2008,28(6):85-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700