乳酸菌自溶酶在自溶中的作用及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌由于其在维持宿主体内肠道菌群平衡方面的生理功能,被认为是最安全和最具代表性的肠道益生菌,在世界范围内的发酵乳制品加工中被广泛应用。乳酸菌自溶是发酵乳制品生产中的常见现象,自溶速率决定着发酵乳制品的质量、风味及产品生产周期,在不同发酵制品中所起作用不同,有利亦有弊。因此,研究乳酸菌自溶影响因素及产生机理将更好地指导乳酸菌在工业生产中的应用并为工业生产中的实际需要选育合适的发酵菌种提供了理论依据。
     在此需求下,本研究从传统发酵乳制品中筛选自溶度不同的乳酸菌菌株,选取其中高自溶和低自溶度菌株各一株作为主要研究对象,研究了不同因素对高低自溶度乳酸菌自溶及各种自溶酶表达情况的影响。对低自溶度菌株,采用N+注入诱变筛选自溶度正突变和负突变菌株,采用荧光定量实时PCR检测突变前后自溶酶的表达差异,测序检测自溶酶变异位点。对高自溶度菌株,选取其中的关键性自溶酶,通过基因敲除的手段验证其在自溶中的作用。综合上述研究结果最终揭示不同自溶酶在菌株自溶中的作用。
     本研究所取得的主要研究成果如下:
     1.通过采用核酸/蛋白溶出的自溶检测方法分析7种乳酸菌的自溶度得到各菌株自溶度排序为:LJJ>SY15>LB1>AST18> LGG> LB2>116-a,筛选得到高自溶度保加利亚乳杆菌LJJ和低自溶度干酪乳杆菌116-a。两者自溶度间存在极显著差异(P<0.01)。相同自溶条件下,在自溶过程中LJJ细胞完整性遭到破坏,细胞发生不同程度得萎缩和凹陷,而且在细胞表面出现孔洞,胞内内容物也开始逐步释放至周围环境中。而低自溶度菌株116-a发生的自溶程度较小,细胞虽然发生了部分萎缩并有部分细胞内容物逸出的现象,多数细胞仍基本保持了原有细胞壁的完整性,细胞表面没有出现明显孔洞和破损。
     2.环境pH、温度、 SDS浓度,Triton X-100浓度和不同生长阶段可通过影响保加利亚乳杆菌LJJ中自溶酶的产量和活性大小而影响乳酸菌自溶发生的速率和程度。来自不同生长阶段的保加利亚乳杆菌LJJ细胞中,对数生长期细胞的自溶度最大,稳定期细胞的自溶度次之,衰退期细胞的自溶度最小,而衰退中后期细胞因死亡基本不再发生自溶。保加利亚乳杆菌LJJ自溶的环境最适pH范围为6.0-8.0,pH低至4.0或高至10.0时,自溶基本被完全抑制。环境温度0-50℃范围内,LJJ自溶度随温度的升高而逐渐增大,高于60℃时,自溶受到部分抑制自溶度开始出现降低。SDS的存在可以抑制自溶的发生,SDS浓度为0.05g/100mL时,乳酸菌的自溶即几乎被完全抑制。SDS亦可以抑制N-乙酰胞壁质酶的活性且与抑制自溶的趋势保持一致。Triton X-100的存在可以促进自溶的产生,且随着Triton X-100含量的增大,LJJ自溶速率越快,自溶度增大。
     3.不同种类乳酸菌中调控自溶的关键自溶酶存在差异。AcmA,AmiA,GlcNAcase和Dac四种自溶酶中,AcmA和AmiA在保加利亚乳杆菌LJJ中的表达量变化趋势与其自溶度的变化趋势较一致,其中AcmA的表达变化幅度最大,在不同的条件下表达量可以相差129倍之多,推测保加利亚乳杆菌LJJ中最可能的关键自溶酶为AcmA。GlcNAcase和AmiA在干酪乳杆菌中的表达量趋势与其自溶度变化趋势一致,其中GlcNAcase在不同条件下表达量相差235倍,推测GlcNAcase是干酪乳杆菌116-a中的关键自溶酶。在保加利亚乳杆菌LJJ中,环境pH的变化不会对四种自溶酶的表达产生影响,表明环境中pH的变化不是诱导菌体发生自溶的原因,而引起的自溶的变化则是由于自溶酶活性存在最适作用pH的结果。而在干酪乳杆菌116-a中,Dac在低pH下表达出现上调,高pH下表达发生下调,表明Dac的表达会受到环境pH的调控。Triton X-100不仅可以促进自溶酶的酶活,同时可以诱导AcmA和AmiA的表达。
     4.干酪乳杆菌116-a经过离子能量30kev N+注入诱变分别在注入剂量2.5×1015ions/cm2和2.0×1015ions/cm2处筛选得到遗传稳定性良好的最大正突变菌株2株和最大负突变菌株2株。实时荧光定量PCR分析野生菌株和突变菌株中4种自溶酶表达情况发现,4种自溶酶中,只有N-乙酰葡糖胺糖苷酶的表达量发生显著的上调或下调,最大两株正突变菌株中N-乙酰葡糖胺糖苷酶的表达量上调超过了32倍,对应的最大负突变菌株中N-乙酰葡糖胺糖苷酶下调了6倍。通过对4种自溶酶的测序比对分析突变发生位点显示,在正负突变菌株中N-乙酰葡糖胺糖苷酶和N-乙酰胞壁质酶中均存在部分碱基发生突变,导致所产氨基酸发生变化。
     5.通过自杀载体基因敲除策略,成功构建得到含有红霉素抗性基因的N-乙酰胞壁质酶失活的保加利亚乳杆菌突变体。将红霉素抗性基因(Emr)作为选择性标记,成功插入预敲除目的基因N-乙酰胞壁质酶基因中,与乳酸菌中自杀性载体质粒pUC19相连,成功构建得到保加利亚乳杆菌LJJ N-乙酰胞壁质酶的基因敲除组件。利用响应面法优化得到保加利亚乳杆菌LJJ的最佳电转化条件为:培养基中甘氨酸含量为0.5%,电压条件为1.5kv和电阻400。在最佳的电转化条件成功将LJJ N-乙酰胞壁质酶的基因敲除组件电转化入保加利亚乳杆菌LJJ,经含红霉素的MRS平板筛选得到N-乙酰胞壁质酶插入失活的保加利亚乳杆菌,经PCR验证后最终成功获得含有红霉素抗性的N-乙酰胞壁质酶失活的保加利亚乳杆菌突变体。
     6. N-乙酰胞壁质酶不仅影响着保加利亚乳杆菌LJJ的自溶,同时在菌株生理生化中也起着重要作用,会影响菌体的形态,生长速率,产酸能力和贮藏性。与野生型菌株相比基因缺失菌株生物学特性产生了以下变化:自溶度发生了显著性降低(P<0.01),37℃,24h时的自溶度下降为野生菌株自溶度的约1/2。通过扫描电子显微镜观察发现基因缺失菌株单体细胞长度由之前的十几微米增长到了数十个微米,是野生型菌株菌体单体细胞长度的4-5倍。基因缺失菌株的生长速率变慢,同时菌株所能达到的最高菌体浓度降低至OD600约在2.5附近,所能达到的最大活菌约为7.0-8.0×107cfu/mL,相比野生型菌株差了一个数量级,生物量也降低了约10%。发酵产酸速率有所降低,但所能达到的最低pH由3.89降至3.78。基因缺失菌株4℃下的耐贮藏性得到大幅提升,14天菌株存活率由0.5%提升至50%。
Lactic acid bacteria (LAB)are generallly recognized as safe and the most typical representativeof probiotics. LAB occcupies a central role in fermentation process and has a long and safe history ofapplication and consumption in the worldwide production of fermented food processing because oftheir physiological functions in maintaining the balance of intestinal flora of host body.
     Autolysis of lactic acid bacteria is a common phenomenon in fermented dairy production and playsan important role of regulating the quality, flavors and production cycle of fermenteddairy products. Therefore, the study of the influential factors and mechanism of autolysis of lactic acidbacteria would supply the better guide for the application of lactic acid bacteria inindustrial production and provide a theoretical basis for starter breeding to suit the demand offermented dairy industry.
     In this study, LABs with various autolysis rate were screened from the Chinese traditionalfermented dairy products. The highest and lowest autolysis rate strains were selected as the mainresearch object. First, the effects of environmental factors on the autolysis and various autolysinsexpression of lactic acid bacteria were studied. Second, low autolysis strains was induced by N+implantation, positive mutants and negative mutants were selected on the basis of autolysis rate. Thenanalyzing expression variation of selected autolysin genes between wild type strain and mutant byfluorescence quantitative real-time PCR. Furthermore, Sequencing the selected autolysin genes to findout probable base mutant site. Third, the key autolysin of the high autolysis strain was knocked out forverifing its effect on the autolysis of LAB. Finally, the autolysis rate,morphological characteristics,and other biological characteristics was investigated between wild type strain and gene knockout strain.According to the above results, to illuminate the affect of autolysin on autolysis and reveal theinteraction among different autolysins in different LAB.
     The main achievements of this study are as follows:
     1. Through analyzing the autolysis rate of7lactic acid bacteria strains isolated from the Chinesetraditional fermented dairy products by the autolysis rate test method based on detecting nucleic acid/protein dissolution, we achieved the order of autolysis rate of7strains from high to low is: LJJ>SY15>LB1>AST18>LGG>LB2>116-a and screened high autolysis strain Lactobacillus bulgaricusLJJ and low autolysis strain Lactobacillus casei116-a. There are significant differences betweenautolysis rate of LJJ and116-a (P<0.01). Under the same autolysis conditions, the LJJ cell showedvarious degrees of atrophy and sunken and holes appeared on the cell wall surface. Intracellular contentsalso began to gradually be released to the surrounding environment as a result of the damage of cellintegrity during the autolysis process. In contrast, the low autolysis strain116-a showed slight cellautolysis. Although cell displayed atrophy and intracellular contents of little cell was released to thesurrounding environment, most of the cells still remained the original integrity of cell wall, cell surface did not appear obvious holes and damage.
     2. The environment temperature, pH value, SDS concentration, Triton X-100concentration anddifferent growth stages can influence autolysis rate and extent of Lactobacillus bulgaricus LJJ througheffectting on autolysis enzyme yield and activity. Lactobacillus bulgaricus LJJ cells from differentgrowth stages displayed various autolysis rate. The cells from logarithmic growth phase showed themaximum autolysis rate. The cell from stability growth phase diplayed the lower autolysis rate than thatof the cell from logarithmic growth phase. Then the cells from recession phase owned the minimumautolysis rate and cells from the mid to late of recession phase no longer occurred autolysis because ofcell death. Autolysis of Lactobacillus bulgaricus LJJ had the optimum environment pH range of6.0-8.0and when environment pH≤4or≥10, autolysis can be almost inhibited completely. In thetemperature range of0-50℃, the autolysis rate increased with temperature increase. However, when thetemperature was higher than60℃, its autolysis was partially inhibited and autolysis rate began todecrease. The presence of SDS can suppress autolysis, when the concentration of SDS increased to0.05g/100mL, autolysis of lactic acid bacteria was almost completely inhibited. SDS can also suppress theactivity of lysozyme and suppression curve was consistent with the autolysis supperssion trend. TritonX-100can enhance lysozyme activity and autolysis rate and extend of LJJ increased with content ofTriton of X-100increase.
     3. Autolysis of LABs was regulated by different key autolysins. Among AcmA, AmiA, GlcNAcaseand Dac, the expression trend of AcmA and AmiA was consistent with trend of auolysis rate inLactobacillus bulgaricus LJJ. The relative expression range of AcmA of LJJ from several times tohundred times, depending on different conditions.So the most likely key autolysin of Lactobacillusbulgaricus LJJ is AcmA. While The expression trend of GlcNAcase and AmiA was consistent withtrend of auolysis rate in Lactobacillus casei116-a. The relative expression range of GlcNAcase of116-afrom several times to hundred times, depending on different conditions. So the most likely key autolysinof Lactobacillus casei116-a is GlcNAcase. For Lactobacillus bulgaricus LJJ, The expression of fourautolysins were almost not influenced by environment pH value variration. The changes of cell autolysisrate with environment pH value variation were due to high autolysin activity under the optimum pHconditon rather than autolysins expression increase. Dac expression was up-regulated under low pH anddownregulated under high pH, which suggested that the expression of Dac will be affected by theenvironment pH in Lactobacillus casei116-a. Triton X-100can accelerated autolysis of LAB throughthe upregulation of AcmA and AmiA expression.
     4. Lactobacillus casei116-a was induced by N+implantation with energy of30Kev. Twomaximum positive mutants and two negative mutants with good genetic stability were screened underN+implantation dose2.5×1015ions/cm2and2×1015ions/cm2respectively. Real time fluorescencequantitative PCR analyzed the relative expression of aotulysins between wild type strain and the mutantstrain.The results showed only the expression of N-acetylglucosaminidase was significantlyup-regulated or down-regulated among four selected autolysins. N-acetylglucosaminidase was up-regulated exceeded30times in positive mutant while that was down-regulated6times in negaitivemutant. Sequencing four autolysin of mutants showed several base site of N-acetylglucosaminidase andN-acetylmuramidase were change and leaded to the amino acid change.
     5. Through suicide plasmid vector gene knockout strategies, we successfully constructed theinactivation of N-acetylmuramidase Lactobacillus bulgaricus mutant containing erythromycinresistance gene. The erythromycin resistance gene (Emr) as a selective marker, was successfully insertedinto the N-acetylmuramidase gene. Then it was connected with the suicide plasmid vector pUC19forlactic acid bacteria successfully. So N-acetylmuramidase gene knockout component was constructed forLactobacillus bulgaricus LJJ. Optimizing electroporation conditions of Lactobacillus bulgaricus LJJ byresponse surface method and the optimal electroporation conditions electric voltage, resistence andglycine content of1.5kV,400and0.5g/100mL culture medium. Under the optimal electroporationconditions, the N-acetylmuramidase gene knockout component was transformed into Lactobacillusbulgaria LJJ cell. Then N-acetylmuramidase insertion inactivation Lactobacillus bulgaricus mutant wasscreened by MRS plate containing erythromycin sucessfully and identified by PCR verification.
     6. N-acetylmuramidase of Lactobacillus bulgaricus LJJ not only affects the autolysis but alsoplays an vital role of other physiological and biochemical characteristics, such as the growth rate ofbacteria, acid producing capacity and storage. Compared with the wild type strain, N-acetylmuramidasegene deletion strains produced the following changes: the autolysis rate was decreased significantly(P<0.01). The autolysis rate of24h decreased to about1/2than that of wild type strain. The result ofscanning electron microscope showed the single cell length of the gene deletion mutant increased fromthe previous ten micrometers up to tens micrometers, which is several times longer than the length ofwild type strain single cell. For gene deletion strain, the growth rate decelerated, the highest cellconcentration reduced from3.5to around2.5(OD600value), the maximum viable count of bacteriawas decreased to7.0.-8.0×107cfu/mL, compared to the wild type strain the value decreased by almostone order of magnitude and biomass was reduced by about10%. Besides, althrough fermentation ratedescended, the achievable minimum pH decreased from3.89to3.78. Storage stability of gene deletionstrains were greatly improved, the14day survival rate was increased from0.5%to50%under4℃temperature.
引文
1.沙淼.2012年世界乳业形势.中国乳品工业,2013,41(9):59-64.
    2.崔文明,刘鹭,张书文,逄晓阳,李红娟,吕加平.保加利亚乳杆菌LJJ自溶的影响因素分析.食品与发酵工业,2013,39(7):6-12.
    3.代永刚,田志刚,南喜平.乳酸菌及其生理功能研究的进展.农产品加工(学刊),2009,(07):24-26+29.
    4.冯镇,张兰威.乳酸菌发生自溶的影响因素研究.中国乳品工业,2003,31(3):7-9.
    5.冯镇,张兰威,姚伟.培养时间对乳酸菌自溶影响及菌体形态学变化.中国乳品工业,2006,34(7):28-30.
    6.李樊,刘义,何钢.基因敲除技术研究进展.生物技术通报,2008,(02):80-82+92.
    7.李艾黎,邓凯波,霍贵成.环境因素对酸奶菌株自溶的影响.微生物学通报,2008,35(8):1262-1267.
    8.刘建密,邵铁梅,李国勋,宋福平.微生物基因敲除技术的研究进展.科技创新与绿色植保——中国植物保护学会2006学术年会论文集,2006.
    9.吕学诜,吕仁杰,吕超.基因敲除与基因沉默.黑龙江医药科学,2009,(05):65-66.
    10.吕嘉枥,齐文华.乳酸菌的生理功能及在食品酿造工业中的应用.食品科技,2007,(10):13-17.
    11.贺松,张德纯.基因敲除方法及其应用.中国微生态学杂志,2009,(02):181-184.
    12.任大勇,李昌,秦艳青,金宁一.乳酸菌益生功能及作用机制研究进展.中国兽药杂志,2011,(02):47-50.
    13.孙洁.乳酸菌发酵剂菌株的自溶特性及机理研究[博士学位论文].北京:中国农业科学院,2010.
    14.宋道军,姚建铭,邵春林,余增亮.离子注入微生物产生"马鞍型"存活曲线的可能作用机制.核技术,1999,22(3):129-132.
    15.单尹佩,徐波.我国乳酸菌饮料产业化现状及发展策略.科技广场,2011,(12):72-75.
    16.宋安东,张沙沙,王风芹,谢慧,田原.基因敲除在工业微生物育种方面的应用.生物学杂志,2011,(06):68-72.
    17.万海英,汤华.基因敲除技术现状及应用.医学分子生物学杂志,2007,(01):86-90.
    18.谢承佳,何冰芳,李霜.基因敲除技术及其在微生物代谢工程方面的应用.生物加工过程,2007,(03):10-14.
    19.徐毅.乳酸菌高效膜蛋白表达系统的构建及其自溶性质的研究[博士学位论文].济南:山东大学,2012.
    20.于慧敏,马玉超.工业微生物代谢途径调控的基因敲除策略.生物工程学报,2010,(09):1199-1208.
    21.张和平.我国益生乳酸菌及益生发酵乳研究开发现状及发展对策.中国乳业,2009,(8):50-52.
    22.赵玲艳,邓放明,杨抚林.乳酸菌的生理功能及其在发酵果蔬中的应用.中国食品添加剂,2004,(05):77-80+100.
    23.张红岩,申乃坤,周兴.基因敲除技术及其在微生物育种中的应用.酿酒科技,2010,(04):21-25.
    24. Acu a, L.,Picariello, G.,Sesma, F.,Morero, R. D.,Bellomio, A. A new hybrid bacteriocin,Ent35–MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negativebacteria. FEBS Open Bio,2012,2(0):12-19.
    25. Adamberg, K.,Kask, S.,Laht, T.-M.,Paalme, T. The effect of temperature and pH on the growth oflactic acid bacteria: a pH-auxostat study. International journal of food microbiology,2003,85(1):171-183.
    26. Anyogu, A.,Awamaria, B.,Sutherland, J. P.,Ouoba, L. I. I. Molecular characterisation andantimicrobial activity of bacteria associated with submerged lactic acid cassava fermentation. FoodControl,2014,39(0):119-127.
    27. Arbeloa, A.,Hugonnet, J. E.,Sentilhes, A. C.,Josseaume, N.,Dubost, L.,Monsempes, C.,Blanot,D.,Brouard, J. P.,Arthur, M. Synthesis of mosaic peptidoglycan cross-bridges by hybrid peptidoglycanassembly pathways in gram-positive bacteria. The Journal of biological chemistry,2004,279(40):41546-41556.
    28. Arendt, E. K.,Daly, C.,Fitzgerald, G. F.,Van de Guchte, M. Molecular characterization oflactococcal bacteriophage Tuc2009and identification and analysis of genes encoding lysin, a putativeholin, and two structural proteins. Applied and environmental microbiology,1994,60(6):1875-1883.
    29. Axelsson, L. Lactic acid bacteria: Classification and physiology. Lactic acid bacteria: microbiologyand functional aspects,2004,1-66.
    30. Ayad, E.,Verheul, A.,Jong, C. d.,Wouters, J.,Smit, G. Flavour forming abilities and amino acidrequirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. InternationalDairy Journal,1999,9(10):725-735.
    31. Belguesmia, Y.,Rabesona, H.,Mounier, J.,Pawtowsky, A.,Le Blay, G.,Barbier, G.,Haertlé,T.,Chobert, J.-M. Characterization of antifungal organic acids produced by Lactobacillus harbinensisK.V9.3.1Np immobilized in gellan–xanthan beads during batch fermentation. Food Control,2014,36(1):205-211.
    32. Birkeland, N.-K. Cloning, molecular characterization, and expression of the genes encoding thelytic functions of lactococcal bacteriophage ΦLCE: a dual lysis system of modular design. Canadianjournal of microbiology,1994,40(8):658-665.
    33. Boizet, B.,Lahbib-Mansais, Y.,Dupont, L.,Ritzenthaler, P.,Mata, M. Cloning, expression andsequence analysis of an endolysin-encoding gene of Lactobacillus bulgaricus bacteriophage mv1. Gene,1990,94(1):61-67.
    34. Bourdat-Deschamps, M.,Le Bars, D.,Yvon, M.,Chapot-Chartier, M. Autolysis of Lactococcus lactisAM2stimulates the formation of certain aroma compounds from amino acids in a cheese model.International dairy journal,2004,14(9):791-800.
    35. Bouton, Y.,Guyot, P.,Grappin, R. Preliminary characterization of microflora of Comté cheese.Journal of applied microbiology,1998,85(1):123-131.
    36. Boutrou, R.,Sepulchre, A.,Pitel, G.,Durier, C.,Vassal, L.,Gripon, J.,Monnet, V. Lactococcal lysisand curd proteolysis: two predictable events important for the development of cheese flavour.International dairy journal,1998,8(7):609-616.
    37. Boyce, J. D.,Davidson, B. E.,Hillier, A. J. Sequence analysis of the Lactococcus lactis temperatebacteriophage BK5-T and demonstration that the phage DNA has cohesive ends. Applied andenvironmental microbiology,1995,61(11):4089-4098.
    38. Brown, S.,Santa Maria, J. P., Jr.,Walker, S. Wall teichoic acids of gram-positive bacteria. Annualreview of microbiology,2013,67:313-36.
    39. Buist, G.,Venema, G.,Kok, J. Autolysis of Lactococcus lactis is influenced by proteolysis. Journalof bacteriology,1998,180(22):5947-5953.
    40. Buist, G.,Kok, J.,Leenhouts, K. J.,Dabrowska, M.,Venema, G.,Haandrikman, A. J. Molecularcloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase ofLactococcus lactis, a muramidase needed for cell separation. Journal of bacteriology,1995,177(6):1554-1563.
    41. Cálix-Lara, T. F.,Rajendran, M.,Talcott, S. T.,Smith, S. B.,Miller, R. K.,Castillo, A.,Sturino, J.M.,Taylor, T. M. Inhibition of Escherichia coli O157:H7and Salmonella enterica on spinach andidentification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safetyintervention. Food Microbiology,2014,38(0):192-200.
    42. Cai, Y.,Lai, C.,Li, S.,Liang, Z.,Zhu, M.,Liang, S.,Wang, J. Disruption of lactate dehydrogenasethrough homologous recombination to improve bioethanol production in Thermoanaero bacteriumaotearoense. Enzyme and microbial technology,2011,48(2):155-61.
    43. Camiade, E.,Peltier, J.,Bourgeois, I.,Couture-Tosi, E.,Courtin, P.,Antunes, A.,Chapot-Chartier, M.P.,Dupuy, B.,Pons, J. L. Characterization of Acp, a peptidoglycan hydrolase of Clostridium perfringenswith N-acetylglucosaminidase activity that is implicated in cell separation and stress-induced autolysis.J Bacteriol,2010,192(9):2373-84.
    44. Caplice, E.,Fitzgerald, G. F. Food fermentations: role of microorganisms in food production andpreservation. International journal of food microbiology,1999,50(1):131-149.
    45. Cherrington, C. A.,Hinton, M.,Mead, G. C.,Chopra, I. Organic Acids: Chemistry, AntibacterialActivity and Practical Applications. Advances in Microbial Physiology,1991,32:87-108.
    46. Chick, H.,Shin, H.,Ustunol, Z. Growth and acid production by lactic acid bacteria andbifidobacteria grown in skim milk containing honey. Journal of food science,2001,66(3):478-481.
    47. Chopin, A.,Bolotin, A.,Sorokin, A.,Ehrlich, S. D.,Chopin, M.-C. Analysis of six prophages inLactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations.Nucleic acids research,2001,29(3):644-651.
    48. Chu, X.,Xia, R.,He, N.,Fang, Y. Role of Rot in bacterial autolysis regulation of Staphylococcusaureus NCTC8325. Research in microbiology,2013,164(7):695-700.
    49. Cibik, R.,Tailliez, P.,Langella, P.,Chapot-Chartier, M.-P. Identification of Mur, an atypicalpeptidoglycan hydrolase derived from Leuconostoc citreum. Applied and environmental microbiology,2001,67(2):858-864.
    50. Collins, Y. F.,McSweeney, P. L.,Wilkinson, M. G. Evidence of a relationship between autolysis ofstarter bacteria and lipolysis in Cheddar cheese during ripening. Journal of Dairy Research,2003,70(01):105-113.
    51. Courtin, P.,Miranda, G.,Guillot, A.,Wessner, F.,Mezange, C.,Domakova, E.,Kulakauskas,S.,Chapot-Chartier, M. P. Peptidoglycan structure analysis of Lactococcus lactis reveals the presence ofan L,D-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol,2006,188(14):5293-8.
    52. Crittenden, R.,Martinez, N.,Playne, M. Synthesis and utilisation of folate by yoghurt startercultures and probiotic bacteria. International Journal of Food Microbiology,2003,80(3):217-222.
    53. Crow, V.,Curry, B.,Hayes, M. The ecology of non-starter lactic acid bacteria (NSLAB) and theiruse as adjuncts in New Zealand Cheddar. International Dairy Journal,2001,11(4):275-283.
    54. Crow, V.,Martley, F.,Coolbear, T.,Roundhill, S. The influence of phage-assisted lysis ofLactococcus lactis subsp. lactis ML8on Cheddar cheese ripening. International Dairy Journal,1995,5.
    55. Crow, V. L.,Coolbear, T.,Gopal, P. K.,Martley, F. G.,McKay, L. L.,Riepe, H. The role of autolysis oflactic acid bacteria in the ripening of cheese. International Dairy Journal,1995,5(8):855-875.
    56. Crowley, S.,Mahony, J.,van Sinderen, D. Current perspectives on antifungal lactic acid bacteria asnatural bio-preservatives. Trends in Food Science&Technology,2013,33(2):93-109.
    57. De Angelis, M.,Pollacci, P.,Gobbetti, M. Autolysis of Lactobacillus sanfranciscensis. Eur Food ResTechnol,1999,210(1):57-61.
    58. De Man, J.,Rogosa, d.,Sharpe, M. E. A medium for the cultivation of lactobacilli. Journal ofApplied Microbiology,1960,23(1):130-135.
    59. de Ruyter, P. G.,Kuipers, O. P.,Meijer, W. C.,de Vos, W. M. Food-grade controlled lysis ofLactococcus lactis for accelerated cheese ripening. Nature biotechnology,1997,15(10):976-9.
    60. Delcour, J.,Ferain, T.,Deghorain, M.,Palumbo, E.,Hols, P. The biosynthesis and functionality of thecell-wall of lactic acid bacteria. Antonie van Leeuwenhoek,1999,76:159-184.
    61. Desiere, F.,Pridmore, R. D.,Brüssow, H. Comparative Genomics of the Late Gene Cluster fromLactobacillus Phages. Virology,2000,275:294-305.
    62. Deutsch, S.-M.,Guezenec, S.,Piot, M.,Foster, S.,Lortal, S. Mur-LH, the broad-spectrum endolysinof Lactobacillus helveticus temperate bacteriophage Φ-0303. Applied and environmental microbiology,2004,70(1):96-103.
    63. Deutsch, S.,Ferain, T.,Delcour, J.,Lortal, S. Lysis of lysogenic strains of Lactobacillus helveticus inSwiss cheeses and first evidence of concomitant Streptococcus thermophilus lysis. International DairyJournal,2002,12(7):591-600.
    64. Deutsch, S.,Neveu, A.,Guezenec, S.,Ritzenthaler, P.,Lortal, S. Early lysis of Lactobacillushelveticus CNRZ303in Swiss cheese is not prophage-related. International journal of foodmicrobiology,2003,81(2):147-157.
    65. Feirtag, J. M.,McKay, L. L. Isolation of Streptococcus lactis C2Mutants Selected for TemperatureSensitivity and Potential Use in Cheese Manufacture1. Journal of dairy science,1987,70(9):1773-1778.
    66. Fernández, d. P. P.,de la Plaza, M.,Mohedano, M.,Martínez-Cuesta, M.,Requena, T.,López,P.,Peláez, C. Enhancement of2-methylbutanal formation in cheese by using a fluorescently taggedLacticin3147producing Lactococcus lactis strain. International journal of food microbiology,2004,93(3):335-347.
    67. Foligné, B.,Daniel, C.,Pot, B. Probiotics from research to market: the possibilities, risks andchallenges. Current Opinion in Microbiology,2013,16(3):284-292.
    68. Frirdich, E.,Gaynor, E. C. Peptidoglycan hydrolases, bacterial shape, and pathogenesis. CurrentOpinion in Microbiology,2013,16(6):767-778.
    69. Gagnaire, V.,Piot, M.,Camier, B.,Vissers, J. P.,Jan, G.,Léonil, J. Survey of bacterial proteinsreleased in cheese: a proteomic approach. International journal of food microbiology,2004,94(2):185-201.
    70. Gasson, M. J. Lytic systems in lactic acid bacteria and their bacteriophages. Antonie vanLeeuwenhoek,1996,70(2-4):147-159.
    71. Gerez, C. L.,Torres, M. J.,Font de Valdez, G.,Rollán, G. Control of spoilage fungi by lactic acidbacteria. Biological Control,2013,64(3):231-237.
    72. Ghanbari, M.,Jami, M.,Domig, K. J.,Kneifel, W. Seafood biopreservation by lactic acid bacteria–A review. LWT-Food Science and Technology,2013,54(2):315-324.
    73. Gilliland, S. E. Health and nutritional benefits from lactic acid bacteria. FEMS microbiology letters,1990,87(1–2):175-188.
    74. Gold, R. S.,Meagher, M.,Hutkins, R.,Conway, T. Ethanol tolerance and carbohydrate metabolismin lactobacilli. Journal of industrial microbiology,1992,10(1):45-54.
    75. Govindasamy-Lucey, S.,Gopal, P.,Sullivan, P.,Pillidge, C. Varying influence of the autolysin,N-acetyl muramidase, and the cell envelope proteinase on the rate of autolysis of six commercialLactococcus lactis cheese starter bacteria grown in milk. The Journal of dairy research,2000,67(4):585-596.
    76. Han, E. J.,Lee, N. K.,Choi, S. Y.,Paik, H. D. Short communication: Bacteriocin KC24produced byLactococcus lactis KC24from kimchi and its antilisterial effect in UHT milk. Journal of Dairy Science,2013,96(1):101-104.
    77. Hanniffy, S.,Wiedermann, U.,Repa, A.,Mercenier, A.,Daniel, C.,Fioramonti, J.,Tlaskolova,H.,Kozakova, H.,Israelsen, H.,Madsen, S.,Vrang, A.,Hols, P.,Delcour, J.,Bron, P.,Kleerebezem,M.,Wells, J. Potential and Opportunities for Use of Recombinant Lactic Acid Bacteria in Human Health.Advances in Applied Microbiology,2004,56:1-64.
    78. Hannon, J.,Wilkinson, M.,Delahunty, C.,Wallace, J.,Morrissey, P.,Beresford, T. Use of autolyticstarter systems to accelerate the ripening of Cheddar cheese. International Dairy Journal,2003,13(4):313-323.
    79. Hannon, J. J.,Lopez, C. C.,Madec, M.-N. M.-N.,Lortal, S. S. Altering renneting pH changesmicrostructure, cell distribution and lysis of Lactococcus lactis AM2in cheese made from ultrafilteredmilk.6000,2006,89(3):812-823.
    80. Henrich, B.,Binishofer, B.,Bl si, U. Primary structure and functional analysis of the lysis genes ofLactobacillus gasseri bacteriophage phi adh. Journal of bacteriology,1995,177(3):723-732.
    81. Hickey, D. K.,Kilcawley, K. N.,Beresford, T. P.,Sheehan, E. M.,Wilkinson, M. G. Starter strainrelated effects on the biochemical and sensory properties of Cheddar cheese. The Journal of dairyresearch,2007,74(1):9-17.
    82. Hickey, R. M.,Ross, R. P.,Hill, C. Controlled autolysis and enzyme release in a recombinantlactococcal strain expressing the metalloendopeptidase enterolysin A. Applied and environmentalmicrobiology,2004,70(3):1744-1748.
    83. Hu, P.,Dang, Y.,Liu, B.,Lü, X. Purification and partial characterization of a novel bacteriocinproduced by Lactobacillus casei TN-2isolated from fermented camel milk (Shubat) of Xinjiang UygurAutonomous region, China. Food Control,2014,43:276-283.
    84. Huard, C.,Miranda, G.,Redko, Y.,Wessner, F.,Foster, S. J.,Chapot-Chartier, M.-P. Analysis of thepeptidoglycan hydrolase complement of Lactococcus lactis: identification of a thirdN-acetylglucosaminidase, AcmC. Applied and environmental microbiology,2004,70(6):3493-3499.
    85. Huard, C.,Miranda, G.,Redko, Y.,Wessner, F.,Foster, S. J.,Chapot-Chartier, M. P. Analysis of thePeptidoglycan Hydrolase Complement of Lactococcus lactis: Identification of a ThirdN-Acetylglucosaminidase, AcmC. Applied and Environmental Microbiology,2004,70(6):3493-3499.
    86. Huard, C.,Miranda, G.,Wessner, F.,Bolotin, A.,Hansen, J.,Foster, S. J.,Chapot-Chartier, M.-P.Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis.Microbiology,2003,149(3):695-705.
    87. Husson-Kao, C.,Mengaud, J.,Gripon, J.,Benbadis, L.,Chapot-Chartier, M. The autolysis ofStreptococcus thermophilus DN-001065is triggered by several food-grade environmental signals.International Dairy Journal,1999,9(10):715-723.
    88. Husson-Kao, C.,Mengaud, J.,Cesselin, B.,van Sinderen, D.,Benbadis, L.,Chapot-Chartier, M.-P.The Streptococcus thermophilus autolytic phenotype results from a leaky prophage. Applied andenvironmental microbiology,2000,66(2):558-565.
    89. Hutchings, B.,Bohonos, N.,Peterson, W. Growth factors for bacteria XIII. Purification andproperties of an eluate factor required by certain lactic acid bacteria. Journal of Biological Chemistry,1941,141(2):521-528.
    90. Hutkins, R. W.,Nannen, N. L. pH homeostasis in lactic acid bacteria. Journal of Dairy Science,1993,76(8):2354-2365.
    91. Hwanhlem, N.,Chobert, J.-M.,H-Kittikun, A. Bacteriocin-producing lactic acid bacteria isolatedfrom mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screeningand optimization. Food Control,2014,41(0):202-211.
    92. Inagaki, N.,Iguchi, A.,Yokoyama, T.,Yokoi, K. J.,Ono, Y.,Yamakawa, A.,Taketo, A.,Kodaira, K.Molecular properties of the glucosaminidase AcmA from Lactococcus lactis MG1363: mutational andbiochemical analyses. Gene,2009,447(2):61-71.
    93. Jebava, I.,Plockova, M.,Lortal, S.,Valence, F. The nine peptidoglycan hydrolases genes inLactobacillus helveticus are ubiquitous and early transcribed. International journal of food microbiology,2011,148(1):1-7.
    94. Kakikawa, M.,Yokoi, K.-j.,Kimoto, H.,Nakano, M.,Kawasaki, K.-I.,Taketo, A.,Kodaira, K.-I.Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage Φg1e. Gene,2002,299(1-2):227-234.
    95. Kang, O. J.,Vézinz, L. P.,Laberge, S.,Simard, R. E. Some Factors Influencing the Autolysis ofLactobacillus bulgaricus and Lactobacillus casei. Journal of dairy science,1998,81(3):639-646.
    96. Klaenhammer, T. R.,Barrangou, R.,Buck, B. L.,Azcarate-Peril, M. A.,Altermann, E. Genomicfeatures of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews,2005,29(3):393-409.
    97. Kleerebezem, M.,Hugenholtz, J. Metabolic pathway engineering in lactic acid bacteria. CurrentOpinion in Biotechnology,2003,14(2):232-237.
    98. Klein, N.,Lortal, S. Attenuated starters: an efficient means to influence cheese ripening—a review.International dairy journal,1999,9(11):751-762.
    99. Law, B.,Sharpe, M. E.,Reiter, B. The release of intracellular dipeptidase from starter streptococciduring Cheddar cheese ripening. Journal of Dairy Research,1974,41(01):137-146.
    100. Lepeuple, A.-S.,Van Gemert, E.,Chapot-Chartier, M.-P. Analysis of the Bacteriolytic Enzymes ofthe Autolytic Lactococcus lactis subsp. cremoris strain AM2by Renaturing Polyacrylamide GelElectrophoresis: Identification of a Prophage-Encoded Enzyme. Applied and environmentalmicrobiology,1998,64(11):4142-4148.
    101. Lepeuple, A.,Vassal, L.,Cesselin, B.,Gripon, J.,Chapot-Chartier, M.-P. Involvement of a Prophagein the Lysis of Lactococcus lactis subsp. cremoris AM2during Cheese Ripening. International DairyJournal,1998,8(7):667-674.
    102. Li, H.,Liu, L.,Zhang, S.,uluko, H.,Cui, W.,Lv, J. Potential use of Lactobacillus casei AST18as abioprotective culture in yogurt. Food Control,2013,34(2):675-680.
    103. Li, S.-W.,Li, M.,Song, H.-P.,Feng, J.-L.,Tai, X.-S. Induction of a High-Yield Lovastatin Mutant ofAspergillus terreus by12C6+Heavy-Ion Beam Irradiation and the Influence of Culture Conditions onLovastatin Production Under Submerged Fermentation. Applied biochemistry and biotechnology,2011,165(3-4):913-925.
    104. Lin, M.,Young, C. Folate levels in cultures of lactic acid bacteria. International Dairy Journal,2000,10(5):409-413.
    105. Liu, S.,Nichols, N. N.,Dien, B. S.,Cotta, M. A. Metabolic engineering of a Lactobacillusplantarum double ldh knockout strain for enhanced ethanol production. Journal of industrialmicrobiology&biotechnology,2006,33(1):1-7.
    106. Lortal, S.,Chapot-Chartier, M. P. Role, mechanisms and control of lactic acid bacteria lysis incheese. International Dairy Journal,2005,15(6-9):857-871.
    107. Lucchini, S.,Desiere, F.,Brüssow, H. The Genetic Relationship between Virulent and TemperateStreptococcus thermophilus Bacteriophages: Whole Genome Comparison of cos-Site Phages Sfi19andSfi21. Virology,1999,260(2):232-243.
    108. Lupoli, T. J.,Taniguchi, T.,Wang, T. S.,Perlstein, D. L.,Walker, S.,Kahne, D. E. Studying a celldivision amidase using defined peptidoglycan substrates. Journal of the American Chemical Society,2009,131(51):18230-1.
    109. Macho Fernandez, E.,Pot, B.,Grangette, C. Beneficial effect of probiotics in IBD: Arepeptidogycan and NOD2the molecular key effectors? Gut Microbes,2011,2(5):280-286.
    110. MacLeod, R. A.,Snell, E. E. Some mineral requirements of the lactic acid bacteria. Journal ofBiological Chemistry,1947,170(1):351-365.
    111. Madsen, S. M.,Mills, D.,Djordjevic, G.,Israelsen, H.,Klaenhammer, T. R. Analysis of the GeneticSwitch and Replication Region of a P335-Type Bacteriophage with an Obligate Lytic Lifestyle onLactococcus lactis. Applied and environmental microbiology,2001,67(3):1128-1139.
    112. Mani-López, E.,García, H. S.,López-Malo, A. Organic acids as antimicrobials to controlSalmonella in meat and poultry products. Food Research International,2012,45(2):713-721.
    113. Martínez-Cuesta, M. C.,Kok, J.,Herranz, E.,Peláez, C.,Requena, T.,Buist, G. Requirement ofautolytic activity for bacteriocin-induced lysis. Applied and environmental microbiology,2000,66(8):3174-3179.
    114. Martínez‐Cuesta, C.,Requena, T.,Peláez, C. Effect of bacteriocin‐induced cell damage on thebranched‐chain amino acid transamination by Lactococcus lactis. FEMS microbiology letters,2002,217(1):109-113.
    115. Martinez-Cuesta, M.,Pelaez, C.,Juarez, M.,Requena, T. Autolysis of Lactococcus lactis ssp. lactisand Lactobacillus casei ssp. casei. cell lysis induced by a crude bacteriocin. International journal offood microbiology,1997,38(2-3):125-131.
    116. Martinez, R. C. R.,Wachsman, M.,Torres, N. I.,LeBlanc, J. G.,Todorov, S. D.,Franco, B. D. G. d.M. Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin producedby Lactobacillus plantarum ST71KS. Food Microbiology,2013,34(2):376-381.
    117. Martinussen, J.,Solem, C.,Holm, A. K.,Jensen, P. R. Engineering strategies aimed at control ofacidification rate of lactic acid bacteria. Current Opinion in Biotechnology,2013,24(2):124-129.
    118. Meijer, W.,Dobbelaar, C.,Hugenholtz, J. Thermoinducible lysis in Lactococcus lactis subsp.cremoris SK110: implications for cheese ripening. International dairy journal,1998,8(4):275-280.
    119. Messens, W.,De Vuyst, L. Inhibitory substances produced by Lactobacilli isolated fromsourdoughs—a review. International journal of food microbiology,2002,72(1):31-43.
    120. Miao, J.,Guo, H.,Ou, Y.,Liu, G.,Fang, X.,Liao, Z.,Ke, C.,Chen, Y.,Zhao, L.,Cao, Y. Purificationand characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp.tolerans FX-6from Tibetan kefir, a traditional fermented milk from Tibet, China. Food Control,2014,42(0):48-53.
    121. Monteagudo-Mera, A.,Rodríguez-Aparicio, L.,Rúa, J.,Martínez-Blanco, H.,Navasa,N.,García-Armesto, M. R.,Ferrero, M. á. In vitro evaluation of physiological probiotic properties ofdifferent lactic acid bacteria strains of dairy and human origin. Journal of Functional Foods,2012,4(2):531-541.
    122. Morgan, S.,Ross, R.,Hill, C. Increasing starter cell lysis in Cheddar cheese using abacteriocin-producing adjunct. Journal of dairy science,1997,80(1):1-10.
    123. Morgan, S.,O’Sullivan, L.,Ross, R.,Hill, C. The design of a three strain starter system for Cheddarcheese manufacture exploiting bacteriocin-induced starter lysis. International Dairy Journal,2002,12(12):985-993.
    124. Moscoso, M.,Suárez, J. E. Characterization of the DNA Replication Module of Bacteriophage A2and Use of Its Origin of Replication as a Defense against Infection during Milk Fermentation byLactobacillus casei. Virology,2000,273(1):101-111.
    125. Mu, W.,Liu, F.,Jia, J.,Chen, C.,Zhang, T.,Jiang, B.3-Phenyllactic acid production by substratefeeding and pH-control in fed-batch fermentation of Lactobacillus sp. SK007. Bioresource Technology,2009,100(21):5226-5229.
    126. Nie, G.,Yang, X.,Liu, H.,Wang, L.,Gong, G.,Jin, W.,Zheng, Z. N+ion beam implantation oftannase-producing Aspergillus niger and optimization of its process parameters under submergedfermentation. Annals of Microbiology,2012,63(1):279-287.
    127. O'Donovan, C. M.,Wilkinson, M. G.,Guinee, T. P.,Fox, P. F. An investigation of the autolyticproperties of three lactococcal strains during cheese ripening. International Dairy Journal,1996,6(11):1149-1165.
    128. O'Sullivan, D.,Ross, R. P.,Fitzgerald, G. F.,Coffey, A. Investigation of the relationship betweenlysogeny and lysis of Lactococcus lactis in cheese using prophage-targeted PCR. Applied andenvironmental microbiology,2000,66(5):2192-2198.
    129. O'Sullivan, L.,Ross, R.,Hill, C. A lacticin481‐producing adjunct culture increases starter lysiswhile inhibiting nonstarter lactic acid bacteria proliferation during Cheddar cheese ripening. Journal ofapplied microbiology,2003,95(6):1235-1241.
    130. O'Sullivan, L.,Morgan, S.,Ross, R.,Hill, C. Elevated Enzyme Release from Lactococcal StarterCultures on Exposure to the Lantibiotic Lacticin481, Produced by Lactococcus lactis DPC5552.Journal of dairy science,2002,85(9):2130-2140.
    131. Ostlie, H. M.,Vegarud, G.,Langsrud, T. Autolysis of propionibacteria: detection of autolyticenzymes by renaturing SDS-PAGE and additional buffer studies. International journal of foodmicrobiology,2007,117(2):167-174.
    132. Palumbo, E.,Favier, C. F.,Deghorain, M.,Cocconcelli, P. S.,Grangette, C.,Mercenier, A.,Vaughan,E. E.,Hols, P. Knockout of the alanine racemase gene in Lactobacillus plantarum results in septationdefects and cell wall perforation. FEMS microbiology letters,2004,233(1):131-138.
    133. Paramithiotis, S.,Grivokostopoulos, N.,Skandamis, P. N. Investigating the correlation ofconstitutive proteins with the growth limits of Salmonella enterica isolates from feeds in response totemperature, pH, formic and lactic acid. Food Research International,2013,53(1):291-296.
    134. Pederson, J. A.,Steele, J. L.,Christensen, J. E.,Dudley, E. G. Peptidases and amino acid catabolismin lactic acid bacteria. In Lactic acid bacteria: Genetics, metabolism and applications, Springer:1999;pp217-246.
    135. Perez, R. H.,Himeno, K.,Ishibashi, N.,Masuda, Y.,Zendo, T.,Fujita, K.,Wilaipun,P.,Leelawatcharamas, V.,Nakayama, J.,Sonomoto, K. Monitoring of the multiple bacteriocin productionby Enterococcus faecium NKR-5-3through a developed liquid chromatography and massspectrometry-based quantification system. Journal of Bioscience and Bioengineering,2012,114(5):490-496.
    136. Pillidge, C.,Govindasamy-Lucey, S.,Gopal, P.,Crow, V. The Major Lactococcal Cell WallAutolysin AcmA Does Not Determine the Rate of Autolysis of Lactococcus lactis subsp. cremoris2250in Cheddar Cheese. International Dairy Journal,1998,8(10):843-850.
    137. Pillidge, C. J.,Rallabhandi, P. S. V. S.,Tong, X.-Z.,Gopal, P. K.,Farley, P. C.,Sullivan, P. A.Autolysis of Lactococcus lactis. International Dairy Journal,2002,12(2–3):133-140.
    138. Poquet, I.,Saint, V.,Seznec, E.,Simoes, N.,Bolotin, A.,Gruss, A. HtrA is the unique surfacehousekeeping protease in Lactococcus lactis and is required for natural protein processing. Molecularmicrobiology,2000,35(5):1042-1051.
    139. Qian, Y.,Cheng, X.,Liu, Y.,Jiang, H.,Zhu, S.,Cheng, B. Reactivation of a silenced minimalMutator transposable element system following low-energy nitrogen ion implantation in maize. Plantcell reports,2010,29(12):1365-1376.
    140. Requena, T.,Mohedano, M. L.,de la Plaza, M.,Peláez, C.,López, P.,de Palencia, P.F.,Martínez-Cuesta, M. C. Enhancement of2-methylbutanal formation in cheese by using afluorescently tagged Lacticin3147producing Lactococcus lactis strain. International journal of foodmicrobiology,2004,93(3):335-347.
    141. Rice, K. C.,Bayles, K. W. Molecular control of bacterial death and lysis. Microbiology andmolecular biology reviews: MMBR,2008,72(1):85-109, table of contents.
    142. Riepe, H. R.,Pillidge, C. J.,Gopal, P. K.,McKay, L. L. Characterization of the Highly AutolyticLactococcus lactis subsp. cremoris Strains CO and2250. Applied and environmental microbiology,1997,63(10):3757-3763.
    143. Rodríguez, N.,Salgado, J. M.,Cortés, S.,Domínguez, J. M. Antimicrobial activity ofd-3-phenyllactic acid produced by fed-batch process against Salmonella enterica. Food Control,2012,25(1):274-284.
    144. Rolain, T.,Bernard, E.,Courtin, P.,Bron, P. A.,Kleerebezem, M.,Chapot-Chartier, M.-P.,Hols, P.Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycancomposition of Lactobacillus plantarum WCFS1. Microbial cell factories,2012,11(1):137.
    145. Ross, R. P.,Stanton, C.,Hill, C.,F Fitzgerald, G.,Coffey, A. Novel cultures for cheese improvement.Trends in Food Science&Technology,2000,11(3):96-104.
    146. Rossi, F.,Capodaglio, A.,Dellaglio, F. Genetic modification of Lactobacillus plantarum byheterologous gene integration in a not functional region of the chromosome. Applied microbiology andbiotechnology,2008,80(1):79-86.
    147. Sallami, L.,Kheadr, E.,Fliss, I.,Vuillemard, J. Impact of autolytic, proteolytic, and nisin-producingadjunct cultures on biochemical and textural properties of Cheddar cheese. Journal of dairy science,2004,87(6):1585-1594.
    148. Sanders, J. W.,Venema, G.,Kok, J. Environmental stress responses in Lactococcus lactis. FEMSmicrobiology reviews,1999,23(4):483-501.
    149. Sankaranarayanan, K.,Wassom, J. Ionizing radiation and genetic risks: XIV. Potential researchdirections in the post-genome era based on knowledge of repair of radiation-induced DNAdouble-strand breaks in mammalian somatic cells and the origin of deletions associated with humangenomic disorders. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2005,578(1):333-370.
    150. Schnürer, J.,Magnusson, J. Antifungal lactic acid bacteria as biopreservatives. Trends in FoodScience&Technology,2005,16(1–3):70-78.
    151. Sheehan, M. M.,Stanley, E.,Fitzgerald, G. F.,van Sinderen, D. Identification and characterizationof a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus.Applied and environmental microbiology,1999,65(2):569-577.
    152. Shemarova, I. V. Signaling mechanisms of apoptosis-like programmed cell death in unicellulareukaryotes. Comparative biochemistry and physiology. Part B, Biochemistry&molecular biology,2010,155(4):341-53.
    153. Shiby, V. K.,Mishra, H. N. Fermented milks and milk products as functional foods--a review.Critical reviews in food science and nutrition,2013,53(5):482-96.
    154. Shu, Q.,Zhou, J. S.,J. Rutherfurd, K.,Birtles, M. J.,Prasad, J.,Gopal, P. K.,Gill, H. S. Probioticlactic acid bacteria (Lactobacillus acidophilus HN017, Lactobacillus rhamnosus HN001andBifidobacterium lactis HN019) have no adverse effects on the health of mice. International DairyJournal,1999,9(11):831-836.
    155. Sinha, R. P.,H der, D.-P. UV-induced DNA damage and repair: a review. Photochemical&Photobiological Sciences,2002,1(4):225-236.
    156. Siragusa, S.,Fontana, C.,Cappa, F.,Caputo, L.,Cocconcelli, P. S.,Gobbetti, M.,De Angelis, M.Disruption of the gene encoding glutamate dehydrogenase affects growth, amino acids catabolism andsurvival of Lactobacillus plantarum UC1001. International Dairy Journal,2011,21(2):59-68.
    157. Slattery, L.,O'Callaghan, J.,Fitzgerald, G. F.,Beresford, T.,Ross, R. P. Invited review:Lactobacillus helveticus--a thermophilic dairy starter related to gut bacteria. Journal of dairy science,2010,93(10):4435-54.
    158. Snell, E.,Peterson, W. Growth Factors for Bacteria: X. Additional Factors Required by CertainLactic Acid Bacteria1. Journal of bacteriology,1940,39(3):273.
    159. Snell, E. E. Nutrition research with lactic acid bacteria: a retrospective view. Annual review ofnutrition,1989,9(1):1-20.
    160. Snell, E. E.,Kitay, E.,McNutt, W. S. Thymine desoxyriboside as an essential growth factor forlactic acid bacteria. Journal of Biological Chemistry,1948,175(1):473-474.
    161. Steen, A.,Buist, G.,Leenhouts, K. J.,El Khattabi, M.,Grijpstra, F.,Zomer, A. L.,Venema, G.,Kuipers,O. P.,Kok, J. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered bycell wall constituents. Journal of Biological Chemistry,2003,278(26):23874-23881.
    162. Taibi, A.,Dabour, N.,Lamoureux, M.,Roy, D.,Lapointe, G. Evaluation of the geneticpolymorphism among Lactococcus lactis subsp. cremoris strains using comparative genomichybridization and multilocus sequence analysis. International journal of food microbiology,2010,144(1):20-28.
    163. Udhayashree, N.,Senbagam, D.,Senthilkumar, B.,Nithya, K.,Gurusamy, R. Production ofbacteriocin and their application in food products. Asian Pacific Journal of Tropical Biomedicine,2012,2(1, Supplement): S406-S410.
    164. Uehara, T.,Parzych, K. R.,Dinh, T.,Bernhardt, T. G. Daughter cell separation is controlled bycytokinetic ring-activated cell wall hydrolysis. The EMBO journal,2010,29(8):1412-22.
    165. Valence, F.,Richoux, R.,Thierry, A.,Palva, A.,Lortal, S. Autolysis of Lactobacillus helveticus andPropionibacterium freudenreichii in Swiss cheeses: first evidence by using species-specific lysismarkers. Journal of dairy research,1998,65(04):609-620.
    166. Valence, F.,Deutsch, S.,Richoux, R.,Gagnaire, V.,Lortal, S. Autolysis and related proteolysis inSwiss cheese for two Lactobacillus helveticus strains. Journal of dairy research,2000,67(02):261-271.
    167. Valerio, F.,Lavermicocca, P.,Pascale, M.,Visconti, A. Production of phenyllactic acid by lacticacid bacteria: an approach to the selection of strains contributing to food quality and preservation.FEMS microbiology letters,2004,233(2):289-295.
    168. Van de Guchte, M.,Serror, P.,Chervaux, C.,Smokvina, T.,Ehrlich, S. D.,Maguin, E. Stressresponses in lactic acid bacteria. Antonie Van Leeuwenhoek,2002,82(1-4):187-216.
    169. Vegarud, G.,Castberg, H.,Langsrud, T. Autolysis of group N streptococci. Effects of mediacomposition modifications and temperature. Journal of dairy science,1983,66(11):2294-2302.
    170. Vilaithong, T.,Yu, L. D.,Apavatjrut, P.,Phanchaisri, B.,Sangyuenyongpipat, S.,Anuntalabhochai,S.,Brown, I. G. Heavy ion induced DNA transfer in biological cells. Radiation Physics and Chemistry,2004,71(3–4):927-935.
    171. Villena, J.,Oliveira, M. L. S.,Ferreira, P. C. D.,Salva, S.,Alvarez, S. Lactic acid bacteria in theprevention of pneumococcal respiratory infection: Future opportunities and challenges. InternationalImmunopharmacology,2011,11(11):1633-1645.
    172. Vinogradov, E.,Valence, F.,Maes, E.,Jebava, I.,Chuat, V.,Lortal, S.,Grard, T.,Guerardel,Y.,Sadovskaya, I. Structural studies of the cell wall polysaccharides from three strains of Lactobacillushelveticus with different autolytic properties: DPC4571, BROI, and LH1. Carbohydrate Research,2013,3797-12.
    173. Visweswaran, G. R.,Steen, A.,Leenhouts, K.,Szeliga, M.,Ruban, B.,Hesseling-Meinders,A.,Dijkstra, B. W.,Kuipers, O. P.,Kok, J.,Buist, G. AcmD, a homolog of the major autolysin AcmA ofLactococcus lactis, binds to the cell wall and contributes to cell separation and autolysis. PloS one,2013,8(8): e72167.
    174. Wang, J.,Wang, R.,Yang, X. Ion beam mutagenesis in Arthrobotrys oligospora enhancesnematode-trapping ability. Current microbiology,2013,66(6):594-8.
    175. Wang, P.,Li, J.,Wang, L.,Tang, M. L.,Yu, Z. L.,Zheng, Z. M. L(+)-lactic acid production byco-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beamirradiation. Journal of industrial microbiology&biotechnology,2009,36(11):1363-1368.
    176. Weerkamp, A.,Klijn, N.,Neeter, R.,Smit, G. Properties of mesophilic lactic acid bacteria from rawmilk and naturally fermented raw milk products. Nederlands melk en Zuiveltijdschrift,1996,50(2):319-332.
    177. Wiederholt, K.,Steele, J. Prophage Curing and Partial Characterization of TemperateBacteriophages from Thermolytic Strains of Lactococcus lactis ssp. cremoris. Journal of dairy science,1993,76(4):921-930.
    178. Wilkinson, M. G.,Guinee, T. P.,Fox, P. F. Factors which may influence the determination ofautolysis of starter bacteria during Cheddar cheese ripening. International Dairy Journal,1994a,4(2):141-160.
    179. Wilkinson, M. G.,Guinee, T. P.,O'Callaghan, D. M.,Fox, P. F. Autolysis and proteolysis in differentstrains of starter bacteria during Cheddar cheese ripening. Journal of Dairy Research,1994b,61(02):249-262.
    180. Williams, W. L.,Broquist, H. P.,Snell, E. E. Oleic acid and related compounds as growth factorsfor lactic acid bacteria. Journal of Biological Chemistry,1947,170(2):619-630.
    181. Wouters, J.,Ayad, E. H.,Hugenholtz, J.,Smit, G. Microbes from raw milk for fermented dairyproducts. International Dairy Journal,2002,12(2):91-109.
    182. Wu, L.,Yu, Z. Radiobiological effects of a low-energy ion beam on wheat. Radiation andEnvironmental biophysics,2001,40(1):53-57.
    183. Yokoi, K. J.,Kawahigashi, N.,Uchida, M.,Sugahara, K.,Shinohara, M., Kawasaki, K.,Nakamura,S., Taketo, A., Kodaira, K. The two-component cell lysis genes hol WMY and lys WMY of theStaphylococcus warneri M phage varphi WMY: cloning, sequencing, expression, and mutationalanalysis in Escherichia coli. Gene,2005,35197-108.
    184. Zaunmüller, T.,Eichert, M.,Richter, H.,Unden, G. Variations in the energy metabolism ofbiotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organicacids. Applied microbiology and biotechnology,2006,72(3):421-429.
    185. Zengliang, Y. Production and Acceleration of Ions. Introduction to Ion Beam Biotechnology,2006,11-30.
    186. Zhang, M.,Xiao, Y.,Zhu, R.,Zhang, Q.,Wang, S.-L. Enhanced thermotolerance and ethanoltolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplastfusion. Bioprocess and biosystems engineering,2012,35(9):1455-1465.
    187. Zhang, M.,Zhu, R.,Zhang, M.,Gao, B.,Sun, D.,Wang, S. High-energy pulse electron beam inducedmolecular and cellular damage in Saccharomyces cerevisiae. Research in microbiology,2013,164(2):100-9.
    188. Zhang, X.,Xiong, T. Improving Glycyrrhiza uralensis salt tolerance with N+ion irradiation.Russian Journal of Plant Physiology,2008,55(3):344-349.
    189. Zhang, X.,Shang, N.,Zhang, X.,Gui, M.,Li, P. Role of plnB gene in the regulation of bacteriocinproduction in Lactobacillus paraplantarum L-XM1. Microbiological Research,2013,168(5):305-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700