无序激光晶体Nd:CNGG和Nd:CLNGG的生长及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体泵浦的全固化超短脉冲激光器在受控核聚变、等离子体物理学、遥控技术、化学和物理动力学、生物学、高速摄像、光通讯、光谱学、全息学以及非线性光学等领域有重要应用。锁模技术是获得超短脉冲的一种有效手段,经过锁模调制,每个脉冲的宽度与振荡线宽成反比。因为振荡线宽受到激光器净增益线宽的限制,即工作物质的增益带宽决定锁模脉冲宽度。因此,增益线宽越宽,越可能得到窄的锁模脉冲。
     尽管稀土离子掺杂的玻璃,具有较宽的发射谱线,但是较小的热导率,给其在高功率及高重复频率激光系统中的应用带来了很多不便。而一般晶体材料由于晶格结构的有序性,使得荧光谱线较窄,难以得到窄脉宽的激光。在这两者之间,存在着一类被称为无序晶体的材料,该材料不仅具有较有序晶体宽的吸收与发射谱线,而且具有比玻璃好的热学性质。这类材料是适合产生高功率及高重复频率超短脉冲激光的优秀激光晶体。本论文着眼于无序晶体的特点,对典型的掺钕钙铌镓石榴石Nd:Ca_3(NbGa)_(2-x)Ga_3O_(12)(Nd:CNGG)和掺钕钙锂铌镓石榴石Nd:Ca_3Li_xNb_(1.5+x)Ga_(3.5-x)O_(12)(Nd:CLNGG)无序激光晶体进行了系统探索研究,主要工作包括:
     (一)晶体生长的研究
     1、介绍了Nd:CNGG和Nd:CLNGG晶体生长的设备及工艺,讨论了影响晶体质量的因素。
     2、采用提拉法成功生长出大尺寸、高质量的Nd:CNGG和Nd:CLNGG激光晶体,并对其生长过程进行了系统的研究。
     (二)Nd:CNGG和Nd:CLNGG晶体物理性质的研究
     1、首次对Nd:CLNGG晶体的热学性能进行了系统研究,发现其热导率高于玻璃,因而比玻璃更适合应用在高功率泵浦的激光器中。
     2、对Nd:CNGG与Nd:CLNGG晶体的光谱进行了研究,发现两者均具有宽达十几纳米的吸收及发射带,与Nd掺杂的玻璃相当,揭示了其产生飞秒超短脉冲的可能性。
     (三)Nd:CNGG和Nd:CLNGG晶体连续激光特性的研究
     1、首次实现了LD泵浦Nd:CNGG和Nd:CLNGG晶体1.33μm连续激光输出,分别获得了158 mW、141 mW的最大连续激光输出,斜效率分别为2.0%、2.9%。
     2、在1.06μm波段获得了大功率连续激光输出,最大输出功率分别为4.03 W、3.81W,相应斜效率分别高达31%、30.3%,均超过了已有报道。
     (四)Nd:CNGG和Nd:CLNGG晶体被动调Q激光特性的研究
     1、首次使用Cr~(4+):YAG作为被动调Q器件,对Nd:CNGG进行了被动调Q激光性能研究。获得了最窄脉冲宽度、最大脉冲能量及最高峰值功率分别为12.9 ns、173.16μJ、12.3 kW的脉冲输出。通过光谱分析,发现Nd:CNGG激光器以双波长运转。
     2、首次使用Cr~(4+):YAG作为被动调Q器件,对Nd:CLNGG晶体进行了被动调Q激光性能研究。实现了最窄脉宽、最大脉冲能量、最高峰值功率分别为12.3 ns、265.3μJ、20.8 kW的被动调Q运转。与Nd:CNGG激光器不同,输出光谱中只有一个波长。
     (五)Nd:CNGG和Nd:CLNGG晶体被动锁模激光特性的研究
     1、以SESAM为被动锁模元件,采用色散补偿技术,对Nd:CNGG晶体的被动锁模激光特性进行了研究。首次实现了双波长同步锁模运转,所得脉冲宽度为5ps,重复频率88 MHz,每个同步锁模脉冲由脉宽660 fs、重复频率0.63 THz的准周期拍频脉冲组成。
     2、以SESAM为被动锁模元件,采用色散补偿技术,对Nd:CLNGG被动锁模激光特性进行了探索,于1061 nm处实现了最大平均功率486 mW,斜效率26%的连续锁模运转,所得脉冲宽度为900 fs。
Diode-pumped solid-state ultrashort pulse lasers have important applications in thefields of controlled nuclear fusion, plasma physics, remote sensing, chemical andphysical dynamics, biology, high speed imaging, optical communications, spectroscopy,holography, nonlinear optics etc. Mode-locking technology is an efficient way to obtainultrashort lasers. The pulse duration is inversely proportional to the oscillationbandwidth by the mode-locking modulation, which is determined by the net gainbandwidth. That is to say, the pulse duration was determined by the gain bandwidth oflaser media. If the laser media have broad gain bandwidth, the short pulses are expected.
     Although rare earth active ions in glasses possess broad fluorescence spectra, theapplication in high-power or high repetition rate systems is limited by their smallthermal conductivity. Just restricted by the ordered crystal lattice, their fluorescencelines are too narrow to generate ultrashort pulse. Between the two regimes, there is aclass of materials called disordered crystals which have broad absorption and emissionspectra like glasses and excellent thermal properties like single crystals. They are thepromising laser media for high-power and high repetition rate ultrashort laser.Nd:CNGG and Nd:CLNGG laser crystals investigated in this dissertation are twotypical disordered laser crystals. The main contents include:
     1. The equipment and technology of Nd:CNGG and Nd:CLNGG for growth are introduced. The factors influenced on the crystal quality are also discussed. Large dimension and high quality Nd:CNGG and Nd:CLNGG crystals were successfully grown by the Czochralski method.
     2. Thermal property of Nd:CLNGG was systematic measured for the first time to our knowledge. It has been found that its thermal conductivity was higher than glasses. The absorption and fluorescence spectra were also measured for both Nd:CNGG and Nd:CLNGG crystals, which showed broader than 10 nm lines. So it has promising application in the ultrashort pulse regime.
     3. With a laser-diode (LD) as the pump source, continuous-wave(CW) laser performance at 1.33μm of Nd:CNGG and Nd:CLNGG crystals was demonstrated for the first time to our knowledge. The respective maximum powers of 158 mW and 141 mW for Nd:CNGG and Nd:CLNGG lasers were obtained with corresponding optical conversion efficiencies of 1.3% and 1.5%, and slope efficiencies of 2.0% and 2.9%.
     4. High-power dual-wavelength laser output with disordered Nd:CNGG crystal was demonstrated. CW output power of 4.03 W was obtained with a slope efficiency of 31%. With Cr~(4+):YAG as saturable absorber, the shortest pulse width, largest pulse energy, and highest peak power were achieved to be 12.9 ns, 173.16μJ, and 12.3 kW in passively Q-switched operations.
     5. High-power efficient LD pumped Nd:CNGG laser was also demonstrated. A maximum of 3.81 W with a slope efficiency of 30.3% was obtained in the CW laser operation. The passively Q-switched laser has been obtained for the first time to our knowledge. The shortest pulse width, largest pulse energy and highest peak power were determined to be 12.3 ns, 265.3μJ and 20.8 kW with Cr~(4+):YAG crystal as saturable absorber.
     6. With SESAM as saturable absorber, dual-wavelength synchronously mode-locked Nd:CNGG laser was demonstrated with dispersion compensation. The fundamental mode locked pulse train has a repetition rate of 88 MHz and pulse duration of 5 ps, with an average output power of about 90 mW. Autocorrelation measurements show that each of the synchronously mode-locked pulses consists of a train of quasi-periodic beat pulses with a 660 fs pulse width and a 0.63 THz repetition rate.
     7. The passive mode-locked Nd:CLNGG laser was also demonstrated as same as Nd:CLNGG laser. 900 fs CW mode-locked pulses was generated at the center of 1061 nm wavelength with a maximum average output power of 486 mW and a slope efficiency of 26%.
引文
[1]T.H.Maiman.Stimulated Optical Radiation in Ruby.Nature,1960,187:493-494
    [2]R.Newman.Excitation of the Nd~(3+) Fluorescence in CaWO_4 by Recombination Radiation in GaAs.Journal of Applied Physics,1963,34:437
    [3]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术.北京:科学出版社,2007:3-26
    [4]J.Keyes and T.M.Quist.Injection Luminescent Pumping of CaF_2:U~(3+) with GaAs Diode Lasers.Applied Physics Letters,1964,4:50-52
    [5]藏竞存,刘燕行.方兴未艾的二极管泵浦的激光晶体材.激光技术.1994,18(2):66-68
    [6]中井贞雄[日].激光工程.北京:科学出版社,2002:235-248
    [7]W.克希耐尔.固体激光工程.北京:科学出版社,2002:421-453
    [8]E.Goulielmakis,G.Nersisyan,N.A.Papadogiannis,D.Charalambidis,G.D.Tsakiris,K.Witte.A dispersionless Michelson interferometer for the characterization of attosecond pulses.Applied Physics B,2002,74:197-206
    [9]H.Niikura,F.Legare,R.Hasbani,A.D.Bandrauk,Misha Yu.Ivanov,D.M.Villeneuve and P.B.Corkum.Sub-laser-cycle electron pulses for probing molecular dynamics.Nature,2002,417:917-922
    [10]B.C.Stuart,M.D.Perry,J.Miller,G.Yietbohl,S.Herman,J.A.Britten,C.Brown,D.Pennington,V.Yanovsky,and K.Wharton.125-TW Ti:sapphire/Nd:glass laser system.Optics Letters,1997,22:242-244
    [11]U.Keller,D.A.B.Miller,G.D.Boyd,T.H.Chiu,J.F.Ferguson,and M.T.Asom.Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber.Optics Letters,1992,17:505-507
    [12]刘士华.山东师范大学硕士学位论文(2008)
    [13]S.A.Markgraf,S.Kimura,T.Sawada,M.G6bbels.Metastable crystallization of Nd_3Ga_5O_(12) melts:effects of time and temperature.Journal of Crystal Growth,1994,135:253-258
    [14]D.Mateika,E.VoK lkel,J.Haisma.Lattice-constant-adaptable crystallographics: II. Czochralski growth from multicomponent melts of homogeneous mixed-garnet crystals. Journal of Crystal Growth, 1990, 102: 994-1013
    [15] M. Kawata, H. Toshima, Y. Miyazawa, S. Morita. Growth of gadolinium indium gallium garnet (GInGG) single crystal by the floating zone method. Journal of Crystal Growth, 1993, 128: 1011-1015
    [16] R. Balda, J. Fernandez, and M. A. Illarramendi. Steady-state and time-resolved laser spectroscopy of Cr~(3+) and Nd~(3+) singly and doubly doped calcium niobium gallium garnet. Physics Review B, 1993, 48: 9279 - 9290
    [17] Y. M. Yu, V.I. Chani, K. Shimamura and T. Fukuda. Growth of Ca_3(Li,Nb,Ga)_5O_(12) garnet crystals from stoichiometric melts. Journal of Crystal Growth, 1997, 171:463-471
    [18] Yu. K. Voronko, A. A. Sobol, A. Ya. Karasik, N. A. Eskov, P. A. Rabochkina, S.N. Ushakov. Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions-effective laser media. Optical Materials, 2002,20:197-209
    [19] A. Lupei, V. Lupei, L. Ragobete, E. Osiac, L. Gheorghe, A. Petraru.Inhomogeneous broadening effects in optical spectra Nd~(3+) in CNGG and CLNGG.CFH2, Conference Digest, CLEO-2000: 385
    [20] A. Lupei, V. Lupei, L. Gheorghe, L. Rogobete, E. Osiac, A. Petraru. The nature of nonequivalent Nd~(3+) centers in CNGG and CLNGG Optical Materials, 2001, 16:403-411
    [21] A. Lupei, V. Lupei, E. Osiac, L. Gheorghe, M. Petrache, C. Stoicescu, A. Petraru,Growth and spectral characteristics of Nd3+ in calcium lithium niobium gallium garnet (CLNGG) crystals. Sioel '99: Sixth Symposium on Optoelectronics, 2000,4068: 423-428
    [22] A. A. Sobol. New easy melted laser garnet crystals: structural defects,spectroscopic and laser action study. Proceedings of the Indian National Science Academy, Part A, 1991, 57(2): 125-32
    [23] L. Gheorghe, M. Petrache, V. Lupei. Preparation, growth, and characterisation of Nd~(3+)-doped calcium lithium niobium gallium garnet (Nd~(3+):CLNGG) single crystals. Journal of Crystal Growth, 2000, 220: 121-125
    [24] Y. Li, K. G(?)bel, Y. Yuan, S. Yin, K. Du. Luminescence and color centers from CNGG:Cr~(3+) crystal grown by Czochralski method Journal of Crystal Growth,2000,209:867-873
    [25]L.E.Dinca,L.Gheorghe,A.Lupei,D.Pantelica,N.Scintee.Growth,RBS-ERDA characterisations and modelling in Nd~(3+)-doped calcium-lithium-niobium-gallium garnet(CLNGG:Nd) crystal.Nuclear Instruments and Methods in Physics Research A,2002,486:93-97
    [26]K.Shimamura,M.Timoshechkin,T.Sasaki,K.Hoshikawa,T.Fukuda.Growth and characterization of calcium niobium gallium gamet(CNGG) single crystals for laser applications.Journal of Crystal Growth,1993,128:1021-1024
    [27]G.Zhang,M.Li,T.Chong,X.Xu,B.Freeman.Congruency and morphology of Ca_3(LiNbGa)_5O_(12) garnet crystals grown by Czochralski method.Joumal of Crystal Growth,2003,250:90-93
    [28]H.J.Zhang,J.H.Liu,J.Y.Wang,J.D.Fan,X.T.Tao,X.Mateos,V.Petrov,and M.H.Jiang.Spectroscopic properties and continuous-wave laser operation of a new disordered crystal:Yb-doped CNGG.Optics Express,2007,15:9464-9469
    [29]张辉荣,徐观峰,李斌.Nd:CNGG晶体的生长及其性能研究.激光技术,2005,29:599-600
    [30]T.Tsuboi,K.Shimamura,and T.Fukuda.Optical Properties of Er~(3+) Ions in Calcium Niobium Gallium Garnet(CNGG) Crystals.Physical Status Solidi B,1999,214:479-486
    [31]Y.M.Yu,V.I.Chani,K.Shimamura,T.Fukuda.Growth of Ca_3(Li,Nb,Ga)_5O_(12)garnet crystals from stoichiometric melts.Journal of Crystal Growth,1997,171:463-471
    [32]A.Brenier,G.Boulon,K.Shimamura,T.Fukuda.Growth by the μ-pulling-down method and spectroscopic investigation of Nd~(3+)-doped calcium niobium gallium garnet.Journal of Crystal Growth,1999,204:145-149
    [33]L.I.Ivleva and N.M.Polozkov.The problems of growing cation-deficient Ca_3(Nb,Ga)_2Ga_3O_(12) garnet by Stepanov's technique.Journal of Crystal Growth,1990,104:84-87
    [34]X.Xua,T.Chong,G.Zhang,M.Li,L.H.Soo,W.Xu,B.Freeman.Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals.Journal of Crystal Growth,2003,250:62-66
    [35] K. Shimamura, K. Sugiyama, S. Uda, T. Fukuda. Distribution Coefficient of Rare-Earth Active Ions in Calcium Niobium Gallium Garnet. Jpn. J. Appl.Phys.,1995, 34:4894-4897
    
    [36] Yu. K. Voron'ko, S. B. Gessen, N. A. Es'kov, A. A. Kiryukhin, P. A. Ryabochkina,A. A. Sobol', V. M. Tatarintsev, S. N. Ushakov, and L. I. Tsymbal. Interaction of Tm~(3+) ions in calcium-niobium-gallium and yttrium-aluminum garnet laser crystals.Kvantovaya Elektronika, 1993,20: 1100-1104
    
    [37] Yu. K. Voron'ko, S. B. Gessen, N.A. Es'kov, A. A. Zverev, P. A. Ryabochkina, A.A. Sobol'.S.N. Ushakov, and L I. Tsymbal. Spectroscopic and lasing properties of calcium niobium gallium garnet activated with Tm~(3+) and Cr~(3+) ions. Kvantovaya Elektronika, 1992, 19: 631-633
    
    [38] F. A. Bolschikov, M. N.Hromov, A. V. Popov, P. A.Ryabochkina, A. A.Sobol, S.N.Ushakov, Yu. K.Voronko,Spectral and laser properties of Tm-doped calcium-niobium-gallium garnets. International Conference on Lasers,Applications, and Technologies 2007: Advanced Lasers and Systems, 2007, 6731:J7311-J7311
    
    [39] Yu. K. Voron'ko, S. B. Gessen, N. A. Es'kov, P. A. Ryabochkina, A. A. SoboP, S.N. Ushavkov, and L. I. Tsymbal. Lasing and spectroscopic properties of calcium-niobium-gallium garnet crystals doped with Tm~(3+) ions. Kvantovaya Elektronika, 1993, 20: 363-365
    
    [40] Yu.K. Voron'ko, S.B. Gessen, N.A. Es'kov, A.G. Okhrimchuk, D.V. Smolin, A.A.Sobol', S.N. Ushakov, L.I. Tsymbal, A.V. Shestakov. Continuous lasing at a 2 μm wavelength in calcium niobium gallium garnet crystals at room temperature.Kvantovaya Elektronika, 1993, 23 (3): 229-230
    
    [41] Yu. K. Voron'ko, S. B. Gessen, N.A. Es'kov, V.V. Osiko, P. A. Ryabochkina, A. A.Sobol'.S. N. Ushakov, andL I. Tsymba. Calcium lithium niobium gallium garnet crystals activated with Cr~(3+), Tm~(3+), and Ho~(3+) ions as a new active medium for A,=2 μm lasers. Kvantovaya Elektronika, 1990, 17: 1282-1283
    
    [42] P. K. Mukhopadhyay, K. Ranganathan, J. George, S.K. Sharma, T.P.S. Nathan. 1.6W of TEM_(00) cw output at 1.06 μm from Nd:CNGG laser end-pumped by a fiber-coupled diode laser array. Optics & Laser Technology, 2003, 235: 173 - 180
    
    [43] Yu. K. Voron'ko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal. Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithiumniobium-gallium garnets at wavelengths of 1.06 and 1.33.Kvantovaya Elektronika, 1993, 20: 574-576
    
    [44] T. T. Basiev, A. B. Grudinin, A. Ya. Karasik, A. K. Senatorov, A. A. Sobol', V. V.Fedorov, R. L. Shubochkin. Picosecond laser with active mode locking and calcium lithium niobium gallium disordered Nd~(3+) -activated garnet. Kvantovaya Elektronika, 1994, 21 (1): 89-90
    
    [45] T. T. Basiev, N. A. Es'kov, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, S. N. Ushakov, and M. Helbig. Disordered garnets Ca_3(Nb, Ga)_5O_(12):Nd~(3+) -prospective crystals for powerful ultrashort-pulse generation. Optics Letters, 1992,17: 201-203
    
    [46] A. Agnesi, S. Dell'Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M.Tonelli, K. Shimamura, and T. Fukuda. Optical Spectroscopy and Diode-Pumped Laser Performance of Nd~(3+) in the CNGG Crystal. IEEE Journal of Quantum Electronics, 2001, 37: 304-313
    
    [47] J. H. Liu, H. J. Zhang, W. J. Han, V. Petrov, and J. Y Wang. Polarized laser oscillation of isotropic disordered Yb:Ca_3(NbGa)_(2-x)Ga_3O_(12) crystal. Optics Express,2008, 16: 12201-12206
    [1]张克从,张乐漶.晶体生长科学与技术.北京:科学出版社,1997:91-106
    [2]J.A.Burton,R.C.Prim,and W.P.Slichter.The Distribution of Solute in Crystals Grown from the Melt.Part Ⅰ.Theoretical.The Journal of Chemical Physics.,1953,21(11):1987-1990
    [3]闵乃本,晶体生长的物理基础.上海:上海科学技术出版社,1982:11-15
    [4]张玉龙,唐磊.人工晶体--生长技术、性能与应用.北京:化学工业出版社,2005:60
    [5]A.Lupei,V.Lupei,LRagobete,E.Osiac,L.Gheorghe,A.Petraru.Inhomogeneous broadening effects in optical spectra Nd~(3+) in CNGG and CLNGG.CFH2,Conference Digest,CLEO-2000:385.
    [6]A.Lupei,V.Lupei,L.Gheorghe,L.Rogobete,E.Osiac,A.Petraru.The nature of nonequivalent Nd~(3+) centers in CNGG and CLNGG.Optical Materials,2001,16(3),403-411
    [7]L.Gheorghe,M.Petrache,V.Lupei.Preparation,growth,and characterisation of Nd~(3+)-doped calcium lithium niobium gallium garnet(Nd~(3+):CLNGG) single crystals.Journal of Crystal Growth,2002,220:121-125
    [8]Y.Li,K.G(a|¨)bel,Yiqian Yuan,Shaotang Yin,Keming Du.Luminescence and color centers from CNGG:Cr~(3+) crystal grown by Czochralski method.Journal of Crystal Growth,2000,209:867-873
    [9]L.E.Dincaa,L.Gheorghe,A.Lupei,D.Pantelica,N.Scintee.Growth,RBS-ERDA characterisations and modelling in Nd~(3+)-doped calcium-lithium-niobium-gallium garnet(CLNGG:Nd) crystal.Nuclear Instruments and Methods in Physics Research A,2002,486:93-97
    [10]K.Shimamura,M.Timoshechkin,T.Sasaki,K.Hoshikawa,T.Fukuda.Growth and characterization of calcium niobium gallium garnet(CNGG) single crystals for laser applications.Journal of Crystal Growth,1993,128:1021-1024
    [11]G.Zhang,M.Li,T.Chong,X.Xu,B.Freeman.Congruency and morphology of Ca_3(LiNbGa)_5O_(12) garnet crystals grown by Czochralski method.Journal of Crystal Growth,2003,250:90-93
    [12]H.Zhang,J.Liu,J.Wang,J.Fan,X.Tao,X.Mateos,V.Petrov,and M.Jiang.Spectroscopic properties and continuous-wave laser operation of a new disordered crystal:Yb-doped CNGG.Optics Express,2007,15:9464-9469
    [13]张辉荣,徐观峰,李斌.Nd:CNGG晶体的生长及其性能研究.激光技术,2005,29:599-600
    [14]T.Tsuboi,K.Shimamura,and T.Fukuda.Optical Properties of Er~(3+) Ions in Calcium Niobium Gallium Garnet(CNGG) Crystals.Physical Status Solidi B,1999,214:479-486
    [15]Y.M.Yu,V.I.Chani,K.Shimamura,T.Fukuda.Growth of Ca_3(Li,Nb,Ga)_5O_(12)garnet crystals from stoichiometric melts.Journal of Crystal Growth,1997,171:463-471
    [16]H.J Zhang,X.L.Meng,L.Zhu,C.Q.Wang,Y.T.Chow,M.K.Lu,Growth,spectra and influence of annealing effect on laser properties of Nd:YVO_4 crystal,Optical Materials,2000,14:25-30
    [1]K.Shimamura,K.Sugiyama,S.Uda,T.Fukuda.Distribution Coefficient of Rare-Earth Active Ions in Calcium Niobium Gallium Garnet.Japanese Journal of Applied Physics,1995,34:4894-4897
    [2]L.Gheorghe,M.Petrache,V.Lupei.Preparation,growth,and characterisation of Nd~(3+)-doped calcium lithium niobium gallium garnet(Nd~(3+):CLNGG) single crystals.Journal of Crystal Growth,2000,220:121-125
    [3]X.Xua,T.Chong,G.Zhang,M.Li,L.H.Soo,W.Xu,B.Freeman.Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals.Journal of Crystal Growth,2003,250:62-66
    [4]G.Zhang,M.Li,T.Chong,X.Xu,B.Freeman.Congruency and morphology of Ca_3(LiNbGa)_5O_(12) garnet crystals grown by Czochralski method.Journal of Crystal Growth,2003,250:90-93
    [5]L.E.Dincaa,L.Gheorghe,A.Lupei,D.Pantelica,N.Scintee.Growth,RBS-ERDA characterisations and modelling in Nd~(3+)-doped calcium-lithium-niobium-gallium garnet(CLNGG:Nd) crystal.Nuclear Instruments and Methods in Physics Research A,2002,486:93-97
    [6]J.F.Nye,Physical properties of crystals,Oxford University Press,Great Britain,1985.
    [7]范建东,山东大学硕士学位论文(2006)
    [8]W.W.Ge,H.J.Zhang,J.Y.Wang,J.H.Liu,X.G.Xu,X.B Hu,and M.H.Jiang.Thermal and mechanical Properties of BaWO_4.Journal of Applied Physics,2005,98:013542
    [9]W.Koechner.Thermal Lensing in a Nd:YAG Laser Rod.Applied Optics,1970,9(11):2548-2553
    [10]秦连杰,孟宪林,杜晨林等,Nd:GdVO_4热常数的测量和激光性能研究,人工晶体学报,2003,32(5):502-507
    [11]H.J.Zhang,L.Zhu,X.L.Meng,Z.H.Yang,C.Q.Wang,W.T.Yu,Y.T.Chow,and M.K.Lu.Thermal and Laser Properties of Nd:YVO4 Crystal.Crystal Research and Technology,1999,34:1011-1016
    [12] P. H. Klein and W. J. Croft. Thermal Conductivity, Diffusivity, and Expansion of Y_2O_3, Y_3Al_5O_(12), and LaF_3 in the Range 77°-300°K. Journal of Applied Physics,1967,38(4): 1603-1607
    
    [13] A. Agnesi, S. Dell'Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M.Tonelli, K. Shimamura, and T. Fukuda. Optical Spectroscopy and Diode-Pumped Laser Performance of Nd3+ in the CNGG Crystal. IEEE Journal Of Quantum Electronics, 2001, 37: 304-313
    
    [14] The CRC Handbook of Chemistry and Physics, 81~(st) edition, 2000-2001.
    
    [15] K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S.Nakai, T. Fukuda, and M. I. Timoshechkin. Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser. Applied Optics, 1993,32: 7387-7390
    [1]杜晨林,山东大学博士毕业论文(2003)
    [2]Yu.K.Voron'ko,N.A.Es'kov,V.V.Osiko,A.A.Sobol',S.A.Sychev,S.N.Ushakov,and L.I.Tsymbal.Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithiumniobium-gallium garnets at wavelengths of 1.06 and 1.33.Kvantovaya Elektronika,1993,20,574-576
    [3]P.K.Mukhopadhyay,K.Ranganathan,J.George,S.K.Sharma,T.P.S.Nathan.1.6W of TEM_(00) cw output at 1.06 μm from Nd:CNGG laser end-pumped by a fiber-coupled diode laser array.Optics & Laser Technology,2003,235:173-180
    [4]A.Agnesi,S.Dell'Acqua,A.Guandalini,G.Reali,F.Cornacchia,A.Toncelli,M.Tonelli,K.Shimamura,and T.Fukuda.Optical Spectroscopy and Diode-Pumped Laser Performance of Nd3+ in the CNGG Crystal.IEEE Journal of Quantum Electronics,2001,37:304-313
    [5]J.Liu,H.Zhang,W.Han,V.Petrov,and J.Wang.Polarized laser oscillation of isotropic disordered Yb:Ca_3(NbGa)_(2-x)Ga_3O_(12) crystal.Optics Express,2008,16:12201-12206
    [6]Yu.K.Voronko,A.A.Sobol,A.Ya.Karasik,N.A.Eskov,P.A.Rabochkina,S.N.Ushakov.Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rare earth ions-effective laser media.Optical Materials,2002,20:197-209
    [7]A.Brenier,G.Boulon,K.Shimamura,T.Fukuda.Growth by the μ-pulling-down method and spectroscopic investigation of Nd~(3+)-doped calcium niobium gallium garnet.Journal of Crystal Growth,1999,204:145-149
    [8]A.Agnesi.S.Dell'Acqua,A.Guandallni,G.RealiPaper,F.Comacchia,A.Toncelli,M.Tanelli,K.Shimumum and T.Fukuda.Tunable and mode-locking operation of a diode-pumped Nd:Ca_3(GaNb)_(2-x)Ga_3O_(12) laser.CTuK52,Conference Digest,CLEO-2000:112
    [9]A.Lupei,V.Lupei,L.Gheorghe,L.Rogobete,E.Osiac,A.Petraru.The nature of nonequivalent Nd~(3+) centers in CNGG and CLNGG.Optical Materials,2001,16:403-411
    [10]J.Azkargorta,I.Iparraguirre,R.Balda,J.Fernhndez,A.A.Kaminskii.Time resolved spectroscopy of laser output of Nd~(3+) doped calcium,niobium,gallium gamet.Optics Communications,1995,118:562-564
    [11]D.Creeden,J.C.McCarthy,P.A.Ketteridge,P.G.Schunemann,T.Southward,J.J.Komiak,and E.P.Chicklis Compact,high average power,fiber-pumped terahertz source for active real-time imaging of concealed objects.Optics Express,2007,15:6478-6483
    [12]N.Mermilliod,R.Romero,I.Chartier,C.Garapon and R.Moncorge.Performance of various diode-pumped Nd:Laser materials:influence of inhomogeneous broadening.IEEE Journal of Quantum Electronics,1992,28:1179-1187
    [13]W.克希耐尔.固体激光工程.北京:科学出版社,2002:456-458
    [14]C.H(o|¨)nninger,R.Paschotta,F.Morier-Genoud,M.Moser,and U.Keller.Q-switching stability limits of continuous-wave passive mode locking.Journal of Optical Society of America B,1999,16:46-56
    [15]U.Keller,K.J.Weingarten,F.X.Kartner,D.Kopf,B.Braun,I.D.Jung,R.Fluck,C.Honninger,N.Matuschek,and J.Aus der Au,Semiconductor saturable absorber mirrors(SESAM's) for femtosecondto nanosecond pulse generation in solid-state lasers.IEEE Journal of Selected Topics in Quantum Electronics,1996,2:435-453
    [16]Z.Zhang and T.Yagi.Dual-wavelength synchronous operation of a mode-locked Ti:sapphire laser based on self-spectrum splitting.Optics Letters,1993,18:2126-2128
    [17]A.Leitenstorfer,C.Furst,and A.Laubereau.Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs.Optics Letters,1995,20:916-918

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700