低氧耐受对甘肃鼢鼠心肌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃鼢鼠(Myspalax cansus)隶属啮齿目(Rodentia),鼢鼠亚科(Myospalacinae),鼢鼠属(Myspalax),是我国黄土高原特有地下鼠,由于终生营地下洞穴生活,使得甘肃鼢鼠发展出良好的低氧耐受保护机制,本研究以甘肃鼢鼠和SD大白鼠(Sprague-Dawley)为对象,进行低氧耐受实验,探寻甘肃鼢鼠的低氧耐受极限,比较二者低氧耐受的差异;以及低氧耐受不同时程,二者心肌组织显微和超微结构的变化差异;比较分析左心室组织中HSP70的表达变化和心肌耐受过程中组织结构变化的相关性。研究结果表明:
     1.不同低氧梯度暴露,甘肃鼢鼠在3%,3.5%氧浓度,平均存活时长为1.03±0.14h和2.04±0.27h,SD大鼠分别是0.28±0.07h和0.48±0.08h。在4%氧浓度下甘肃鼢鼠可存活10小时以上,且行为状态良好,而SD大鼠仅存活4.87±0.45h。推测4%氧浓度可能是甘肃鼢鼠正常存活的低氧耐受极限。
     结果说明,严重低氧应激时,甘肃鼢鼠通过自身的应激保护机制,调动器官系统反应,及时调动对抗低氧的代偿机制,维持有氧代谢,保护内环境相对恒定,使其在4%氧浓度中逐渐适应,表现出很强的低氧耐受能力;SD大鼠在4%氧浓度大鼠暴露时,机体几乎没有能力和时间调动其代偿机制,仅存活4.87±0.45h,说明其无法对该低氧环境产生耐受。
     2.在4%氧浓度的低氧耐受实验中,甘肃鼢鼠在低氧2,4h后,心肌纤维收缩明显呈波浪状,低氧时间延长至6,8和10h后,心肌显微波浪状收缩由强逐渐变弱,并逐渐恢复至正常状态,说明鼢鼠心肌在6h以后对严重缺氧环境开始代偿性适应;SD大鼠2h组心肌纤维断裂严重,收缩加强成明显的波浪状,随着低氧时间得增加,4h组呈严重成挛状收缩,损伤加剧,提示SD大鼠在这一氧浓度下已经无法正常调动其代偿机制。
     3.在4%严重低氧耐受过程中,甘肃鼢鼠心肌超微结构在2h组出现血管扩张,通透性增加,有炎细胞渗出,异染色质边集;4h组心肌损伤状况与2h组接近,出现脂滴,提示脂类的氧化代谢在此时开始发生障碍,6和8h组心肌损伤状况逐渐好转,线粒体聚集增多,细胞连接正常,肌小节收缩较前有所减弱;10组线粒体增多聚集,线粒体脊增粗更为明显,少量糖原颗粒聚集,脂滴较前有所减少,横小管扩张增大变粗,出现了与能量代谢有关的结构适应性变化。证明了甘肃鼢鼠有强的低氧耐受能力,由于其心脏代偿能力比较强,减轻了缺氧引起的心肌损伤,心肌在低氧耐受过程中逐渐恢复。
     SD大鼠在2h心肌出现严重的超微病理损伤,4h组损伤加剧,说明4%浓度下大鼠没有能力调动其代偿机制,伴随心肌在短时间内的急剧损伤最终死亡。
     4.在4%氧浓度耐受不同时程后,HSP70在甘肃鼢鼠低氧各组左心室心肌组织中均广泛表达,与对照组比较差异极显著(P<0.01),但各低氧相邻组间比较均无显著性差异(P>0.05),HSP70的表达在2~4h极显著增加后到8~10h呈显著下降趋势(P<0.05),而心肌超微结构状况在4h后也发生好转。提示HSP70蛋白表达增加,发挥细胞保护作用,使鼢鼠心肌细胞对低氧的耐受力增强,对该环境产生低氧耐受,处于逐渐适应的阶段。
     SD大鼠心肌在2,4h后HSP70蛋白大量表达,与对照组相比差异极显著(P<0.01),但心肌终未见恢复,随后即发生死亡,说明HSP70在SD大鼠的极显著表达,还未能发挥其心肌保护作用,心肌未能恢复,SD大鼠即发生死亡。
     常氧对照组中甘肃鼢鼠HSP70的表达量明显高于SD大鼠(P<0.01),可能是甘肃鼢鼠应对极端低氧环境时心肌自身保护特有的机制。甘肃鼢鼠在低氧2,4h的HSP70表达是极显著高于SD大鼠(p<0.01),但其表达增长幅度分析,二者间不存在显著性差异(P>0.05)。说明该应激蛋白在二者心肌中有相似的低氧应激反应,但HSP70在鼢鼠各组都极显著高于SD大鼠,这可能促使鼢鼠机体和心脏有更强的低氧耐受力,HSP70大量表达使得鼢鼠心肌细胞对缺氧的耐受也显著强于SD大鼠,使其在低氧损伤心肌中发挥了强的保护作用,鼢鼠心肌逐渐恢复。说明甘肃鼢鼠在该浓度下心肌得低氧耐受能力明显强于大鼠。
     综上所述,本研究结果说明甘肃鼢鼠虽长期生活在地下低氧环境中,但对严重的低氧环境仍比较敏感,在一定程度的严重低氧刺激下才会迫使其顺利启动其自身从分子、细胞水平到整体协调的低氧耐受机制,使心脏不至出现衰竭的现象,从而在心肌组织结构稳定的情况下,发挥正常功能,维持在低氧条件下的生存。
Myspalax cansus (Rodentia, Myospalacinae, Myspalax)which lives on the loess plateau of our country. This unique underground rats life-long living under the cave, it developed many hypoxic tolerance protect mechanism to adapt its special circumstances at in organsall levels. In this study,we used Gansu zokor and SD rats (Sprague-Dawley)for the object, do serious hypoxia tolerance experiment, to explore the hypoxia tolerance extreme of Gansu zokor, analysis the difference hypoxia tolerance between Gansu zokor and SD rats at same oxygen concentration; The changes on their cardiac muscle organization structures in hypoxia tolerance process ; The expression of HSP70 between normoxic and hypoxic control in cardiac muscle organization of two animals , to find the relativity in all the results. Trying to find the different hypoxia tolerance mechanisms between wild rats and mice , research shows that:
     1. In different levels extents of hypoxia experiments, Gansu zokors were surived 1.03±0.14h and 2.04±0.27h under 3.0%, 3.5% oxygen concentration respectively on average , the surive time of SD rats is 0.28±0.07h and 0.48±0.08h; Under 4% oxygen concentration , Gansu zokors can surive at least 10h, but SD rats just surived at this hypoixia extent for 4.87±0.45h on average. It can presumed 4% oxygen concentration is very close to Myspalax cansus hypoxia tolerance extreme.
     The results showing, in serious hypoxia stress, the resist hypoxia compensatory mechanism were mustered immediately and effectually in Gansu zokors by it's stress protect mechanism, organ and system reaction were transferred to keep aerobic metabolism and make the internal environment stable, then they can be tolerance and adapt to 4% oxygen concentration gradually, show its strong hypoxia tolerance ability. Under serious hypoxia environment , the compensatory mechanism in SD rats were not transferred in time , they were died about 4 hours later uder exposed to 4% oxygen concentration, the outcomes implied SD rats can not have tolerance to this hypoxia environment.
     2. 4% oxygen concentration were used as hypoxia tolerance research model., after 2 and 4h hypoxia that Gansu zokors cardiac muscle fibers were contracted to wavilness obviously under light microscope, but by the hypoxia time longer, cardiac muscle fibers were contracted weaked, the wavilness be lower in hypoxia 6h, 8h and 10h groups, the results show cardiac muscles has super compensatory mechanism and adapte to serious hypoxia stress. But in SD rats, cardiac muscle fibers were fractured seriouly , contracted to wavilness obviously, then muscle fibers fracture were contracted like entasia by the hypoxia time increased , injury intensify , all the changes refered SD rats compensatory mechanism can not be transferred in this hypoxia degree.
     3. Exposed to 4% oxygen concentration, the cardiac muscle ultrastructure of Gansu zokors had serious injury after hypoxia 2h. angiectasis, permeability were increased , inflammatory cell were transuded; The cardiac muscle injury conditions after hypoxia 4 h were similar with hypoxia 2h group, appeared lipid droplet, implied the oxidative metabolism of lipid got obstacle started from then; The cardiac muscle injuried conditions were got little improvement in hypoxia 6 and 8 hours team, mitochondria were increased and aggregatived, normal cell junction, sarcomere contract weaked; in hypoxia 10h group , mitochondria were increased and aggregatived obviously, a few glycogenosome were assembled, transverse tubule were expanded, all the changes may be the adaption of Gansu zokors in the hypoxia tolerance process to 4% hypoxia extent gradually.
     The cardiac muscle ultrastructure of SD rats had seious pathology injury, in hypoxia 4h team,all the injury condition aggravated, the outcomes still show at 4% oxygen concentration,the compensatory mechanism can not be transfered, finally were died by cardiac muscle ultrastructure got grave injuried .
     4. HSP70 were expressed extensive in the cardiac muscle of Gansu zokors and SD rats after different hypoxia stress time. All the hypoxia groups , compared with normoxia group, there were very significant difference between them (P <0.01); in hypoxia 2,4h groups, there have no significant difference in Gansu zokors (P>0.05),and so as hypoxia 6 and 8h ,8 and 10h group; There were no sifnificant differerce between adjacency hypoxia teams(P>0.05).The extend of HSP70 expresslion were descend from 2-4h to 8-10h;In the same time, the cardiac muscle ultrastructure of Gansu zokors were be better, the results refered HSP70 were expressed extensive, its cell protection function were developed,made the cardiac muscle cells hypoxia tolerence be much stronger, It were persumed after 2-4h hypoxia , Gansu zokors were have tolerance to this circumstance from then on, and were got into the phases be adapive to the circumstance gradually.
     HSP70 were expressd extensive in the cardiac muscle compared with normoxia group in SD rats, after 2h and 4h hypoxia time, ,there were very significant difference between the two groups(P <0.01), but the cardiac muscle were not got resumed,, all of this lead to the faster died of SD rats, the results show the extensive erpression of HSP 70 in SD rats, its cell protection function were not developed , cardiac muscle were not got any resumed , the SD rats died.
     In the normal group,we find that HSP70 were expressed in Gansu zokors much more than in the SD rats, there were very significant difference between them (P <0.01), this is problely its owe mechanism of Gansu zokors cardiac muscle protection to resit the seirous hypoxia extend. In hypoxia 2.4h groups, HSP70 were expressed much more in Gansu zokors than in SD rats, there were very significant difference between them(P <0.01), but there were no significant difference on increase extend between them (P>0.05).It implied there were same hypoxia reaction of HSP70 in the two rats, but HSP70 were expressed much more in Gansu zokors than in SD rats, so it can be made Gansu zokors had strong hypoxia tolerance in body and cardiac muscle.
     In conclusion, the resuts suggests Gansu zokor long-term living in the underground environment of hypoxia,but still be sensitive to the serious hypoxia environment, just have different hypoxia tolerance limiting point. In the stimulation of grave hypoxia reach to one extent,Gansu zokor may impellingly smooth launch of its own mechanism to hypoxia from molecular, cellular and structure level to the overall coordination,and not to appeared heart failure. Gansu zokor will remain survival at the hypoxic conditions with the stability in cardiac muscle structure and its nomal function.
引文
[1]周兆年,低氧与健康研究[J].中国基础科学,2003,(5):20-26.
    [2]吕国蔚.低氧适应的进化[J].首都医科大学学报,2002,23(2):185-190.
    [3]Ewald R.Weibel.Understanding the limitation of O2 supply through comparative physiology.Respiration Physiology,1999,118:85-93.
    [4]李庆芬.人与动物呼吸系统对高海拔低氧的适应.生物学通报,1991,(10):19-31.
    [5]钱令嘉,低氧适应相关基因及其研究策略的思考,中国基础科学,2001,(9),8-13.
    [6]王廷正,许文贤,陕西啮齿动物志,西安:陕西师范大学出版社,1993,114-115.
    [7]谢慧春 甘肃鼢鼠心血管系统对急性低氧的反应 陕西师范大学硕士学位论文 2008,5
    [8]Imad Shams,Aaron Avivi,Eviatar Nevo.Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses.Comparative Biochemistry and Physiology,Part A,2005,142:376-382.
    [9]A.Avivi,M.B.Resnick,E.Nevo,A.Joel and A.P.Levy,Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi:the role of vascular endothelial growth factor,FEB S Letters,1999,3(452):133-140.
    [10]吕国蔚.低氧耐受和低氧预适应 中国神经科学杂志 Chin J Neurosci 20(5),September 2004,388
    [11]彭丽 邓树勋 持续低氧对心血管系统的影响 辽宁体育科技 2002,24(2):26
    [12]Hochachka PW,Monge C.Evolution of human hypoxia tolerance physiologyJ.Adv Exp Med Biol,2000,475:25-43
    [13]Bunn HF,P oyton RO.Oxygen sensing and molecular adaptation to hypoxiaJ.Physiol Rev,1996,76(3):839-885
    [14]吕国蔚.低氧适应的进化J.首医大学报,2002,23(2):185-190
    [15]吕国蔚.低氧耐受动物细胞的耐低氧策略J.高原医学杂志 2001,11 (1):63-65.
    [16]吕国蔚.低氧反应通路J.生理科学进展,2001,32(1):65-67.
    [17]吕国蔚.缺氧适应的组织机制.病理生理学进展(一)M.北京人民卫生出版社,1963,197-239
    [18]龙超良,尹昭云,等,急、慢性缺氧对大鼠心功能的影响,航天医学与医学工程,1999,12(4),267-269.
    [19]Edoute Y,Arieli R,and Nevo E.Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat[J].J Comp Physio,1988 158:575-582.
    [20]彭丽,邓树勋 持续低氧对心血管系统的影响 辽宁体育科技 2002,24(2):26.
    [21]陈道亮 万隆 谢建珍 家兔急性低氧耐受力的测定及在经络研究中的初步应用福建中医学院学报 1999,9(3).
    [24]柴旦,周兆年,低氧和复氧对心脏的影响.西藏医药杂志,2000,21(3):18-26.
    [25]Ambrosio G,et al.Evidence for a reversible oxygen radical - mediated component of reperfusion injury:Reduction by recombinant human superoxide dismutase administrated at the time of reflow.1987,75(1):282-291.
    [26]王细文,仇玉福,等,慢性缺氧大鼠右心房的超微病理变化及血浆ANF含量改变的实验研究,第三军医大学学报,2000,3,44-47.
    [27]Costa L E,Boveris A,Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia,Am J physiol,1998,(255),123-125.
    [28]孙小华,许豪文 模拟5000m海拔时不同暴露时间对大鼠肌肉结构和功能的影响,武汉体育学院学报,1999,33(2),23-27.
    [29]雷志平,王茂叶,等,间歇性低氧训练对运动员有氧代谢能力影响的实验研究,第六届全国体育科学大会论文摘要汇编(二),2001,324.
    [30]黄庆愿,高钰琪,等,缺氧大鼠心肌毛细血管密度与VEGF变化的研究,第三军医学学报,2001,23(6),633-636.
    [31]Adir TH,Gay WJ,Montani JP.Growth regulation of the vascular system:evidence for a metabolic hypothesis[J].Am J Physio],1990,259:R393-R404.
    [32]Arieli R,Nevo E.Hypoxic survival differs between two mole rat species (Spalax ehrenbergi) of humid and arid habitats[J].Comp Biochem Physiol A,1991,100:543-545.
    [33]Edoute Y,Arieli R,and Nevo E.Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat[J].J Comp Physio,1988 158:575-582.
    [34]J~L I ANN G K,GEORGE C T.Heat shock p r otein 70 kDa:Molecular bi ol ogy,bi oche mistry and physi ol ogy[J].PharmacolTher,1998,80(2):183—201
    [35]BECH MANN,R PIM IZZI M IA,WELCH W J.Interacti on Of folding and assen by events[J].Science,1990,248:850-854.
    [36]Mori mot o R I,TissieresA,Ceorg opoul os c.The stress response,functi on Of the p r o teins,and perspectives[A].Mori mot o R I et al.Stress Pr oteins in Bi ol ogy andMedicine[C].Cold Sp ring Harbor:CSI R.Press,1990.1-36.
    [37]胡娟 低氧刺激与机体适应性应激蛋白研究进展 中国公共卫生2004,5(20):621
    [38]李逢昌,黄健辉,何巍 热休克蛋白70与心肌保护研究现状 右江民族医学院学报 2007,5
    [39]Gusurova V,Caplan AJ,Brodsky JL,et al.Apoprotein Bdegradation is promoted by the molecular chaperons HSP90 and HSP70[J].BiloChem,2001,276(27):24891-24892.
    [40]Yu HP,Shimizu T,Choudhry MA,et al.Mechanism of cardio protection following trauma-hemorrhagic shock by a selective estrogen receptor - beta agonist:up - regulation of cardiac heat shock factor - 1 and heat shock proteins[J].JMol Cell Cardiol,2006,40(1):1852-1894.
    [41]冉擘力.白细胞介素-1预适应对心肌缺血再灌注损伤的保护作用及机制[J].中国新药与临床杂志,2002,21(6):339-342.
    [42]Garrido C,Bruey JM,Fromentin A,et al.HSP27 inhibitscyto - chrome c-dependent activation of rocaspase - 9[J].FASEB J,1999,13(14):2061-2070.
    [43]Pandey P,Saleh A,Nakazawa A,et al.Negative regulationof cyto - chrome c -mediated oligomerization of Apaf-land activation of procaspase-9 by heat shock protein 90[J].EMBO J,2000,19(16):4310-4322.
    [44]陈在嘉.再灌注治疗应当重视心肌微循环的灌注[J].中国循环杂志,2002,17(3):163-164.
    [45]Garrido C,Gurbuxani S,Ravagnan L,et a l.Heat shock proteins:endogenousmodulators of apop totic cell death[J].Biochem Biophys Res Commun,200 1,286(3):433-442.
    [46]Suzuki K,Murtuza B,Sammut IA,et al.Heat shock protein72 enhances manganese superoxide dismutase activity during myocardial ischemia- reperfusion injury,associated with mitochondrial protection and apop tosis reduction[J].Circulation,2002,106(12 Supple 1):I270-I276.
    [47]王曼芝.热休克蛋白与抗感染免疫[J].国外医学生理、病理科学与临床分册,1999,19(3):241-243.
    [48]]Meng X,Harken AH.The interaction between Hsp70 and TNF- alpha expression:a novel mechanism for p rotection of themyocardium against post - injury dep ression [J].Shock,2002,17(5):345-353.
    [49]Grunenfelder J,Zund G,Stucki V,et al.Heat shock protein up regulation lowers cytokine levels after ischemia and reperfusion[J].Eur Surg Res,2001,33(5-6):383-387.
    [50]王乔,刘维新,徐明,等.心肌缺血再灌注损伤HSP70表达与细胞凋亡动态观察及相关性研究[J].数理医药学杂志,2000,16(60):503-505
    [51]Meldrum DR,Meng X,Shames BD,et al.Liposomal delivery of heat shock protein 72 into the heart prevents endotoxin induced myocardial contractile dysfunction [J].Surgery,1999,126(2):135-141.
    [52]Chiu PY,Ko KM.Schisandrin B protects myocardial is chemia reperfusion injury partly by inducing Hsp25 and Hsp70 expression in rats[J].Mol Cell Biochem,2004,266(1-2):139-144.
    [53]Morris SD,Cumming DV,Latchman DS,et al.Specific induction of the 70 - kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardio myocytes.A new phamacological route to stress protein expression[J].Clin Invest,1999,97(3):706-712.
    [54]唐英,王泉云.七氟醚和缺氧预适应诱导乳鼠心肌细胞HSP70表达的改变[J].湖南医科大学学报,2003,28(2):129-132.
    [55]Brar BK,Stephanou A,Wagstaff,et al.Heat shock proteins delivered with a uirus vector can protect cardiac cellsagainst apoptosis as well as against themal or hypoxic stress[J].J Mol Cell Cardiol,1999,31(1):135-146.
    [56]Lu G W.Hypoxia and its preconditioning.BiolSignals Recept,1999,8(425):245-322.
    [57]E.Greenberg,A.L.Sica,S.M.Scharf,D.A.Ruggiero,Expression of c-fos in the rat brainstem after chronic intermittent hypoxia.Brain Res.816(1999) 638-645.
    [58]Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat[J]. J Com Neurol, 1990,294:517-522.
    
    [59]Berquin P, Bodineau L, Gro s F, et al. Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats. Brain Res, 2000; 857(12) :30-40.
    
    [60]Hopfl, O.Ogunshola, and M. Gassmann HIFs and tumors—causes and consequences Am J Physiol, Regulatory Integrative Comp Physiol, 2004, 286(4): R608-623.
    
    [61] Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem, 1995,270: 1230-1237.
    
    [62]Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible-factor 1[J]. Biochem Biophys Res Commun, 1996,225:485-492.
    
    [63]Wenger R H, Rolfs A, Marti H H, Guenet J L, and Gassmann M. Nucleotide sequence, chromosomal assignment and mRNA expression of mouse hypoxia-inducible factor-1α[J]. Biochem Biophys Res Commun, 1996,223: 54-59.
    
    [64]Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous[J]. FASEB J, 2001, 15: 1312-1314.
    
    [65] Semenza GL. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis[J]. Curr Opin Genet Dev, 1998, 8: 588-594.
    
    [66]Ebert BL, Bunn HF. Regulation of the Erythropoietin Gene[J]. Blood, 1999, 94: 1864-1877.
    
    [67]Sutter G H, Laughner E, Semenza G L, Hypoxia-inducible factor 1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations [J], Proc Natl Acad Sci USA, 2000, 97(9), 4748-4753.
    
    [68]Wu H, Klingmuller U, Besmer P, Lodish HF. Interaction of the erythropoietin and stem-cell-factor receptors[J]. Nature, 1995,377(6546): 242-246.
    
    [69]Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck K H. Erythropoietin and VEGF exhibit equal angiogenic potential[J]. Microvasc Res, 2002,64: 326-33.
    
    [70]Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, and Dimmeler S. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization[J]. Blood, 2003, 102:1340-1346.
    
    [71]Gassmann M, Heinicke K, Soliz J, Ogunshola OO, Marti HH, Hofer T, Grimm C, Heinicke I, and Egli B. Non-erythroid functions of erythropoietin[J]. Adv Exp Med Biol, 2003,543:323-330.
    [72]Deng-Bang Wei,Lian Wei,Jian-Mei Zhang and Hong-Yan Yu,Blood-gas properties of plateau zokor(Myospalax baileyi),Comparative Biochemistry and Physiology - Part A:Molecular & Integrative Physiology,2006,145(3),372-375.
    [73]陈秋红,刘凤云.高原鼠兔慢性间歇性低氧机制的研究概况,动物学杂志,2003,38(5),109-113.
    [74]Ian W.Mclntyre,Kevin L.Campbell and Robert A.MacArthur.Body oxygen stores,aerobic dive limits and diving behaviour of the star-nosed mole(Condylura cristata) and comparisons with non-aquatic talpids.The Journal of Experimental Biology,2002,205,45-54.
    [75]Imad Shams,Aaron Avivi,and Eviatar Nevo.Hypoxic stress tolerance of the blind subterranean mole rat:Expression of erythropoietin and hypoxia-inducible factor 1-α.PANS,2004,101(26):9698-9703.
    [76]Imad Shams 1,Aaron Avivi,Eviatar Nevo Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses Comparative Biochemistry and Physiology,Part A 142(2005) 376-382
    [77]Arieli R1 The atmospheric environment of the fossorial mole rat(Spalax ehrenbergi):effects of seasons,soil texture,rain,temperature,and activity[J]1 Comp Biochem Physio,1979,63:569-5751
    [78]Kennedy T1 Microenvironmental conditions of the pocket gopher burrow[J]Tex J Sci,1964,16:395-4411
    [79]Kuhnen G1 O2 and CO2 concentrations in burrows of euthermic and hibernating golden hamsters[J]1 Comp Biochem Physiol,1986,A 84:517-5221
    [80]Shams I,Avivi A,Nevo E1 Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic- hypercapnic stress[J]Comp Biochem Physiol 2005,A 142,376-3821
    [81]Maclean G1 Factors influencing the composition of respiratory gases in mammal burrows[J]Comp Biochem Physiol,1981,A 84:517-5221
    [82]魏登邦,魏莲,张建梅,于红妍,王晓君 地下鼠对洞道环境适应机制的研究进展青海大学学报 2007,25(5)
    [83]孙希武,叶益新,邓希贤.不同程度减压低氧对心肌肌浆网钙摄取和Ca~(2+)-ATP酶活性的影响[J].中国医学科学院学报,1996,18(1):38-40.
    [84]Levitsky D,de la BD,Schwartz K,et al.Ca2+-ATPase and function of sarcoplasmic reticulum during cardiac hypertrophy[J].Am J Physiol,1991,261(4 Suppl):23-26.
    [85]孙希武,叶益新,邓希贤.慢性缺氧大鼠心肌肌浆网功能及其钙泵基因表达的动态变化[J].中国应用生理学杂志,1996,12(3):208-11.
    [86]王亚利,张式暖,郭爱华,刘克花,吴洪娟 慢性缺氧小鼠心肌酶组织化学分析及超微结构观察 潍坊医学院学报 1999,2(21):97-98.
    [87]丛丽,李益明,俞茂华,叶红英 黄芪多糖对糖尿病心肌病变仓鼠心肌胶原表达的影响 中国临床康复,2006,10(3):64-66
    [88]Meyer DK,Ferrill AP1 Cardiac glycogen of rats during and following acute anoxia[J].AmJ Physiol,1961,200(4):860-862.
    [89]Reeres RB.Control of glycogen utilization and glucose uptake in the naoropic turtle heart[J].AmJ Physiol,1963,205(1):23-29
    [90]陈晓光,杜继增.低氧对动物组织糖原含量和血糖水平的影响[J].兽类学报,1991,11(1):56-60.
    [91]金雄哲 金政 何首乌对缺氧培养心肌细胞保护作用的实验研究时珍国医国药,2006,17(8):1454-1456
    [92]钱令嘉 弓景波 程素琦 热应激心肌细胞损伤的线粒体机制探讨 中国应用生理学杂志 2000;16(2):133-135
    [93]曹敏,周端 黄芪在心血管疾病中的应用 辽宁中医杂志2008,10(35):1152-1153
    [94]蒋礼先,付小兵,孙同柱,等.缺血再灌注肌肉损伤中程序性细胞死亡的研究[J].中国危重病急救医学,1998,10(8):473-475.
    [95]Deng-Bang Wei,Lian Wei,Jian-Mei Zhang and Hong-Yan Yu,Blood-gas properties of plateau zokor(Myospalax baileyi),Comparative Biochemistry and Physiology - Part A:Molecular & Integrative Physiology,2006,145(3),372-375.
    [96]陈秋红,刘凤云.高原鼠兔慢性间歇性低氧机制的研究概况,动物学杂志,2003,38(5),109-113.
    [97]Ian W.Mclntyre,Kevin L.Campbell and Robert A.MacArthur.Body oxygen stores,aerobic dive limits and diving behaviour of the star-nosed mole(Condylura cristata) and comparisons with non-aquatic talpids.The Journal of Experimental Biology,2002,205,45-54.
    [98]李金钢,王廷正,赵新全.甘肃鼢鼠粪尿气味对侵占行为的影响.动物学报,2003,49(5):682-686.
    [100]Sharp FR.Heat-shock protein[J].Tre Neurosci,1992,22(3):97
    [101]Nomura F,Aoki M,Forbess J,et al.Myocardial self- preservative effect of heat shock protein70 on an immature lamb heart[J].Ann Thorac Surg,1999,68:1736
    [102]Jakubowicz- Gil J.Paduch R.Gawron A.et al.The effect of heat shock,cisplatin,etoposide and quercetin on Hsp27 expression in human normal and tumour cells.Folia Histochemica Cytobiol,2002,40(1):31-35,
    [103]Corbucci GG.Adaptive changes in response to acute hypoxia,ischemia and reperfusion in human cardiac cell[J].Minerva Anestesiologica,2000,66(7,8):523-530
    [104]Delogu G,Signore M,Mechelli A,et al.Heat shock Proteins and their role in heart injury[J].Curr OPin Crit Care,2002,8(5):411-416
    [105]Tanonaka K,Toga W,Takahashi M,et al.HSP70 attenuates Hypoxia /reoxygenation- induced activation of poly(ADP- ribose) synthetase in the nucleus of
    adult rat cardiomyocytes[J].Mol Cell Biochem,2003,248(1,2):149-155
    [106]陈继梁 刘敏 杨静大鼠支气管哮喘模型的心肌HSP70表达研究法律与医学杂志 2006 13(3):206-207
    [107]夏静 王旭梅 李艳辉 邵云 何茹 金魁和 慢性应激对大鼠心肌超微结构与热休克蛋白70表达的影响 中国行为医学科学2006,4(4):308-310
    [108]周兆年 低氧对心脏应激蛋白的诱导 科学通报 38(17)
    [109]Agibetov,K,A,Aldasbev,A.A.et al,Dokd.Akod.Nauk USSR,1990,311:989—990
    [110]Ogawa,S,Gerlach,H.et al,J.Clin.Lnvess,1990,85:1090-1098.
    [111]彭兆云,杜晶,孙学军,陈箫莹,等 高压氧暴露诱导小鼠低氧耐受状态变化 中国职业医学 2006,2(33):1:7-8
    [112]Okubo S,Wildner Q,Shah MR,et al.Gene transfer of heat shock protein 70reduces infarct size in vivo after is chemia/reperfusion in the rabbit heart [J].Circulation,2001,103(6):877-881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700