不同能量供需下棕色田鼠下丘脑NPY、PAM和消化道NOS的适应性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物个体内存在着复杂的生理调节系统,有效地平衡着能量摄入和消耗,有机体的体重和体脂才能保持在一个相对稳定的水平。
     机体的能量平衡与中枢以及外周的调节都有关。而下丘脑是机体的摄食及食欲调节的重要中枢,其内存在着复杂的“食欲调节网络(appetite regulation network,ARN)”,网络内产生的众多食欲调节因子(包括多种食欲促进因子和抑制因子)对食欲起着极其重要的信息传递作用。多种神经递质和激素能影响摄食行为,这些递质和激素间又有相互作用,构成复杂的神经体液调节网络。神经肽Y(Neuropeptide Y,NPY)作为该食欲网络中的一种很强的促食欲因子,在机体的摄食活动中发挥着重要的调节作用。NPY主要分布在下丘脑弓状核(arcuatenucleus,ARC),并有神经纤维投射到室旁核(paraventricular nucleus,PVN)、腹内侧核(ventromedial,VMH)及下丘脑背正中核(dorsomedial,DMH)形成复杂的NPY网络;其中ARC-PVN神经元轴在摄食调控中发挥重要的作用;研究表明与摄食相关的NPY主要在弓状核处合成,经过轴突运输到室旁核,由室旁核分泌而参与摄食的调控。研究发现动物在饥饿、运动量增加、寒冷及妊娠、哺乳等能量负平衡及能量需求增加时,NPY以及NPYmMRA的合成均增加。中枢注射NPY可显著增加摄食量,且动物采食量的增加与NPY剂量在一定范围内呈线性关系,注射NPY反义核苷酸或拮抗剂能够抑制食欲。肽基甘氨酸α酰胺化酶(Peptidylglycineα-amidating monooxygenase,PAM)是20年前发现的产生具有生物活性的神经肽的基本限速酶,可以使NPY等神经肽羧基末端的甘氨酸残基酰胺化而具备生理活性。PAM基因半敲除的鼠癫痫敏感和焦虑行为增加,PAM可能通过酰胺化NPY起到抗焦虑和癫痫的作用。但关于PAM在食欲和摄食调节方面的研究未见报道。
     动物消化道形态结构的变化是动物消化道重要的适应策略。一般认为,食性是导致种间消化道形态差异的主要原因;动物消化道形态结构的种内差异与食物质量及能量需求密切相关。而消化道活动的调节是十分复杂的生理学问题,消化道神经分布丰富,既受自主神经支配,又有内在神经丛分布;同时,消化道又是全身最大的内分泌器官,有多种内分泌细胞,分泌多种神经肽和激素。一氧化氮(Nitricoxide,NO)是胃肠道非肾上腺能非胆碱能(NANC)神经的抑制性递质之一,它在消化道肌间神经丛广泛存在。NO作用较多,除了可以引起胃肠道的平滑肌松弛外,还可调节黏膜血管基础张力,增加黏膜血流量,从而引起黏膜厚度增加,同时还直接调节胃粘液分泌。
     为研究在不同能量需求与能量供应状态下,棕色田鼠消化吸收功能的中枢适应性调节机制,并探讨中枢与外周的关系,实验采用免疫组织化学法,NADPH—黄递酶(NDP)组织化学法和整装铺片技术,对哺乳、禁食、非哺乳棕色田鼠下丘脑神经肽Y及其限速酶肽基甘氦酸α酰胺化酶PAM的阳性表达以及胃肠道管壁肌间神经丛一氧化氮合酶(NOS)阳性神经元的分布进行观察,并通过侧脑室注射NPY,观察胃肠道NOS阳性神经元的分布。
     结果显示:
     1.NPY,PAM免疫反应阳性颗粒主要分布在下丘脑弓状核(arcuate nucleus,ARC),室旁核(paraventricular nucleus,PVN),腹正中核(ventromedial,VMH),背正中核(dorsomedial,DMH)等区域;
     2.哺乳雌鼠和禁食雌鼠在下丘脑的NPY阳性颗粒较非哺乳雌鼠均显著上升,且禁食雌鼠和注射NPY雌鼠ARC,PVN的PAM阳性颗粒较非哺乳期雌鼠和哺乳期雌鼠显著增加;禁食雌鼠在VMH的PAM阳性颗粒也显著高于非哺乳期雌鼠。
     3.哺乳雌鼠、禁食雌鼠和注射NPY雌鼠的胃及十二指肠肌间神经丛NOS阳性神经元的分布显著高于非哺乳雌鼠和注射生理盐水组雌鼠。
     4.哺乳雌鼠和脑室注射NPY雌鼠空肠肌间神经丛NOS阳性神经节及神经元总数均显著高于非哺乳雌鼠和注射生理盐水组雌鼠。
     5.哺乳期雌鼠盲肠肌间神经丛单个神经节内NOS阳性神经元数显著高于非哺乳雌鼠:而注射NPY组雌鼠盲肠NOS性神经节数以及NOS阳性神经元总数显著高于生理盐水。
     6.禁食雌鼠回肠的NOS阳性神经节数显著高于非哺乳期雌鼠
     7.脑室注射NPY,动物摄食量显著提高。
     以上结果说明:在能量需求与供应相矛盾的不同生理状态下,中枢与外周均参与了消化的适应性调节,且面对不同程度的能量胁迫,适应性调节的机制有所差别。下丘脑NPY是一个重要的食欲调节肽,对机体的能量平衡起着重要的作用,在能量需求增加或能量供应不足时,激活了下丘脑内的NPY能神经元,从而使得NPY高表达,既能直接通过增加摄食量,提高消化能,来满足自身的营养与能量需求,又可通过调节消化道NOS神经元的分布格局来发挥消化功能的调节作用。然而,禁食加剧了动物能量摄入与支出间的矛盾,禁食期雌鼠不仅通过激活下丘脑内的NPY能神经元,使得NPY高表达,还通过PAM表达的增加,加强对NPY的修饰作用,提高NPY的活性,调节摄食活动,减少能量支出,维持能量平衡。
There is a complex physiological regulating system in organism which can balance energy intake and comsume,so that body weight and fat content maintain in a relatively stable level.
     It has been demonstrated that both central never system(CNS) and peripheral nervous system (PNS) participate in energy balance.Hypothalamus which is a relatively advanced central nervous system plays an important role in the regulation of food intake and energy balance.Recent research has identified the existence of an appetite regulation network(ARN) network in the hypothalamus involved in the regulation of daily food intake,which can produce many orexigenic and anorexigenic peptides.Neuropeptide Y(NPY) is a primary orexigenic signal within this network, which appears to be an important peptide for the action of in the regulation of food intake.NPY is mainly distributed in the arcuate nucleus(ARC),paraventricular nucleus(PVN),ventromedial nucles (VMH),dorsomedial nucleus(DMH) of the hypothalamus and lateral hypothalamus(LH); therefore,it is believed that there is a complicated NPY-Network in hypothalamus,and ARC-PVN axis plays important role in energy balance.In the hypothalamus,NPY is synthesized primarily in the ARC and from there it is transported to terminals via axonal transportation from which it is released primarily in the PVN.Higher NPY and NPY mMRA density were observed in states of food deprivation or increased energy demands such as starvation,diabetes,,cold enviroment,obesity, intense exercise,pregnancy and lactation.Central administration of NPY causes remarkable increase of food consumption and there was good linearity relationship between increased food intake and NPY dosage in certain extent;while inhibition of appetite by continuous intraventricular infusion of NPY antisense oligodeoxynucleotides or antagonist of NPY suppresses food intake.
     PAM was discovered more than 20 years ago in the seminal studies of Eipper and is a post-translational processing enzyme which catalyzes the hydroxylation of the C-terminal glycine in a large number of inactive neuropeptides and is responsible for the posttranslational modification of many important neuropeptides.PAM is a rate limiting step in the biosynthesis of NPY and many other neuropeptides,which is the only enzyme that catalyzes peptide amidation modification.Repeated electroconvulsive shock increased amounts of NPY and PAM in mossy fibers, and dentate granule cell dendrites contained increased amounts of NPY,PAM.However effects of PAM on feeding behavior has not been evaluated.Repeated electroconvulsive shock increased amounts of NPY and PAM in mossy fibers,and dentate granule cell dendrites contained increased amounts of NPY,PAM,However effects of PAM on feeding behavior has not been evaluated,
     The morphological and structural changes of digestive tract is an important adaptive strategy. Research shows that feeding habit is the main cause of different morphological and structural of digestive tract within interspecies and the differences mainly display in length of digestive tract;while intraspecific difference closely relates with food quality and energy demands. Gastroenteric activity is dominated both by autonomic nerve and extrinsic nerve plexus,therefore regulation of gastroenteric activity is a very complex process,nitric oxide(NO) is one of nonadrenergic noncholinergic(NANC) neurotransmitters which exhibit a wide range of biologic functions including inhibiting contraction of smooth muscles,affecting basal tension of mucosal blood vessels,increasing volume of mucosal blood flow and mucosal thickness,and regulating secretion of gastric mucus.
     To investigate CNS's adaptation mechanism in digestion and absorption under different energy demands and supplies,and discuss regulating relationship between central never system(CNS) and peripheral nervous system(PNS),We used the mandarin vole Microtus mandarinus as the animal model.In our study,immunohistochemisty and NADPH-NDP histochemistry were employed to test the expression of hypothalamic neuropeptide Y(NPY),its rate-limiting enzyme -Peptidylglycineα-amidating monooxygenase(PAM) in hypothalamus and the distribution of nitric oxide synthase (NOS) in gastrointestinal myenteric plexus among non-Lactating female,lactating female and fasting female.Furthermore,the effects of intra- cerebroventricular(icv 8ug/ul) microinjection of NPY on the distribution of NOS in gastrointestinal myenteric plexus were also observed.Results were as follows
     1.positive immunohistochemical spots of NPY and PAM were mainly distributed in regions of arcuate nucleus(ARC),paraventricular nucleus(PVN),ventromedial nucles(VMH),dorsomedial nucleus(DMH) of hypothalamus;
     2.hypothalamic positive NPY spots in lactating females and fasting females ascended significantly compared with non-lactating females,and positive PAM spots in ARC and PVN of fasting females significantly elevated compared with non-lactating females and lactating females,so did NPY microinjected females compared with saline microinjected females;
     3.higher levels of NOS positive ganglions and neurons were observed in gastric and duodenum in myenteric plexus of lactating females and fasting females in comparison with non-lactating females,and NPY microinjected females presented the same changes compared with saline microinjected females;
     4.Both NOS positive ganglions,neurons in jejunum of lactating females compared with non-lactating females and microinjected NPY females compared with microinjected saline females were higher;
     5.Number of NOS positive neurons in every NOS positive ganglions in Cecum of lactating females were more that of non-lactating females;while NOS positive ganglions and positive neurons of NPY-injected females were more compared with saline-injected females.
     6.Higher level of NOS positive ganglions were observed in myenteric plexus of Ileum of lactating females in comparison with non-lactating females.
     7.Food consumption were prominently increased by icy injection of NPY.
     We conclude that:both CNS and PNS take part in gastrointestinal adaptive regulation to settle higher energy demands and supply-demand contradiction in energy,and the adaptation mechanism are varied under different energy threatening.Our results also suggest that NPY in hypothalamus is an important regulating peptide,functioning not only directly via enhancing food intake and digestive efficiency to meet the requirements of nutrition and energy,but also via regulating distribution of NOS neurons in digestive tract to modulate digestion.However,the contradiction of energy intake and expenditure is escalated by fasting,both expression of NPY and PAM were increased suggest that biological activity is also a important strategy under severe energy threatening.
引文
[1]Scalera G.Effects of corticocerebellar lesions on taste preferences,body weight gain,food and fluid intake in the rat[J].J Physiol(Paris),1991,85:2142222.
    [2]Min B,Oomura Y,Katafuchi T.Responses of rat lateral hypotha21amic neuronal activity to fastigial nucleus stimulation[J].J Neu2rophysiol,1989,61:1 17821184.
    [3]Pu YM,Wang J J,Wang T,et al.Cerebellar interpositus nucleusmodulates neuronal activity of lateral hypothalamic area[J].NeuroReport,1995,6:9852988.
    [4]吴小萌:张铁梅:下丘脑葡萄糖感受性神经元的研究[J]中华老年医学杂志2004,23(10):752-754
    [5]郭秀兰,王康宁,唐仁勇,神经肽Y的促摄食作用及其调控中国畜牧兽医2005,32(4):6-9
    [6]Cone RD,CowleyMA,ButlerAA,et all The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis l Int J Obes RelatMetab Disord,2001,25(S5):63-67
    [7]Kalra SP,Dube MG,Pu S,et all Interacting appetite regulating pathways in the hypothalamic regulation of body weight l Endocr Rev,1999,20(1):68-100
    [8]Andersson U,Filip sson K,Abbott CR,et all AMP activated protein kinase p lays a role in the control of food intake.J Biol Chem,2004,279(13):12005-12008
    [9]Sarkars S,Lechan RM1 Central administration of neuropep tide Y reduces alpha-melanocyte-stimulating hormone-induced cyclic adenosine 5'2 monophosphate response element binding protein(CREB ) phosphorylation in p ro-thyrotrop inreleasing hormone neurons and increases CREB phosphorylation incorticotrop in2releasing hormone neurons in the hypothalamicparaventricular nucleusl Endocrinology,2003,144(1 ):281-291
    [10]Jobst EE,Enriori PJ.The electrophysiology of feeding circuits[J].Trends EndocrinolMetab,2004,15(10):488 - 499.
    [11]Rabin BM.Ventromedial hypothalamic control of food intake and satiety:a reappraisal.Brain Res.1972;43:317-342.
    [12]Reynolds RW.Hypothalamic lesions and disinhibition of feeding.Science 1965.150:1322.
    [13]Millhouse OE. The organization of the ventromedial hypothalamic nucleus. Brain Res, 1973,55:71-87.
    [14]Arees E, Mayer J. Anatomical connections between medial and lateral regions of the hypothalamus concerned with food intake. Science 1967,157:1574-5.
    [15]Balagura S, Devenport LD. Feeding patterns of normal and ventromedial hypothalamic lesioned male and female rats[J]. Comp Physiol Psychol,1970;71:357-64.
    [16] Becker EE, Kissileff HR. Inhibitory controls of feeding by the ventromedial hypothalamus [ J]. Physiol 1974;226:383- 396.
    [17] Brooks CMcC, Lockwood RA, Wiggins ML. A study of the effects of hypothalamic lesions on the eating habits of the albino rat[J].Physiol,1946;147:735-741.
    [18]Bruce BK, King BM, Phelps GR, Veitia MC. Effects of adrenalectomy and corticosterone administration on hypothalamic obesity in rats[ J]. Physiol, 1982,243:E152-57.
    [19]Bray GA, Gallagher Jr TF. Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of theliterature. Medicine ,1975,54:301-30.
    [20]The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight .Bruce M. King Physiology & Behavior,2006, (87)221-244.
    [21]King BM, Gaston MG. The effects of pretraining on the bar-pressing performance of VMH-lesioned rats. Physiol Behav ,1973;11:161- 6.
    [22]Brobeck JR, Larsson S, Reyes E. A study of the electrical activity of the hypothalamic feeding mechanism. J Physiol Lond 1956;132:358- 64.
    [23]Xu B, Goulding EH, Zang K, et all Brain derived neurotrophic factor regulates energy balance downstream of melanocortin24 recep torl NatNeurosci, 2003, 6 (7):736-742
    
    [24] 田秀灵 神经肽Y及其食欲促进作用 国外医学:卫生学分册,2003, 30 (3):134-137
    
    [25] Shibasaki T, Oda T, Imaki T, Ling N. Demura H,1993. Injection of anti-neuropeptide Y γ-globulin into the hypothalamic paraventricular nucleus decreases food intake in rats.Brain Research. 601:313-316.
    [26] Akabayashi A, Wahlestedt C, Alexander JT, Leibowitz SF,1994. Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion.Mol Brain Res .21:55-61.
    [27] Zarjevski N, Cusin I, Vettor R, et all Chronicintracerebroventricular neuropep tide2Y administration to normalrats mimics hormonal and metabolic changes of obesity Endocrinology, 1993, 133 (4): 175321758
    [28] Fekete C, Sarkar S, Rand WM, et al1 Agouti2related p rotein(AgRP) has a central inhibitory action on the hypothalamicp ituitary2thyroid (HPT) axis; comparisons between the effect of AgRP and neuropep tide Y on energy homeostasis and theHPT axisl Endocrinology, 2002, 143 (10): 384623853
    [29]Thorsell A, Heilig M1 Diverse functions of neuropep tide Yrevealed using geneticallymodified animals1 Neuropep tide.2002. 36 (223): 1822193
    [30] Chronwall BM, DiMaggio DA, Mussari VJ, Pickel VM, Ruggievo DA, O'Donohue TL ,1985 The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 15:1159-1181
    [31] Hahn TM, Breininger JF, Baskin DG, Schwartz MW,1998. Co-expression of AgRP and NPY in fasting-activated hypothalamic neurons. 1: 271-272.
    [32] Morris BJ,1989. Neuronal localization of neuropeptide Y gene expression in rat brain. J. Comp. Neurol. 290:358-368.
    [33] Bai FL, Yamano M, Shiotani Y. Emson PC. Smith AD, Powell JF, Toyama M, 1985.An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Ycontaining system which lacks noradrenaline in the rat, Brain Res. 331 :172-175.
    [34] Bellinger LL, Bernardis LL, 2002.The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies.Physiol and Behav. 76 :431-442.
    [35] King BM,2006.The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol and Behav. 87(2):221-244.
    [36] Pickavance L. Dryden S, Hopkins D. Bing C. Frankish H, Wang Q. Vernon RG. Williams G ,1996 .Relationships between hypothalamic neuropeptide Y and food intake in the lactating rat. Peptides .17:577-582
    [37]Pape JR. Tramu G. 1996 .Suckling-induced changes in neuropeptide Y and proopiomelanocortin gene expression in the arcuate nucleus of the rat: evaluation of a putative intervention of prolactin. Neuroendocrinology 63:540 -549.
    [38] Smith MS, 1993. Lactation alters neuropeptide-Y and proopiomelanocortin gene expression in the arcuate nucleus of the rat. Endocrinology .133:1258 -1265.
    [39] Horvath TL, Diano S, Tschop M,2004. Brain circuits regulating energy homeostasis. The Neuroscientist 2004;10:235-246.
    
    [40] Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS,1999. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev.20:68-100
    
    [41] Yoo SB, Ryu V, Lee S, Chang JWJahng JW, 2007.The arcuate expression of NPY, POMC and CART responding to food deprivation was exaggerated by experience of maternal separation in female rats .Appetite. 49(1):341
    
    [42] Marta B, Erika P , Marg KG , Miklos S, 2006.Cold-adaptation: Neuropeptide Y versus thermal signals in the development of hyperphagia Journal of Thermal Biology.31:115-123.
    
    [43] Lewis DE ,Shellard L, Koeslag DG , Boe DE, McCarthy HD , McKibbin PE, Russell JC, Williams G, 1993.Intense exercise and food restriction cause similar hypothalamic neuropeptide Y increases in rats. Physiol. Am. J. 264:E279-E284
    [44] Sahu A.,Sninsky CA., Kalra PS, Kalra SP,1990. Neuropeptide Y concentrations in microdissected hypothalamic regions and in vitro release from the medial basal hypothalamus-preoptic area of streptozotocin-diabetic rats with and without insulin substitution therapy.Endocrinology .126: 192-198.
    
    [45]Chen P, Li C, Haskell CL, ConeRD,. Smith MS.Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation. Endocrinology, 1999, 140(6):2645-2650.
    
    [46]Malabu UH, Kilpatrick A, Vernon RG, Williams G, 1994.Increased neuropeptide Y concentrations in specific hypothalamic regions of lactating rats: Possible relationship ot hyperphagia and adaptive changes in energy balance. Peptides. 15(1):83-87
    
    [47] Dryden. S. Frank&h, H M, Wang Q, Williams G,1994. Neuropeptide Y and energy balance: One way ahead for the treatment of obesity.Eur. J. Clin. Invest. 24:293-308.
    [48]S.T.Prigge,R.E.Mains,B.A.Eipper.New insights into copper mono- oxygenases and peptide amidation:structure,mechanism and function.[J]Cell Mol Life Sci.,2000 57:1236-1259
    [49]M.R.Alam,R.C.Johnson,D.N.Darlington.Kalirin,a Cytoso- lic Protein with Spectrin-like and GDP/GTP Exchange Factor-like Domains That Interacts with Peptidylglycine a-Amidating Monoo xygenase,an Integral Membrane Peptide-processing Enzyme.[J]Bio.Che.1997,272:12667-12675.
    [50]S.C.Baraban,G.Hollopeter,J.C.Erickson.Knock-out mice reveal a critical antiepileptic role for neuropeptide Y[J].Neurosci.,1997,17:8927-8936.
    [51]X.M.Ma,R.E.Mains,B.A.Eipper.Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsive shock[J].Neuropsychopharmacology,2002,27:55-71
    [52]Bao,Y.X.,W.G.Du,Q.Lin,B.Y.Hu,B.R.Chi and X.D.Chen 2001Effect of temperature on energy requirementand food assimilation in Chinese white bellied rat(Niviventer confucianus).Acta Zool.Sin.47(5):597-6001
    [53]杜卫国,鲍毅新2000 社鼠和褐家鼠消化道长度和重量的季节变化.动物学报46(3):271-277.
    [54]Derting TL,Bogue BA,1993.Responses of the gut to moderate energy demands in small herbivore Microt us pennsylvanicus.J.Mamm.74:59 - 68.
    [55]Derting,Y.L.and E.B.Noakes 1995 Seasonal changes in gut capacity in the white-footed mouse(Peromyscus leucopus ) and meadow vole(Microt us pennsylvanicus ).Can.J.Zool.73:243-252.
    [56]Derting,T.L.and M.W.Austin 1998 Changes in gut capacity with lactation and cold exposure in a species with low rate of energy use,the pine vole (Microt us pi netorum ).Physiol.Zool.71(6):611-623.
    [57]王淑卿,张知彬,张健旭,王福生,郝守身,曹小平 1999 大仓鼠消化道长度和重量变化的初步研究.动物学杂志34(6):17-21.
    [58]王德华,王祖望,孙儒泳 1995 根田鼠消化道长度和重量的变化及其适应意义.兽类学报15(1):53-59.
    [59]王德华,王祖望2000 高寒地区高原鼢鼠消化道形态的季节变化.兽类学报20(4):270-276.
    [60]陈洁.摄食调控的分子机制研究机制.中国循证儿科杂志.2007,2(1):55-66
    [61]Hammond,K.A.1993.Seasonal changes in gut size of the wild prairie vole (Microt us ochrogaster).Can.J.Zool.71:820-827.
    [62]王德华,王祖望2001 高寒地区高原鼠兔消化道形态的季节动态.动物学报47(5):495-501.
    [63]徐金会,安书成,邰发道,2003.棕色田鼠消化道形态变化与能量需求的关系.动物学报49:32-39.
    [64]乔卉,安书成,邰发道,徐金会,2005.不同能量需求的棕色田鼠胃肠道一氧化氮合酶和血管活性肠肽的分布.动物学报51:830-839.
    [65]彭曦,1997.一氧化氮合酶在胃肠道的分布规律及意义.国外医学:病理科学与临床分册17:258-261.
    [66]吴红金,林传友,2000.大鼠肠道内NOS与AChE、VIP阳性神经元的分布关系研究.中国组织化学与细胞化学杂志9:187-190.
    [67]王吉村,孙长凯,1996.消化系统中的一氧化氮机制.国外医学:内科学分册23(8):326-329.
    [68]刘梅,徐金会,安书成,邰发道,2001.棕色田鼠小肠肌间神经丛NOS的组织化学观察.兽类学报21:206-210.
    [69]肖岚,蔡文琴,孙榆.大鼠空肠肌间神经丛NADPH-黄递酶的光镜及电镜观察[J].解剖学报,1996,27(1):85-88.
    [70]Warren SG,Humphreys AG,J uraska JM,et al.L TP varies across the estrous cycle:enhanced synaptic plasticity in proestrousrats[J].Brain Res,1995,703:26230.
    [71]Nijima A,Meguid MM.Parenteral nutrients in rat suppresses hepatic vagal afferent signals from portal vein to hypothalamus[J].Surgery,1994,116:2942301.
    [72]Yuan CS,Barber WD.Hypothalamic unitary responses to gastric vagal input from the proximal stomach[J].Am J Physiol,1992,262:G742G80.
    [73]李在琉,中山沃.刺激饱中枢和摄食中枢对迷走神经胃支传出性活动和胃运动的影响[J].中华消化杂志,1983,3:247-249.
    [74]Wynne K,Stanley S,McGowan B,et al.Appetite Controll[J]Endocrinol,2005,184(2),2912318.
    [75]时浩.神经肽Y和下丘脑与能量平衡的调节.Foreign Medical Sciences Section of Pmhophysio logy and ClinicalM edical 1998,18(1):26-28
    [76]Tetsuya T,Momoka S,Daichi O,Hirokazu T,Tim B,Mitsuhiro F, 2006.Intracerebroventricular injection of neuropeptide Y modifies carbohydrate and lipid metabolism in chicks .Regulatory Peptides. 136: 1-8
    
    [77] Kuenzel WJ, Douglass LW, Davison BA, 1987. Robust feeding following central administration of neuropeptide Y or peptide YY in chicks, Gallus domesticus. Peptides. 8( 5):823-828
    
    [78] Esteban J,Chover AJ, Sanchez PA , Mico JA ,Gibert-Rahola J,1989. Central administration of neuropeptide Y induces hypothermia in mice. Possible interaction with central noradrenergic systems.Life Sci .45: 2395-2400.
    
    [79] Raposinho PD, Pierroz DD, Broqua P. White RB, Pedrazzini T , Aubert ML, 2001.Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism. Mol Cell Endocrinol. 185: 195-204.
    
    [80 ]Raposinho PD, Pedrazzini T, White RB, Palmiter RD . Aubert ML,2003. Chronic Neuropeptide Y Infusion into the Lateral Ventricle Induces Sustained Feeding and Obesity in Mice Lacking Either Npy1r or Npy5r Expression Endocrinology .45(1):304-310
    
    [81] Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F,Jeanrenaud B,1993. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology.133:1753-1758.
    [82]Stanley BG, Kyrkouli SE., Lampert S.Leibowitz SF, 1986. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides .7:1189-1192.
    [83]Stanley BG, Leibowitz SF, 1984.Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 35: 2635-2642.
    [84 Stanley BG, Leibowitz SF,1985. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc. Natl. Acad .Sci .USA .82: 3940-3943.
    
    [85] Fekete C. Sarkar S, Rand WM, et all Agouti2related p rotein(AgRP) has a central inhibitory action on the hypothalamic pituitary-thyroid (HPT) axis; comparisons between the effectof AgRP and neuropep tide Y on energy homeostasis and the HPT axisl Endocrinology. 2002. 143 (10) : 384623853。
    
    [86] Myers RD. Wooten MH. Ames CD. Nyce JW.1995. Anorexic action of a new potential neuropeptide Y antagonist [D-tyr (27,36), D-thr (32)] NPY(27 - 36) infused into the hypothalamus of the rat. Brain Res Bull.37:237-245.
    [87] Eipper BA,. Mains RE, Glembotski CC.1983. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc. Natl. Acad. Sci.USA 80:5144-5148. Natl. Acad. Sci. U. S. A. 80, 5144-5148.
    [88] Prigge ST, Mains RE, Eipper BA, Amzel LM (2000): New insights into copper monooxygenases and peptide amidation:structure, mechanism and function. Cell MolLife Sci 57:1236-1259
    [89] Baraban SC,Hollopeter G,Erickson JC,1997. Knock -out mice reveal a critical antiepileptic role for neuropepetide Y.[J].neurosci.17:8927-8936
    [90] Ma MR, Mains RE, Eipper BA,2002;Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsiveshock. Neuropsychopharmacology. [J].27:55-71
    
    [91] Sun G, Narita K, Murata T, Honda K, Higuchi T. Orexin-A immunoreativity and prepro-orexin mRNA expression in hyperphagic rats induced by hypothalamic lesions andlactation[ J ].Neuroendocrinol 2003, 15: 51-60.
    [92] Johnstone LE, Higuchi T. Food intake and leptin duringpregnancy and lactation. Prog Brain Res 2001; 133: 215-227.
    [93] Arora S, Anubhuti. Role of neuropep tides in appetite regulation and obesity [ J ]. Neuropep tides, 2006, 40 (6): 375 -401.
    
    [94]SorimachiaM, Yamagamia K, Uramurab K. Functional exp ression of cholecystokinin2A recep tor on ventromedial hypothalamic neurons inthe immature rat brain [ J ]. Neuroscience Letters, 2001, 300 ( 2): 91 - 94.
    [95] Vernon RG, Denis RGP, Sorensen A, Williams G. Leptin and the adaptations of lactation in rodents and ruminants. Horm Metab Res 2002;34:678-85.
    [96] Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol 2004;287:R1277-96.
    [97] Flint DJ. CIegg RA, Vernon RG,1980. Regulation of adipose-tissue metabolism during Lactation. proceedings.Biochem. Soc. Trans. 8 :369-370
    [98] Ota K. Yokoyama A. 1967. Body weight and food consumption of lactating rats:effects of ovariectomy and of arrest and resumption of suckling. J .Endocrinol. 38(3):251-261.
    [99]Woodside B,Wilson R,Chee P,Leon M,Resource partitioning during reproduction in the Norway rat.Science.211(1981) 76-77.
    [100]Kam M,Degen A.Energetics of lactation and growth in the fat sand rat,Psammomys obesus:new perspectives of resource partitioning and the effects of litter size[J]1J Theor Biol,1993,162:353 - 3691
    [101]Bule H,Bboeckxstaens GE,Pelckmans PA,1990.Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter.Nature.345(6 273):346 - 347.
    [102]Xiao XQ,Grove KL,Smith MS,2004.Metabolic adaptations in skeletal muscle during lactation:complementary deoxyribonucleic acid microarray and realtime polymerase chain reaction analysis of gene expression Endocrinology.145(11):5344-5354.
    [103]Xiao XQ,Grove KL,Grayson BE,Smith MS,2004.Inhibition of uncoupling protein expression during lactation:role of leptin.Endocrinology.145(2):830-838.
    [104]Woodside B,2007.Prolactin and the hyperphagia of lactation.Physiology and Behavior.91(4):375-382.
    [105]Perrin MR,Curtis BA,1980.Comparative morphology of the digestive system of 19 species of Southern African myomorph rodents in relation to diet and evolution.S.Afr.J.Zool.15:22 - 33.
    [106]Korn H,1992.Intestine lengths of Southern African savanna rodents and insectivores:intra-and inter-specific comparisons.J.Zool.Lond.228:455 - 460.
    [107]杜卫国,鲍毅新,刘季科,2001.七种鼠科啮齿动物消化道长度和重量的比较.兽类学报21:264-270.
    [108]Gross JE,Wang ZW,Wunder BA,1985.Effects of food quality and energy needs:changes in gut morphology and capacities of Microt us ochrogaster.J.Mamm.66:661 - 667.
    [109]Wunder BA,1992.Morphophysiological indicators of the energy state of small mammals.In:Tomasi,T.E.and T.H.Hortoned.Mammalian Energetics:interdisciplinary views of metabolism and reproduction.Ithaca,N.Y.:Cornell University Press,83
    [110]鲍毅新,杜卫国,林奕,金伟星 1998 社鼠和褐家鼠的能量代谢及消化道形态的比较.兽类学报18(3):202-207
    [111]王德华,孙儒泳,王祖望 1996 根田鼠哺乳期同化能及产后生长发育过程中的能量分配.动物学报42(2):140-145.]
    [112] Madison , D. M. 1981 Time patterning of nest visitation by lactating meadow voles. J . Mamm. 62 : 389-391.
    [113]Sibly R , 1981. Strategies in digestion and defecation. In : Townsend CR , Calowed P ed. Physiological Ecology : An Evolutionary Approach to Resource Use. Oxford : Black Well Scientific Publications ,109-139.
    [114]Karasov WH, 1996.Digestive plasticity in avian energetics and feeding ecology [A] 1 In : Carey C eds1 Avian energetics and nutritional ecology [C] 1 New York : Chapman & Hall. 161-841
    [115]Piersma T , 1997.LindstromAl Rapid reversible changes in organsize as a component of adaptive behavior [J ] 1 Trends Ecol Evol, 12 : 134 - 1381
    [116] Bray GA. Afferent single regulating food intake [J] . Proc Nutr Soc, 2000,59(3):373-384.
    [117 ]Zhu JN, Zhang YP. Song YN, et al. Cerebellar interpositus nuclear and gastric vagal afferent inputs reach and converge onto glycemiasensitive neurons of the ventromedial hypothalamic nucleus in rats [J] . Neurosci Res, 2004, 48(8):405-417.
    
    [118] 荣杰,时浩,成龙.神经肽Y与能量平衡,安徽农业技术师范学院学报,1997 , 11 (4): 45-48
    [119]]Chen P, Williams SM, Grove KL, et all Melanocortin 4recep tor2mediated hyperphagia and activation of neuropep tide Yexp ression in the dorsomedial hypothalamus during lactation1 J Neurosci, 24 (22): 509125100
    [120] Campfield LA, Smith FJ. Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev, 2003, 83: 25-58.
    [121] Levin BE, Ambrose ADM, Vanessa HR. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am J Physiol Regul Integr Comp Physiol, 1999,276: R1223-R1231.
    [122]Zhu JN, Zhang YP, Song YN, et al. Cerebellar interpositus nuclear and gastric vagal afferent inputs reach and converge onto glycemia2sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res, 2004, 480 405-417.
    [123]Zhu JN, Yung WH, Chan YS, et al. The cerebellar2hypo2thalamic circuits: potential pathways underlying cerebellar involvement in somatic2 visceral integration. Brain Res Rev. 2006, 52: 93-106.
    [124]Raposinho PD,Pierroz DD,Broqua P,White RB,Pedrazzini T,Aubert ML,2001.Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia,hyperleptinemia,insulin resistance,and hypogonadism.Mol Cell Endocrinol.185:195-204.
    [125]Lee zl,effects of stimulatiom of the satiety and feeding centre on gastiric,cecal and rectal motility in the rat.Acta Med Oka 36:213,1982
    [126]李在琉 中山沃 刺激饱中枢和摄食中枢对迷走神经胃支离中性活动和胃运动的影响.延边医学院学报1983,6(1):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700