CuAO及其催化产物H_2O_2在光/暗调控气孔运动中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,植物体内重要信号分子过氧化氢(hydrogen peroxide,H_2O_2)的作用及其生成途径已成为植物细胞信号转导研究的重要问题。已有研究发现NADPH氧化酶催化产生的H_2O_2参与ABA及光/暗调控气孔运动,还有不少报道表明二胺/多胺氧化酶催化产生的H_2O_2在植物抗性反应、维管组织发育、细胞程序性死亡、侧根发生中发挥重要作用,最近又有文献报道铜胺氧化酶(copper amine oxidase,CuAO)催化产生的H_2O_2参与了ABA诱导的气孔关闭过程,但时至今日尚未见CuAO及其催化产物H_2O_2参与光/暗调控气孔运动的报道。本实验以蚕豆(Vicia faba L.)为材料,借助表皮条实验、药理学分析及激光共聚焦扫描显微镜技术,研究了CuAO及其催化产物H_2O_2在光/暗调控气孔运动中的作用,并对光/暗调控气孔运动中CuAO及其催化产物H_2O_2与另一重要气体信号分子NO的关系进行了初步探索。本研究对于进一步了解保卫细胞光/暗信号转导途径和机制有重要理论意义。
     主要实验结果如下:
     1.光下所试浓度CuAO抑制剂氨基胍(Aminoguanidine,AG)和2-溴乙胺(2-Bromoethylamine,BEA)对气孔开度无显著影响,但暗中显著促进气孔开放。此结果表明CuAO参与光/暗调控气孔运动过程,且暗示CuAO活性光下低而暗中高。
     2.现已明了CuAO催化腐胺(putrescine,Put)氧化降解产生H_2O_2,NH_3和4-氨基丁醛,后者再经几步反应生成γ-氨基丁酸(GABA)和琥珀酸(Succ)。我们发现光下CuAO催化产物H_2O_2显著促进气孔关闭,暗中则明显逆转AG、BEA促进气孔开放的作用,但CuAO其余催化产物NH_3,GABA和Succ无上述效应。这些结果表明,CuAO催化产物中仅H_2O_2参与光/暗调控气孔运动。
     3.由于Put为CuAO催化反应底物,因此暗中CuAO抑制剂促进气孔开放的效应也可能与Put增加有关。我们的结果证实,外源Put并无促进气孔开放的效应,可见CuAO抑制剂促进气孔开放与Put无关。
     4.借助H_2DCF-DA荧光探针和激光共聚焦显微镜检测内源H_2O_2水平的结果表明,暗确实诱导H_2O_2产生,而且暗诱导H_2O_2产生的效应被CuAO抑制剂AG、BEA阻止。此结果表明,暗确实通过CuAO途径诱导H_2O_2产生。
     5.借助DCF-2DA荧光探针和激光共聚焦显微镜检测内源NO水平的结果表明,暗和H_2O_2处理均诱导NO产生,而且暗诱导NO产生的效应可被CuAO抑制剂AG、BEA阻止。此结果表明,暗通过CuAO催化产生的H_2O_2诱导NO生成。
     综上所述,本研究的结果表明,光/暗通过调控CuAO活性影响保卫细胞H_2O_2水平进而调节NO合成,最终实现对气孔运动的调控。
Now,people show increasingly interest in the sources and the physiological roles of hydrogen peroxide(H_2O_2),which is an important plant signalling molecule.Previous studies proved that H_2O_2 generated by the plasma membrane NADPH oxidase was involved in abscisic acid(ABA)- and light/dark-regulated stomatal movement,and a lot of evidence indicated that H_2O_2,a catalysate of copper amine oxidase(CuAO) and Polyamine Oxidase(FAD-PAO),participated in many key plant physiological processes,such as plant defense reaction,development of vascular tissues, programmed cell death(PCD),occurrence of lateral root.Recent research reported that H_2O_2 generated by CuAO was involved in ABA-induced stomatal closure.However,the physiological roles of CuAO and its catalysate H_2O_2 in light/dark - regulated stomatal movement was still unclear. In the present study,using the abaxial epidermis of Vicia faba as materials,by means of the epidermal strip bioassay and the laser scanning confocal microscopy(LSCM),the roles of CuAO and its catalysate H_2O_2 in light/dark-regulated stomatal movement were investigated,and the relationship between H_2O_2 generated by CuAO and nitric oxide(NO),another important plant signalling molecule,was explored.The present results had an important theoretical significance for the further understanding of the guard cells signal transduction pathways and the mechanisms of responding to light/dark stimulus.
     The results were as follows:
     1.Aminoguanidine(AG) and 2-Bromoethylamine(BEA),which are the inhibitors of the CuAO, had no significant impacts on the stomatal aperture in light,but both could significantly prevent dark-induced stomata closure.The results indicated that CuAO involved in light/dark-regulated stomatal movement and the activity of CuAO seemed higher in dark than in light.
     2.The products from putrescine(Put) oxidation by CuAO include H_2O_2,ammonia(NH_3) and 4-aminobutanal.4-aminobutanal can be easily catalyzed toγ-aminobutyric acid(GABA),which is subsequently transaminated and oxidized to succinic acid(Succ).The present results suggested that only H_2O_2 had significant effects on stomatal aperture in light,and could reverse AG- and BEA-promoted stomatal opening in darkness.These results indicated that H_2O_2 generated by CuAO was involved in light/dark-regulated stomatal movement.
     3.Put is a substrate of CuAO,so CuAO inhibitors-induced stomatal opening might relate to the accumulation of Put.The present results showed that exogenous Put did not induce stomatal opening in darkness,showing that the effect of AG and BEA on stomatal opening is not related to the accumulation of Put.
     4.By means of LSCM based on H_2DCF-DA,a specific molecular probe of H_2O_2,we provided evidence that dark indeed induced the generation of endogenous H_2O_2 and the fluorescence derived by darkness was very striking compared with that in light condition.The striking fluorescence was prevented by AG and BEA,the inhibitors of CuAO,indicating that dark induced H_2O_2 generation could through CuAO pathway.
     5.By means of LSCM based on DCF-2DA,a specific molecular probe of NO,we provided evidence that both darkness and exogenous H_2O_2 induced NO increasing,and the effect of darkness were also suppressed by the inhibitors of CuAO,AG and BEA,suggesting that NO generated by darkness was dependent on H_2O_2 synthesis through CuAO pathway.
     In summary,the present results shown that light/dark adjusted the production of H_2O_2 by governing the activity of CuAO,and then regulated NO synthesis,finally regulating stomatal movement.
引文
[1]Zeiger E.The biology of stomatal guard cells[J].Annu Rev Plant physiol,1983,34:441-475.
    [2]Shinomura T,Nagatani A,Chory J,et al.The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A[J].Plant Physiology,1994,104:363-371.
    [3]Liscum E,Hangarter R P.Genetic evidence that the red-absorbing form of phytochrome B modulates gravitropism in Arabidopsis thaliana[J].Plant Physiology,1993,103:15-19.
    [4]Casal J J.Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis[J].Planta,1995,196:23-29.
    [5]Liscum E,Hangarter R P.Light-stimulated apical hook opening in wild-type Arabidopsis thaliana seedlings[J].Plant Physiology,1993,101:567-572.
    [6]Liscum E,Hangarter R P.Mutational analysis of blue-light sensing in Arabidopsis [J].Plant Cell Environment,1994,17:639-648.
    [7]Lin C,Robertson D E,Ahmad M,et al.Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1[J].Science,1995,269:968-970.
    [8]Sharkey T D,Raschke K.Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L[J].Plant Physiology,1981,68:1170-1174.
    [9]Kinoshita T,Shimazaki K.Blue light activates the plasma membrane H~+-ATPase by phosphorylation of the C-terminus in stomatal guard cells[J].The EMBO Journal,1999,18(20):5548-5558.
    [10]Assmann S M,Shimazaki K.The multisensory guard cell:stomatal responses to blue light and abscisic acid[J].Plant Physiology,1999,119:809-815.
    [11]Kim B C,Soh M S,Kang B J,et al.Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness [J].Plant journal,1998,15(1):61-68.
    [12]王艳,李韶山,张瑞凤,等.UV-B诱导的绿豆下胚轴原生质体收缩效应[J].激光生物学报,2000,9(2):95-96.
    [13]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004:18-21.
    [14]雍伟东,种康,许智宏,等.高等植物开花时间决定的基因调控研究[J].科学通报,2000,45(5):455-466.
    [15]Lawson T.Guard cell photosynthesis and stomatal function[J].New Phytologist,2009,181:13-34.
    [16]Assmann S M.Signal transduction in guard cells[J].Annual Review of Cell Biology,1993,9:345-375.
    [17]Outlaw W H.Integration of cellular and physiological functions of guard cells[J].Critical Reviews in Plant Science,2003,22:503-529.
    [18]Vavasseur A,Raghavendra A S.Guard cell metabolism and CO_2 sensing[J].New Phytologist,2005,165:665-682.
    [19]Shimazaki K-I,Doi M,Assmann S M,et al.Light regulation of stomatal movements[J].Annual Review of Plant Biology,2007,58:219-247.
    [20]Weyers J D B,Paterson N W.Plant hormones and the control of physiological processes[J].New Phytologist,2001,152:375-407.
    [21]Raghavendra A S.Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translocating ATPase[J].Plant,Cell and Environment,1990,13:105-110.
    [22]Schroeder J I,Allen G J,Hugouvieux V,et al.Guard cell signal transduction[J].Annual Review of Plant Physiology and Plant Molecule Biology,2001,52:627-658.
    [23]Buckley T N.The control of stomata by water balance[J].New Phytologist,2005,168(2):275-292.
    [24]孙大业,郭艳林,马力耕,等.细胞信号转导(第三版)[M].北京:科学出版社,2001:320-324.
    [25]Gilroy S,Read N D,Trewavas A J.Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure[J].Nature,1990,343:769-771.
    [26]Grabov A,Blatt M R.Membrane voltage initiates Ca~(2+) waves and potentiates Ca~(2+)increases with abscisic acid in stomatal guard cells[J].Proceedings of the National Academy of Sciences,1998,95:4778-4783.
    [27]Pei Z M,Murata Y,Benning G,et al.Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J].Nature,2000,406:731-734.
    [28]Bright J,Desikan R,Hancock J T,et al.ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H_2O_2 synthesis [J]. Plant journal, 2006,45:113-122.
    [29] Zeiger E, Talbott L D, Frechilla S, et al. The guard cell chloroplast: a perspective for the twenty-first century [J]. New Phytologist, 2002, 153: 415-424.
    [30] Tominaga M, Kinoshita T, Shimazaki K. Guard-cell chloroplasts provide ATP required for H~+ pumping in the plasma membrane and stomatal opening [J]. Plant Cell Physiology, 2001,42: 795-802.
    [31] Messinger S M, Buckley T N, Mott K A. Evidence for involvement of photosynthetic processes in the stomatal response to CO_2 [J]. Plant Physiology,2006, 140: 771-778.
    [32] Anthony J M, Dale S. Depletion of cytosolic free calcium induced by photosynthesis [J]. Nature, 1987, 326(26):397-399.
    [33] Blatt M R, Grabov A. Signal redundancy, gates and the integration in the control of ion channels for stomatal movement [J]. Journal of Experimental Botany, 1997, 48:529-537.
    [34] Cousson A, Cotelle V, Vavasseur A. Induction of stomatal closure by vanadate or a light/dark transition involves Ca~(2+)-Calmodulin-dependent protein phosphorylations [J]. Plant Physiology. 1995, 109:491-497.
    [35] She X P, Song X G, He J M. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba [J]. Acta Botanica Sinica, 2004,46(11):1292-1300.
    [36] Desikan R, Cheung M K, Clarke A, et al. Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum [J]. Functional Plant Biology, 2004, 31:913-920.
    [37] Desikan R, Cheung M-K, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells [J]. Journal of Experimental Botany, 2004, 55:205-212.
    [38] Song X G, She X P, Zhang B. Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis [J]. Physiologia Plantarum, 2008,132(4): 514-525.
    [39] Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance [J].Current Biology, 2005, 15:1196-1200.
    [40] Tiburcio A F, Altabella T, Borrell A. Polyamine metabolism and its regulation [J].Physiologia Plantarum, 1997,100: 664-674.
    [41] Kumar A, Altabella T, Taylor M A, et al. Recent advances in polyamine research [J]. Trends in Plant Science, 1997,2:124-130.
    [42] Galston A W. Polyamines as Modulators of Plant Development [J]. Biology Science, 1983, 33(6):382.
    [43] Rajam M V, Weinstein L H, Galston A W. Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis [J]. Proc. Natl. Acad. Sci. USA, 1985,82:6874-6878
    [44] Flores H E, Galston A W. Analysis of Polyamines in Higher Plants by High Performance Liquid Chromatography [J]. Plant Physiology, 1982, 69:701-706.
    [45] Tabor C W, Tabor H. Polyamines [J]. Annual Review of Biochemistry,1984.53:749-790.
    [46] Kumar A, TaylorM A, Arif S A M, et al. Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes [J].Plant J, 1996,9:147-158.
    [47] Watson M B, Malmberg R L. Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth [J]. Plant J,1998, 13:231-239.
    [48] Chatterjee S, Choudhan M M, Ghosh B. Changes in PA content during root and nodule growth of Phaseolus mungo [J]. Phytochemistry, 1983, 22:1553-1556.
    [49] Sawhney R K, Shekhawat N S, Galston A W. Polyamine levels as related to growth,differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa [J]. Plant Growth Regulation, 1985, 3:329-337.
    [50] Evans P T, Malmberg R L. Do polyamines have roles in plant development? [J].Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 235-269.
    [51] Tiburcio A F, Campos J L, Figueras X, et al. Recent advances in understanding polyamine functions during plant development [J]. Plant Growth Regulation, 1993,12:331-340.
    [52] Martin-Tanguy J. Conjugated polyamines and reproductive development:biochemical, molecular and physiological approaches [J]. Physiologia Plantarum, 1997,100:675-688.
    [53]Tassoni A,Van B M,Franceschetti M,et al.Ployamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development[J].Plant Physiology Biochemistry,2000,38(5):383-393.
    [54]陈学好,曾广文.黄瓜花性别分化与内源多胺的关系[J].植物生理与分子生物学学报,2002,28(1):17-22.
    [55]Couee I,Hummel I,Sulmon C,et al.Involvement of polyamines in root development[J].Plant Cell,Tissue and Organ Culture,2004,76:1-10.
    [56]Kakkar R K,Sawhney V K.Polyamine research in plants - a changing perspective [J].Physiologia Plantarum,2002,116(3):281-292.
    [57]de Mejia E G,Martinez-Resendiz V,Castano-Tostado E,et al.Effect of drought on polyamine metabolism,yield,protein and in vitro protein digestility in teoary (Phaseolus acutifolius L.) and common(Phaseolus vulgaris L.) bean seeds[J].Science of Food Agriculture,2003,83(10):1022-1030.
    [58]於丙军,吉晓佳,刘俊.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化[J].应用生态学报,2004,15(7):1223-1226.
    [59]焦彦生,郭世荣,李娟,等.钙调素拮抗剂W7对低氧胁迫下黄瓜幼苗根系生长和多胺动态变化的影响[J].应用与环境生物学报,2008,14(4):454-459.
    [60]Liu K,Fu H,Bei Q X,et al.Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements[J].Plant Physiology,2000,124:1315-1326.
    [61]Yoda H,Yamaguchi Y,Sano H.Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants[J].Plant Physiology,2003,132:1973-1981.
    [62]Rostogi R,Dulson J,Rothstein S J.Cloning of tomato(Lycopersicon esculentum Mill.) Arginine Decarboxylase gene and its expression during fruit ripening[J].Plant Physiology,1993,103:829-834.
    [63]Walden R,Corderiro A,Tiburcio A F.Polyamines:small molecules triggering pathways in plant growth and development[J].Plant Physiology,1997,113:1009-1013.
    [64]Mo H,Pua E C.Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard(Brassica juncea) in response to stress[J].Physiologia Plantarum,2002,114:439-449.
    [65] Rea G, de Pinto M C, Tavazza R, et al. Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants [J]. Plant Physiology, 2004,134:1414-1426.
    
    [66] Smith T A. Polyamines [J]. Annual Review of Plant Biology, 1985, 36:117-143.
    [67] Sebela M, Radova A, Angelini R, et al. FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants [J]. Plant Science, 2001,160: 197-207.
    
    [68] 何生根,黄学林,傅家瑞.植物的多胺氧化酶[J].植物生理学通讯,1998,34:213-218.
    [69] Cona A, Rea G, Angelini R, et al. Function of amine oxidases in plant development and defence [J]. Trends in Plant Science, 2006,11:80-88.
    [70] Kleutz M D, Adamsons K, Flynn J E. Optimized preparation and determination of pea seedling diamine oxidase [J]. Preparative Biochemistry, 1980,10(5): 615-631.
    [71] Federico R, Angelini R. Polyamine catabolism in plants. in: Slocum R D, Flores H E, Eds. Biochemistry and Physiology of Polyamines in Plants [M]. CRC Press,Boca Raton, 1991, pp:41-56.
    [72] McGuirl M A, McCahon C D, McKeown K A. Purification and characterization of pea seedling amine oxidase for crystallization studies [J]. Plant Physiology, 1994,104: 1205-1211
    [73] Tipping A J, McPherson M J. Cloning and molecular analysis of the pea seedling copper amine oxidase [J]. Journal of Biological Chemistry, 1995,270:16939-16946.
    [74] Rea G, Laurenzi M, Tranquilli E, et al. Developmentally and wound regulated expression of the gene encoding a cell wall copper amine oxidase in chickpea seedlings [J]. FEBS Lett., 1998,437(3): 177-182.
    [75] Rossi A, Petruzzelli R, Agro A F. cDNA-derived amino-acid sequence of lentil seedlings' amine oxidase [J]. FEBS Lett., 1992,301(3):253-257.
    [76] Moosavi-Movahedi A A, Amani M, Moosavi-Nejad S Z, et al. Thermal dissection of lentil {Lens culinaris) seedling amine oxidase domains by differential scanning calorimetry [J]. Bioscience, Biotechnology and Biochemistry, 2007, 71(7) :1644-1649.
    [77] Su G X, An Z F, Zhang W H, et al. Light promotes the synthesis of lignin through the production of H_2O_2 mediated by diamine oxidases in soybean hypocotyls [J].Journal of Plant Physiology, 2005,162(12):1297-1303.
    [78]Delis C,Dimou M,Flemetakis E,et al.A root- and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings[J].Journal of Experimental Botany,2006,57(1):101-111.
    [79]Moiler S G,McPherson M J.Developmental expression and biochemical analysis of the Arabidopsis atao 1 gene encoding an H_2O_2 - generating diamine oxidase[J].Plant Journal,1998,13:781-791.
    [80]Padiglia A,Medda R,Scanu T,et al.Structure and nucleotide sequence of Euphorbia characias copper/TPQ-containing amine oxidase gene[J].Journal of protein chemistry,2002,21(7):435-441.
    [81]Rea G,Metoui O,Infantino A,et al.Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion[J].Plant Physiology,2002,128:865-875.
    [82]Asthir B,Duffus C M,Smith R C,et al.Diamine oxidase is involved in H_2P_2production in the chalazal cells during barley grain filling[J].Joural of Experimental Botany,2002,53(369):677-682.
    [83]Bhatnagar P,Glasheen B M,Bains S K.Transgenic manipulation of the metabolism of polyamines in poplar cells[J].Plant Physiology,2001,125:2139-2153.
    [84]苏国兴,刘友良.高等植物体内的多胺分解代谢及其主要产物的生理作用[J].植物学通报,2005,22(4):408-418.
    [85]Smith T A.Purification and properties of the polyamine oxidase of barley plants[J].Phytochemistry,1972,11:899-910.
    [86]Smith T A.Polyamine oxidase(oat seedlings)[J].Methods Enzymol,1983,94:311-314.
    [87]Suzuki Y,Yanagisawa H.Purification and properties of maize polyamine oxidase:a flavoprotein[J].Plant & Cell Physiology,1980,21(6):1085-1094.
    [88]Chaudhuri M M,Ghost B.Purification and characterization of diamine oxidase from rice embryos[J].Phytochemistry,1984,23(2):241-243.
    [89]Tavladoraki P,Schinina M E,Cecconi F,et al.Maize polyamine oxidase:primary structure from protein and cDNA sequencing[J].FEBS Lett,1998,426(1):62-66.
    [90]Cohen S S.Polyamine oxidases and dehydrogenases,in:Cohen SS(lEd).A Guide to the Polyamines[M].University Press,New York,1998,pp.69-93.
    [91]Angelini R,Federico R,Bonfeute P.Maize polyamine oxidase:antibody production and ultrastructural localization[J].Journal of Plant Physiology,1995,145:686-692.
    [92]Laurenzi M,Rea G,Federico R,et al.De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl:a role in the photomodulation of growth and cell wall differentiation[J].Planta,1999,208:146-154.
    [93]Binda C,Coda A,Angelini R,et al.A 30 A long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase[J].Structure,1999,7(3):265-276.
    [94]Shelp B J,Watlon C S,Snedden W A.GABA shunt in developing soybean seeds is associated with hypoxia[J].Physiologia Plantarum,1995,94(2):219-228.
    [95]Bouche N,Fromm H.GABA in plants:just a metabolite?[J]Trends in Plant Science,2004,9:110-115.
    [96]苏国兴,董必慧,刘友良,等.γ-氨基丁酸在高等植物体内的代谢和功能[J].植物生理学通讯,2003,6:670-676.
    [97]苏国兴,刘友良.高等植物体内的多胺分解代谢及其主要产物的生理作用[J].植物学通报,2005,22(4):408-418.
    [98]Serraj R,Shelp B J,Sinclair T R.Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress[J].Physiologia Plantarum,1998,102:79-86.
    [99]Wallace W,Secor J,Schrader L E.Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature,darkness,or mechanical manipulation[J].Plant Physiology,1984,75:170-175.
    [100]Terano S,Suzuki Y.Formation of b-alanine from spermine and spermidine in maize shoots[J].Phytochemistry,1978,17(1):148-149.
    [101]Kuehn G D,Rodriguez-Garay B,Bagga S.Novel occurrence of uncommon polyamines in higher plants[J].Plant Physiology,1990,94:855-857.
    [102]Koc E C,Bagga S,Songstad D D,et al.Occurrence of uncommon polyamines in cultured tissues of maize[J].In Vitro Cellular & Developmental Biology-Plant,1998,34(3):252-255
    [103]Borrell A,Carbonell L,Farras R.Polyamines inhibit lipid peroxidation in senescing oat leaves[J].Physiologia Plantarum,1997,99(3):385-390.
    [104]Neill S J,Desikan R,Clarke A,et al.Hydrogen peroxide and nitric oxide as signalling molecules in plants[J].Journal of Experimental Botany,2002, 53(372):1237-1347.
    [105]Neill S J,Desikan R,Hancock J T.Hydrogen peroxide signalling[J].Current Opinion in Plant Biology,2002,5(5):388-395.
    [106]Apel K,Hirt H.Reactive oxygen species:metabolism,oxidative stress,and signal transduction[J].Annual Review of Plant Biology,2004,55:373-399.
    [107]Mittler R,Vanderauwera S,Gollery M,et al.Reactive oxygen gene network of plants[J].Trends in Plant Science,2004,9(10):490-498.
    [108]Yesbergenova Z,Yang G,Oron E,et al.The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid[J].Plant Journal,2005,42(6):862-876.
    [109]Allan C A,Fluhr R.Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells[J].The Plant Cell,1997,9(9):1559-1572.
    [110]Alvarez M E,Pennell R I,Meijer P J,et al.Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J].Cell,1998,92(6):773-784.
    [111]Bolwell G P.Role of active oxygen species and NO in plant defence responses[J].Current Opinion in Plant Biology,1999,2(4):287-294.
    [112]葛莘.高级植物分子生物学[M].北京:科学出版社,2004:300-301.
    [113]Auh C K,Murphy T M.Plasma membrane redox enzyme is involved in the synthesis of O_2~- and H_2O_2 by phytophthora elicitor-stimulated rose cells[J].Plant Physiology,1995,107:1241-1247.
    [114]Desikan R,Bumet E,Hancock J T,et al.Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures[J].Journal of Experimental Botany,1998,49:1767-1771.
    [115]Keller T,Damude H G,Wemer D,et al.A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca~(2+) binding motifs[J].Plant Cell,1998,10:255-266.
    [116]Torres M A,Dangl J L,Jones J D G.Arabidopsis gp91~(Phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J].Proc Natl Acad Sci USA,2002,99:517-522.
    [117]Bolwell G P,Butt V S,Davies D R,et al.The origin of the oxidative burst in plants[J].Free Radical Research,1995,23(6):517-532.
    [118]Otte O,Barz W.The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins[J].Planta,1996,200:238-246.
    [119]Hu X,Bidney D L,Yalpani N,et al.Overexpression of a gene encoding hydrogen Peroxide-generating oxalate oxidase evokes defense responses in sunflower[J].Plant Physiology,2003,133:170-181.
    [120]郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000,42(9):881-891.
    [121]Bowler C,Montagu V M,Inze D.Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.
    [122]吴顺,萧浪涛.植物体内活性氧代谢及其信号传导[J].湖南农业大学学报(自然科学版),2003,29(5):450-456.
    [123]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [124]McAinsh M R,Clayton H,Mansfield T A,et al.Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress[J].Plant Physiology,1996,111(4):1031-1042.
    [125]Lee S,Choi H,Sun S,et al.Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis[J].Plant Physiology,1999,121:147-152.
    [126]Zhang X,Zhang L,Dong F,et al.Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba[J].Plant Physiology,2001,126:1438-1448.
    [127]An Z F,Jing W,Liu Y,et al.Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba[J].Journal of Experimental Botany.2008,59(4):815-825.
    [128]Manthe B,Schulz M,Schnabl M.Effects of salicylic acid on growth and stomatal movements of Viciafaba L.:Evidence for salicylic acid metabolization[J].Journal of Chemical Ecology,1992,18(9):1525-1539.
    [129]Dong F C,Wang P T,Zhang L,et al.The role of hydrogen peroxide in salicylic acid-induced stomatal closure in vicia faba guard cells[J].Acta Phytophysiologica Sinica,2001,27(4):296-302.
    [130]Rüffer M,Steipe B,Zenk M H.Evidence against specific binding of salicylic acid to plant catalase[J].FEBS Lett.,1995,377(2):175-180.
    [131]Song X G,She X P,Guo L Y,et al.MAPK kinase and CDP kinase modulate hydrogen peroxide levels during dark-induced stomatal closure in guard cells of Vicia faba [J]. Botanical Studies, 2008,49(4):323-334.
    [132] She X P, Song X G. Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells [J]. Journal of Integrative Plant Biology, 2008, 50(12):1539-1548.
    [133] Murata Y, Pei Z M, Mori I C, et al. Abscisic acid activation of plasma membrane Ca~(2+) channels in guard cells Requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-I protein phosphatase 2C mutants [J]. Plant Cell, 2001, 13: 2513-2523.
    [134] Meinhard M, Grill E. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis [J]. FEBS Letters, 2001, 508(3), 443-446.
    [135] Song X G, She X P, He J M, et al. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba [J].Functional Plant Biology 2006, 33: 573-583.
    [136] Garcia A, Conzalez M C. Morphological marker for the early selection of drought-tolerant rice varieties [J]. Cultivate Tropical, 1997, 18(2): 47-50.
    [137] Gozzo F. Systemic acquired resistance in crop protection: from nature to a chemical approach [J]. Journal Agricultural Food Chemical, 2003, 51(16): 4487-4503.
    
    [138] Bradley D J, Kjellbom P, Lamb C J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response [J].Cell, 1992, 70: 21-30.
    [139] Levine A, Tenhaken R, Dixon R A, et al. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response [J]. Cell, 1994, 79:583-593.
    [140] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose [J]. Proc Natl Acad Sci USA,1998, 95(17): 10328-10333.
    [141] Delledonne M, Zeier J, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J]. Proc Natl Acad Sci U S A, 2001, 98(23):13454-13459.
    [142] Amirsadeghi S, Robson C A, McDonald A E, et al. Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules[J].Plant and Cell Physiology,2006,47(11):1509-1519.
    [143]Gechev T S,Breusegem V F,Stone J M,et al.Reactive oxygen species as signals that modulate plant stress responses and programmed cell death[J].BioEssays,2006,28(11):1091-1101.
    [144]Yoda H,Hiroi Y,Sano H.Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells[J].Plant Physiology,2006,142:193-206.
    [145]Angelini R,Tisi R,Rea G,et al.Involvement of Polyamine Oxidase in Wound Healing[J].Plant Physiology,2008,146:162-177.
    [146]Foreman J,Demidchik V,Bothwell J H F,et al.Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J].Nature,2003,422:442-446.
    [147]Su G X,Zhang W H,Liu Y L.Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean[J].Journal of Integrative Plant Biology.2006.48:426-432.
    [148]李建华,刘银谦,吕品,等.H_2O_2在黄瓜和绿豆下胚轴不定根形成中的作用[J].西北植物学报,2006,26(12):2506-2510.
    [149]Li SW,Xue LG;Xu S J,et al.Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber[J].Plant Growth Regulation,2007,52:173-180.
    [150]Mader M,Fussl R.Role of peroxidase in lignification of tobacco cells Ⅱ.Regulation by phenolic compounds[J].Plant Physiology,1982,70:1132-1134.
    [151]Potikha T S,Collins C C,Johnson D I,et al.The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers[J].Plant Physiology,1999,119:849-858.
    [152]Cona A,Cenci F,Cervelli M,et al.Polyamine oxidase,a hydrogen peroxide-producing enzyme,is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl[J].Plant Physiology,2003,131:803-813.
    [153]Paschalidis K A,Roubelakis-Angelakis K A.Sites and regulation of polyamine catabolism in the tobacco plant.Correlations with cell division/expansion,cell cycle progression,and vascular development[J].Plant Physiology,2005,138:2174-2184.
    [154]Fededco R,Angelini R.Occurrence of diamine oxidase in the apoplast of pea epicotyls[J].Planta,1986,167(2):300-302.
    [155]Tottempudi K.Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J].Plant Cell,1998,6(1):65-74.
    [156]Dat J F,Lopez-Delgado H,Foyer.C H,et al.Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seeslings[J].Plant Physiology,1998,116:1351-1357.
    [157]Desikan R,A-H-Mackerness S,Hancock J T,et al.Regulation of the Arabidopsis transcriptome by oxidative stress[J].Plant Physiology,2001,127:159-172.
    [158]Schwacke R,Hager H.Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca~(2+) and protein kinase activity[J].Planta,1992,187:136-141.
    [159]Kawano T,Pinontoan R,Uozumi N,et al.Aromatic monoamine-induced immediate oxidative burst leading to an increase in cytosolic Ca~(2+) concentration in tobacco suspension culture[J].Plant and Cell Physiology,2000,41(11):1251-1258.
    [160]Price A H,Taylor A,Ripley S J,et al.Oxidative signals in tobacco increase cytosolic calcium[J].Plant Cell,1994,6:1301-1310.
    [161]安国勇,宋纯鹏,张骁,等.过氧化氢对蚕豆气孔运动和质膜K~+通道的影响[J].植物生理学报,2000,26(5):458-464.
    [162]Miura Y,Yoshioda H,Doke N.An autophotographic determination of the active oxygen generation in potato tuber discs during hypersensitive responses to fungal infection or elicitor[J].Plant Science,1995,105:45-52.
    [163]Harding S A,Oh S H,Roberts D M.Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species[J].The EMBO Journal,1997,16(6):1137-1144.
    [164]Schopfer P,Plachy C,Frahry G.Release of reactive oxygen intermediates (superoxide radicals,hydrogen peroxide,and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light,gibberellin and abscisic acid[J].Plant Physiology,2001,125:1591-1602.
    [165]Agarwal S,Sairam R K,Srivastava G C,et al.Role of ABA,salicylic acid,calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings[J].Plant Science,2005,169(3):559-570.
    [166]Kuta D D,Gaivaronskaya L M.Ca~(2+) and reactive oxygen species are involved in the defense responses of rice callus culture to rice blast disease[J].African Journal of Biotechnology,2004,3:76-81.
    [167]Yang T,Poovaiah B W.Hydrogen peroxide homeostasis:Activation of plant catalase by calcium/calmodulin[J].Proc Natl Acad Sci USA,2002,99(6):4097-4102.
    [168]韩燕.细胞分裂素和生长素对UV-B诱导气孔关闭的效应及其机制研究[D]。西安,陕西师范大学,2007
    [169]Ross C,Küpper F C,Jacobs R S.Involvement of reactive oxygen species and reactive nitrogen species in the wound response of Dasycladus vermicularis [J].Chemistry and Biology,2006,13:353-364.
    [170]Clark D,Dumer J,Navarre D A,et al.Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase[J].Molecular plant-microbe interactions,2000,13(12):1380-1384.
    [171]Lum H K,Butt Y K C,Lo S C L.Hydrogen peroxide induces a rapid production of nitric oxide in mung bean(Phaseolus aureus)[J].Nitric Oxide,2002,6(2):205-213.
    [172]刘新,张蜀秋,娄成后.气孔运动调控中过氧化氢和一氧化氮信号途径的交叉作用[J].自然科学进展,2003a,13(4):355-358.
    [173]Xu H,He J M,Huang C,et al.Relationship of Indirect Effects of UV-B Radiation on Stomatal Movement of Vicia faba Leaves with Nitric Oxide and Hydrogen Peroxide[J].西北植物学报,2006,26(1):78-85.
    [174]吕东,张晓,江静,等.NO可能作为H202的下游信号介导ABA诱导的蚕豆气孔关闭[J].植物生理与分子生物学学报,2005,31(1):62-70.
    [175]Desikan R,Clarke A,Hancock J T,et al.Short communication.H_2O_2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures[J].Journal of Experimental Botany,1999,50:1863-1866.
    [176]Desikan R,Hancock J T,Ichimura K,et al.Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6[J].Plant Physiology,2001,126:1579-1587.
    [177]Grant J J,Yun B W,Loake G J.Oxidative burst and cognate redox signalling reported by luciferase imaging:identification of a signal network that functions independently of ethylene,SA and Me-JA but is dependent on MAPKK activity[J].Plant journal,2000,24(5):569-582.
    [178]Samuel M A,Miles G P,Ellis B E.Ozone treatment rapidly activates MAP kinase signalling in plants[J].Plant Journal,2000,22(4):367-376.
    [179]Kovtun Y,Chiu W L,Tena G,et al.Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants[J].Proc Natl Acad Sci USA,2000,97(6):2940-2945.
    [180]宋喜贵.过氧化氢和一氧化氮在光/暗于激素调控蚕豆气孔运动中的作用及相互关系研究[D].西安,陕西师范大学,2005.
    [181]Longu S,Anna M,Alessandra P,et al.Mechanism-based inactivators of plant copper/quinine containing amine oxidases[J].Phytochemistry,2005,66:1751-1758.
    [182]Medda R,Padiglia A,Pedersen J Z,et al.Inhibition of copper amine oxidase by haloamines:a killer product mechanism[J].Biochemistry,1997,36:2595-2602.
    [183]黄爱霞.蚕豆保卫细胞PEG6000胁迫信号转导研究[D].西安,陕西师范大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700