基于双边滤波的图像去噪及锐化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数码设备的普及,数字图像已成为人们获取信息的主要手段。然而在图像获取、处理、压缩、传输、存储以及复制的过程中,不可避免地会引入噪声,从而降低图像质量。图像去噪的主要目标是滤除其中的随机噪声,同时尽可能地保留图像细节信息和避免添加滤波失真。
     双边滤波由于其算法结构简单,计算复杂度低且易于工程实现等特点,近年来得到了广泛的关注。本论文在分析双边滤波(BF)内在特性的基础上充分挖掘双边滤波的潜力,通过与小波分析、主成份分析(PCA)技术以及图论等结合,对算法进行改进,使之适合于不同类型图像、不同类型噪声去噪以及对多模图像的图像锐化。具体的研究工作可概括如下:
     针对灰度图像的高斯型随机噪声去除,提出了一种自交叉双边滤波算法。借鉴交叉双边滤波算法中灰度测度权重在参考图像中计算这一思想,将带噪图像首先通过预滤波器得到预降噪图像,并令其作为参考图像计算灰度测度权重,再在原始带噪图像上面运用交叉双边滤波去噪。理论分析和仿真实验结果表明,预滤波器采用转换域去噪算法时,能很好地克服双边滤波和转换域去噪算法在噪声去除和伪像抑制方面的内在缺陷,最终结果在客观评价指标方面和主观视觉质量方面不仅高于原始BF算法,同时也高于预滤波器的输出参考图像。在比较离散小波变换和非下采样小波变换后,本文采用非下采样小波阈值去噪作为预滤波器。在不考虑计算时间的场合下,还可采用曲线波阈值去噪作为预滤波器,并基于非邻域均值滤波(NL-means)算法中图像子块相似性的思想,以图像子块间相似性代替单点像素间相似性的自交叉双边滤波算法能更进一步提高图像峰值信噪比(PSNR)和消除曲线波阈值去噪所产生的划痕状伪像。
     针对彩色图像和多模图像的高斯型随机噪声去除,提出一种结合PCA的多模图像自交叉双边滤波去噪算法。利用PCA,首先提取出所有图像分量的主成份。由于主成份是各分量的一个线性组合,因此主成份分量所含噪声低于各原始分量。再对主成份分量施加预滤波,得到参考图像,继而对所有分量进行交叉双边滤波得到最终降噪输出。实验表明,各种预滤波器中非下采样小波(UWT)阈值去噪适用于大多数的多模图像,在PSNR和主观视觉方面均能获得满意的结果。常见的噪声类型除加性高斯白噪声以外,还有脉冲噪声。针对脉冲噪声中的
     一般形式——随机值脉冲噪声和加性高斯噪声的混合噪声模型,提出一种基于谱图理论的图像去噪滤波器。从数据聚类角度出发,利用图的邻接矩阵,基于双边滤波中几何测度权重的思想,对图的每个节点赋予权重,构造新的内聚度方程,计算各像素点对于主簇的隶属程度,最后输出邻域窗口像素主簇的质心得到去噪后的图像。算法性能还可通过滤波器叠加的方式得到进一步提升。实验表明,算法在PSNR值和主观视觉质量上优于现有的混合噪声去噪算法。
     除图像去噪以外,图像锐化也是提高图像质量的方法之一。通过在非锐化掩模(UM)中引入不同形式的灰度测度权重,对非锐化掩模实施非线性化处理,实现了对强弱边缘的不同滤波操作。针对多模图像的特点,指出了多模图像的锐化目标,提出了一种针对多模图像的边缘保存交叉锐化算法。实验结果表明,算法具有很好的主观视觉质量,而且在增强细节的同时不会增强噪声和产生光晕现象。针对带噪多模图像,采用先去噪、再锐化、再去噪的3级滤波器级联方式进行增强。去噪方面将自交叉双边滤波结合到Dual Bilateral Filter (Dual BF),提出一种应用于多模图像去噪的交叉Dual BF算法。仿真实验表明,该级联滤波器能够充分利用多模图像的特点,有效地滤除噪声和增强图像边缘,并消除围绕边缘的噪声扰动。
     在采用相干光源照明的常规4f光学系统中,输出图像极易受到镜头及CCD上的灰尘污点的影响从而造成图像降质。针对该问题,将图像降质原因划分为加性随机噪声、污点、光源不均匀性影响以及系统的低通特性,从而提出一种简化系统模型。基于该模型,利用系统输入全白图像时的输出结果作为先验信息,在假定一次实验中污点和光源保持不变的基础上,确定其分布。基于该先验信息,提出一种邻域区域自适应的双边滤波算法,可以实现同时去除噪声和污点的目的。基于光学实拍图像和人工合成图像的实验表明,算法能够在保持图像细节的同时较好地去除噪声,进而恢复图像,实现主观视觉质量和PSNR值的提高;同时在污点污染严重的情况下算法仍然具有较好的鲁棒性。
With the popularization of digital equipment, digital images have become the main means of access to information. However, digital images are often corrupted by noise during acquisition, processing, compression, transmission, storage, and reproduction, any of which may result into a degraded image quality. The goal of denoising is to remove the noise while preserving, as much as possible, the signal features and make-up, if necessary, the filtering distortion, also known as artifact.
     Bilateral filter has received extensive concern in recent years due to its simplicity of algorithm structure, economical computational complexity and easiness of implementation. After theoretical analysis of intrinsic properties of bilateral filter, the potential of bilateral filter is fully exploited. By introducing the wavelet, principal component analysis (PCA) technology and graph theory into bilateral filter, the bilateral filtering based denoising algorithm is then improved in order to be fit for different types of images and remove different types of noise. In addition, the sharpening algorithm for multi-modal images can also be improved by employing the concept of bilateral filtering. The main results obtained in this dissertation can be summarized as follows:
     For Gaussian random noise removal in gray-scale image, inspired by the principle of cross bilateral filter, in which the radiometric similarity is calculated in the reference image instead of in the noisy one, a joint non-linear filter which can be called as self-cross bilateral filter (SCBF) is proposed. The noisy image is first inputted into a preliminary filter to obtain a pre-denoised image. Then the original noisy image is denoised by the cross bilateral filter using the pre-denoised output as the reference image. Theoretical analysis and simulation experiment results show that if the transform domain denoising algorithm is adopted in the preliminary filter, the inherent defects of bilateral filter and transform domain denoising algorithm are suppressed in the aspects of noisy removal and artifact restraint, and their advantages are enhanced. The final output has higher quality than the outputs of both the original bilateral filter and the preliminary filter both in objective and subjective criteria. After comparing the discrete wavelet transform (DWT) and the undecimated wavelet transform (UWT), we choose the UWT thresholding to be the preliminary filter in this dissertation. In the case of not considering calculating time consumption, the curvelet thresholding can also be used as the preliminary filter and the idea of patch similarity in NL-means algorithm can be introduced into the calculation of radiometric weight to replace the single pixel similarity in bilateral filter for suppressing the scratch shaped artifacts produced by the curvelet thresholding and improving the PSNR value further.
     For Gaussian random noise removal in color image and multi-modal images, a PCA based SCBF is proposed. First, the PCA is applied to all the components of input image for extracting the principal component (monochromatic image). Since the principal component is the linear combination of all the components, noise is expected to be relatively reduced in this monochromatic image. Next, the principal component is properly smoothed by a preliminary filter and the output is regarded as a reference image. Finally, the SCBF with the smoothed principal component is applied to all the image components to get the final outputs. The experiment results show that among some preliminary filters, the UWT thresholding is useful for effective denoising of various multi-modal images. The results are shown to be satisfactory both from the aspects of PSNR value and visual quality.
     In addition to additive white Gaussian noise (AWGN), the impulse noise removal is also a common task in denoising. For the removing of mixture of Gaussian and random impulse noise– a general type of impulse noise other than the salt and pepper noise, a graph-spectral method based denoising filter is proposed from the viewpoint of data clustering. By using the adjacency matrix in graph, motivated by the idea of geometric distance in bilateral filter, each node is given a geometric weight, and a new cohesiveness equation is then constructed. By calculating the membership of the cohesiveness equation, the most dominant cluster is extracted from the set of pixels in each window and the centroid of those pixels values is outputted as the denoised image. Denoising ability can be further improved by cascading some filters. Experiment results show that the proposed method outperforms the existing mixture noise removal algorithms in term of PSNR value and visual quality.
     Except for image denoising, image sharpening is also a commonly used way to improve image quality. By introducing different form of radiometric weight into the unsharp masking (UM), the UM is nonlinearized to achieve different filtering purposes for edges with different extent of sharpness. Based on the characteristics of multi-modal images, the goal of multi-modal images sharpening is discussed, an edge-preserving cross-sharpening algorithm for multi-modal images is then proposed. It is shown by the experiment results that the proposed method can make satisfactory visual quality and enhance the details while not boost up noise and produce halos around large edges. For the noisy multi-modal images sharpening, a cascade filtering framework with three steps of denoising-sharpening-denoising is proposed. In the step of denoising, by combining the SCBF with dual BF, a cross dual BF for multi-modal images is proposed. Experiment results show that the cascade filtering framework can take full advantage of the characteristics of multi-modal images to effectively remove noise, enhance the edges and eliminate the noise disturbance around the edges.
     In an optical 4f system with coherent illumination source, output images are easily contaminated by dusts and spots in the surface of lens and CCD. With the image degradation factors being classified by additive stochastic noise, spots, illumination non-uniformity and system low-pass characterization, a simplified model is then proposed. Based on this model, the output result is used as a priori information when the input is a full white image to calculate the distribution of spots and illumination non-uniformity of which stabilization is assumed in an experiment. An improved neighborhood shape adapted bilateral filter is therefore introduced to denoise and remove spots. It can be shown by the optical and synthetic image experiments that, the proposed method can effectively reduce noise and restore image with edge sharpness being preserved. The robust characterization of the proposed method is embodied by the simulation results even under serious spot-contamination circumstances.
引文
[1] R. Costantini, S. Susstrunk. Virtual sensor design[C]. Proceedings. SPIE - The International Society for Optical Engineering, San Jose, CA, United States: 2004: 408-419.
    [2] R. C. Gonzalez, R. E. Woods. Digital Image Processing (Second Edition)[M]. Beijing: Publishing House of Electronics Industry, 2002.
    [3] A. K. Jain. Fundamentals of Digital Image Processing[M]. Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [4] P. Comon, C. Jutten, J. Herault. Blind separation of sources, part II: Problems statement[J]. Signal Processing, 1991, 24 (1): 11-20.
    [5] C. Jutten, J. Herault. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24 (1): 1-10.
    [6] P. Comon. Independent component analysis, A new concept?[J]. Signal Processing, 1994, 36 (3): 287-314.
    [7] D. L. Donoho, I. M. Johnstone. Threshold selection for wavelet shrinkage of noisy data[C]. Proceedings. The 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, 1994: vol.1: A24-A25.
    [8] D. L. Donoho, I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81 (3): 425-455.
    [9] D. L. Donoho. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41 (3): 613-627.
    [10] T. P. Y. Yu, A. Stoschek, D. L. Donoho. Translation- and direction-invariant denoising of 2-D and 3-D images: experience and algorithms[C]. The 4th Conference on Wavelet Applications in Signal and Image Processing, 1996: 608-619.
    [11] M. Lindenbaum, M. Fischer, A. Bruckstein. On Gabor's contribution to image enhancement[J]. Pattern Recognition, 1994, 27 (1): 1-8.
    [12] J. S. Lee. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2 (2): 165-168.
    [13] A. R. Rostampour, A. P. Reeves. 2D median filtering and pseudo median filtering[C]. Proceedings. The 20th Southeastern Symposium on System Theory Charlotte, NC, USA: IEEE Comput. Soc. Press, 1988: 554-557.
    [14] A. C. Bovik, T. S. Huang, D. C. Munson. A generalization of median filtering using linearcombinations of order statistics[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1983, 31 (6): 1342-1350.
    [15] H. M. Lin, A. N. Willson, Jr. Median filters with adaptive length[J]. IEEE Transactions on Circuits and Systems, 1988, 35 (6): 675-690.
    [16] R. C. Hardie, K. E. Barner. Rank conditioned rank selection filters for signal restoration[J]. IEEE Transactions on Image Processing, 1994, 3 (2): 192-206.
    [17] G. Pok, J. C. Liu, A. S. Nair. Selective removal of impulse noise based on homogeneity level information[J]. IEEE Transactions on Image Processing, 2003, 12 (1): 85-92.
    [18] H. Hwang, R. A. Haddad. Adaptive median filters: new algorithms and results[J]. IEEE Transactions on Image Processing, 1995, 4 (4): 499-502.
    [19] G. R. Arce, R. E. Foster. Detail-preserving ranked-order based filters for image processing[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37 (1): 83-98.
    [20] T. Loupas, W. N. McDicken, P. L. Allan. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[J]. IEEE Transactions on Circuits and Systems, 1989, 36 (1): 129-135.
    [21] Y. Ruikang, Y. Lin, M. Gabbouj, J. Astola, et al. Optimal weighted median filtering under structural constraints[J]. IEEE Transactions on Signal Processing, 1995, 43 (3): 591-604.
    [22] L. P. Yaroslavsky. Digital Picture Processing–An Introduction[M]. Berlin, Heidelberg: Springer Verlag, 1985.
    [23] S. M. Smith, J. M. Brady. SUSAN - a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23 (1): 45-78.
    [24] C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images[C]. The 6th International Conference on Computer Vision, 1998: 839-846.
    [25] J. Xie, P. A. Heng. Color image diffusion using adaptive bilateral filter[C]. The 27th Annual International Conference on Engineering in Medicine and Biology Society, Shanghai, China: 2005: 3433-3436.
    [26] H. Phelippeau, H. Talbot, M. Akil, S. Bara. Shot noise adaptive bilateral filter[C]. The 9th International Conference on Signal Processing (ICSP 2008), 2008: 864-867.
    [27] B. Zhang, J. P. Allebach. Adaptive bilateral filter for sharpness enhancement and noise removal[C]. IEEE International Conference on Image Processing (ICIP 2007), 2007: IV: 417-420.
    [28] B. Zhang, J. P. Allebach. Adaptive bilateral filter for sharpness enhancement and noise removal[J]. IEEE Transactions on Image Processing, 2008, 17 (5): 664-678.
    [29] M. Zhang, B. K. Gunturk. Multiresolution bilateral filtering for image denoising[J]. IEEETransactions on Image Processing, 2008, 17 (12): 2324-2333.
    [30]蔡超,丁明跃,周成平,张天序.小波域中的双边滤波[J].电子学报, 2004, (1): 128-131.
    [31] C. Jian, K. Inoue, K. Hara, K. Urahama. Fixed-coefficient iterative bilateral filters for graph-based image processing[C]. The 3rd Pacific-Rim Symposium on Image and Video Technology (PSIVT 2009), Tokyo, Japan: 2009: 473-484.
    [32] J. Chang, K. Inoue, K. Urahama. Use of bilateral filters for super-resolution of single image with iterations for minimizing reconstruction errors[J]. Journal of the Institute of Image Information and Television Engineers, 2009: 1888-1891.
    [33] A. Buades, B. Coll, J. M. Morel. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling and Simulation, 2005, 4 (2): 490-530.
    [34] A. Buades, B. Coll, J. M. Morel. The staircasing effect in neighborhood filters and its solution[J]. IEEE Transactions on Image Processing, 2006, 15 (6): 1499-1505.
    [35] A. Buades, B. Coll, J. M. Morel. Nonlocal image and movie denoising[J]. International Journal of Computer Vision, 2008, 76 (2): 123-139.
    [36] A. Buades, B. Coll, J. M. Morel. A non-local algorithm for image denoising[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 2005: vol. 2: 60-65.
    [37] M. Mahmoudi, G. Sapiro. Fast image and video denoising via nonlocal means of similar neighborhoods[J]. IEEE Signal Processing Letters, 2005, 12 (12): 839-842.
    [38] P. Coupe, P. Yger, C. Barillot. Fast non local means denoising for 3D MR images[C]. Copenhagen, Denmark: Springer Verlag, 2006: 4191 NCS - II: 33-40.
    [39] J. Wang, Y. Guo, Y. Ying, Y. Liu, et al. Fast non-local algorithm for image denoising[C]. IEEE International Conference on Image Processing, 2006: 1429-1432.
    [40] Y. Liu, J. Wang, X. Chen, Y. Guo, et al. A robust and fast non-local means algorithm for image denoising[J]. Journal of Computer Science and Technology, 2008, 23 (2): 270-279.
    [41] W. Souidene, A. Beghdadi, K. Abed-Meraim. Image denoising in the transformed domain using non local neighborhoods[C]. Proceedings. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), 2006: II: 869-872.
    [42] H. Takeda, S. Farsiu, P. Milanfar. Image denoising by adaptive kernel regression[C]. Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, 2005: 1660-1665.
    [43] H. Takeda, S. Farsiu, P. Milanfar. Regularized kernel regression for image deblurring[C]. The 40th Asilomar Conference on Signals, Systems and Computers (ACSSC '06), 2006: 1914-1918.
    [44] H. Takeda, S. Farsiu, P. Milanfar. Robust kernel regression for restoration and reconstruction of images from sparse noisy data[C]. IEEE International Conference on Image Processing, 2006: 1257-1260.
    [45] H. Takeda, S. Farsiu, P. Milanfar. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16 (2): 349-366.
    [46] H. Takeda, S. Farsiu, P. Milanfar. Deblurring using regularized locally adaptive kernel regression[J]. IEEE Transactions on Image Processing, 2008, 17 (4): 550-563.
    [47] H. Takeda, P. van Beek, P. Milanfar. Spatio-temporal video interpolation and denoising using motion-assisted steering kernel (MASK) regression[C]. The 15th IEEE International Conference on Image Processing (ICIP 2008), 2008: 637-640.
    [48] A. Hyvarinen, E. Oja, P. Hoyer, J. Hurri. Image feature extraction by sparse coding and independent component analysis[C]. The 14th International Conference on Pattern Recognition, Brisbane, Australia: 1998: 1268-1273.
    [49] A. Jung. An introduction to a new data analysis tool: independent component analysis[C]. Proceedings. Workshop GK "Nonlinearity", Regensburg: 2001: 1–16.
    [50]谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报, 2002, 7 (3): 209-217.
    [51] H. Choi, R. Baraniuk. Analysis of wavelet-domain Wiener filters[C]. Proceedings. The IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1998: 613-616.
    [52] H. Zhang, A. Nosratinia, R. O. Wells, Jr. Image denoising via wavelet-domain spatially adaptive FIR Wiener filtering[C]. Proceedings. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '00), 2000: 2179-2182.
    [53] V. Strela. Denoising via block Wiener filtering in wavelet domain[C]. The 3rd European Congress of Mathematics (3ecm), Barcelona, Spain: 2001: 619-625.
    [54] S. Mallat, W. L. Hwang. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38 (2): 617-643.
    [55] S. Mallat, S. Zhong. Signal characterization from multiscale edges[C]. Proceedings. The 10th International Conference on Pattern Recognition, 1990: 891-896.
    [56] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674-693.
    [57] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard. Wavelet shrinkage: asymptopia?[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1995, 57 (2): 301-369.
    [58] E. P. Simoncelli, E. H. Adelson. Noise removal via Bayesian wavelet coring[C]. Proceedings. International Conference on Image Processing, 1996: 379-382.
    [59] H. A. Chipman, E. D. Kolaczyk, R. E. McCulloch. Adaptive Bayesian wavelet shrinkage[J]. Journal of the American Statistical Association, 1997, 92 (440): 1413-1421.
    [60] G. P. Nason. Wavelet shrinkage using cross-validation[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58 (2): 463-479.
    [61] N. Weyrich, G. T. Warhola. Wavelet shrinkage and generalized cross validation for image denoising[J]. IEEE Transactions on Image Processing, 1998, 7 (1): 82-90.
    [62] J. Liu, P. Moulin. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients[J]. IEEE Transactions on Image Processing, 2001, 10 (11): 1647-1658.
    [63] S. G. Chang, Y. Bin, M. Vetterli. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9 (9): 1532-1546.
    [64] S. G. Chang, Y. Bin, M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[C]. International Conference on Image Processing (ICIP 98), 1998: 535-539.
    [65] P. Moulin, L. Juan. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors[J]. IEEE Transactions on Information Theory, 1999, 45 (3): 909-919.
    [66] M. Kivanc Mihcak, I. Kozintsev, K. Ramchandran, P. Moulin. Low-complexity image denoising based on statistical modeling of wavelet coefficients[J]. IEEE Signal Processing Letters, 1999, 6 (12): 300-303.
    [67] J. Portilla, V. Strela, M. J. Wainwright, E. P. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12 (11): 1338-1351.
    [68] J. Liu, P. Moulin. Analysis of interscale and intrascale dependencies between image wavelet coefficients[C]. Proceedings. International Conference on Image Processing, 2000: 669-672.
    [69] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients[J]. IEEE Transactions on Signal Processing, 1993, 41 (12): 3445-3462.
    [70] M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1998, 46 (4): 886-902.
    [71] L. Sendur, I. W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50 (11): 2744-2756.
    [72] Z. Cai, T. H. Cheng, C. Lu, K. R. Subramanian. Efficient wavelet-based image denoising algorithm[J]. Electronics Letters, 2001, 37 (11): 683-685.
    [73] M. Malfait, D. Roose. Wavelet-based image denoising using a Markov random field a priori model[J]. IEEE Transactions on Image Processing, 1997, 6 (4): 549-565.
    [74] A. Pizurica, W. Philips, I. Lemahieu, M. Acheroy. A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising[J]. IEEE Transactions on Image Processing, 2002, 11 (5): 545-557.
    [75] S. G. Chang, Y. Bin, M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Transactions on Image Processing, 2000, 9 (9): 1522-1531.
    [76] R. R. Coifman, D. L. Donoho. Translation invariant de-noising, in wavelets and statistics[J]. Springer Lecture Notes in Statistics 103, 1994: 125-150.
    [77] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, et al. Noise reduction using an undecimated discrete wavelet transform[J]. IEEE Signal Processing Letters, 1996, 3 (1): 10-12.
    [78] W. Zhou, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600-612.
    [79] P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7): 629-639.
    [80] G. Sapiro, D. L. Ringach. Anisotropic diffusion of color images[J]. Human Vision and Electronic Imaging, 1996, 2657: 471-482.
    [81] Z. Lin, Q. Shi. An anisotropic diffusion PDE for noise reduction and thin edge preservation[C]. Proceedings. International Conference on Image Analysis and Processing, 1999: 102-107.
    [82] N. Sochen, R. Kimmel, R. Malladi. A general framework for low level vision[J]. IEEE Transactions on Image Processing, 1998, 7 (3): 310-318.
    [83] R. L. Lagendijk, J. Biemond, D. E. Boekee. Regularized iterative image restoration with ringing reduction[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36 (12): 1874-1888.
    [84] M. J. Black, G. Sapiro. Edges as outliers: anisotropic smoothing using local image statistics[J]. Scale-Space Theories in Computer Vision, 1999, 1682: 259-270.
    [85] M. E. Zervakis. Nonlinear image restoration techniques[D]. Ph.D Thesis. Toronto, Canada: University of Toronto, 1990.
    [86]靳明,宋建中.一种自适应的图像双边滤波方法[J].光电工程, 2004, (7): 65-68.
    [87] M. Elad. On the origin of the bilateral filter and ways to improve it[J]. IEEE Transactions on Image Processing, 2002, 11 (10): 1141-1151.
    [88] D. Barash. Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (6): 844-847.
    [89] C. Jian, K. Urahama. Proposal of bilateral filters invariant to rotation of images[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (Japanese Edition), 2009, Vol.J92-A (4): 267-270.
    [90] M. J. Black, G. Sapiro, D. H. Marimont, D. Heeger. Robust anisotropic diffusion[J]. IEEE Transactions on Image Processing, 1998, 7 (3): 421-432.
    [91] J. Canny. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8 (6): 679-698.
    [92] P. Saint-Marc, J. S. Chen, G. Medioni. Adaptive smoothing: a general tool for early vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13 (6): 514-529.
    [93] E. Eisemann, F. Durand. Flash photography enhancement via intrinsic relighting[C]. Annual Symposium of the ACM SIGGRAPH, Grenoble, France: Assoc Computing Machinery, 2004: 673-678.
    [94] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, et al. Digital photography with flash and no-flash image pairs[C]. Annual Symposium of the ACM SIGGRAPH, Grenoble, France: Assoc Computing Machinery, 2004: 664-672.
    [95]龙瑞麟.高维小波分析[M].北京:世界图书出版公司, 1995.
    [96] Y. S. Xu, J. B. Weaver, D. M. Healy, J. Lu. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994, 3 (6): 747-758.
    [97] J. P. Antoine, P. Carrette, R. Murenzi, B. Piette. Image-analysis with 2-dimensional continuous wavelet transform[J]. Signal Processing, 1993, 31 (3): 241-272.
    [98] A. Gyaourova, C. Kamath, I. K. Fodor. Undecimated wavelet transforms for image de-noising[R]. Technical report, Lawrence Livermore National Laboratory (LLNL), 2002.
    [99] J. L. Starck, J. Fadili, F. Murtagh. The undecimated wavelet decomposition and its reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16 (2): 297-309.
    [100] J. L. Starck, M. Elad, D. Donoho. Redundant multiscale transforms and their application for morphological component separation[M]. Advances in Imaging and Electron Physics. Elsevier, 2004.
    [101] M. J. Shensa. The discrete wavelet transform: wedding the a trous and Mallat algorithms[J].IEEE Transactions on Signal Processing, 1992, 40 (10): 2464-2482.
    [102] J. C. Pesquet, H. Krim, H. Carfantan. Time-invariant orthonormal wavelet representations[J]. IEEE Transactions on Signal Processing, 1996, 44 (8): 1964-1970.
    [103] E. J. Candès. Ridgelet: theory and applications[D]. Ph. D Thesis. Stanford University, 1998.
    [104] D. L. Donoho. Orthonormal ridgelets and linear singularities[R]. Technical report, Stanford University, 1998.
    [105] D. L. Donoho. Ridge functions and orthonormal ridgelets[R]. Technical report, Stanford University, 1998.
    [106] E. J. Candès, D. L. Donoho. Curvelets: A surprisingly effective nonadaptive representation for objects with edges[R]. Technical report, Stanford University, 1999.
    [107] E. J. Candès, D. L. Donoho. Curvelets[R]. Technical report, Stanford University, 1999.
    [108] D. L. Donoho, M. R. Ducan. Digital curvelet transform: strategy, implementation and experiments[R]. Technical report, Stanford University, 1999.
    [109] E. J. Candès, D. L. Donoho. Continuous curvelet transform: I. Resolution of the wavefront set[R]. Technical report, Stanford University, 2002.
    [110] E. J. Candès, D. L. Donoho. Continuous curvelet transform: II. Discretization into frames[R]. Technical report, Stanford University, 2002.
    [111] E. J. Candès, D. L. Donoho. New tight frames of curvelets and optimal representations of objects with piecewise C-2 singularities[J]. Communications on Pure and Applied Mathematics, 2004, 57 (2): 219-266.
    [112] E. J. Candès, D. L. Donoho. DCTvUSFFT: Digital curvelet transforms via unequispaced fast Fourier transforms[R]. Technical report, California Institute of technology, 2004.
    [113] E. J. Candès, L. Demant, D. L. Donoho, L. X. Ying. Fast discrete curvelet transforms[R]. Technical report, Applied and Computational Mathematics, California Institute of technology, 2005.
    [114]焦李成,谭山.图像多尺度几何分析:回顾和展望[J].电子学报, 2003, 31 (12): 1975-1981.
    [115]焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报, 2005, 22 (5): 761-773.
    [116]焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报, 2006, 29 (2): 177-193.
    [117] J. L. Starck, E. J. Candes, D. L. Donoho. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing, 2002, 11 (6): 670-684.
    [118] S. Peng, L. Lucke. Multi-level adaptive fuzzy filter for mixed noise removal[C]. IEEEInternational Symposium on Circuits and Systems, 1995: 1524-1527.
    [119] H. Xu, G. Zhu, H. Peng, D. Wang. Adaptive fuzzy switching filter for images corrupted by impulse noise[J]. Pattern Recognition Letters, 2004, 25 (15): 1657-1663.
    [120] D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, et al. Noise reduction by fuzzy image filtering[J]. IEEE Transactions on Fuzzy Systems, 2003, 11 (4): 429-436.
    [121] F. Russo. Hybrid neuro-fuzzy filter for impulse noise removal[J]. Pattern Recognition, 1999, 32 (11): 1843-1855.
    [122] M. E. Yuksel. A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise[J]. IEEE Transactions on Image Processing, 2006, 15 (4): 928-936.
    [123] E. Abreu, M. Lightstone, S. K. Mitra, K. Arakawa. A new efficient approach for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Image Processing, 1996, 5 (6): 1012-1025.
    [124] J. van de Weijer, T. Gevers. Color mode filtering[C]. Proceedings. International Conference on Image Processing, 2001: 125-128.
    [125] R. Garnett, T. Huegerich, C. Chui, H. Wenjie. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005, 14 (11): 1747-1754.
    [126] K. Inoue, K. Urahama. Sequential fuzzy cluster extraction by a graph spectral method[J]. Pattern Recognition Letters, 1999, 20 (7): 699-705.
    [127] P. Perona, W. T. Freeman. A factorization approach to grouping[C]. Proceedings. The 5th European Conference on Computer Vision, 1998: 655-670.
    [128]王朝瑞.图论[M].北京:北京理工大学出版社, 2001.
    [129]卜月华,吴建专,顾国华,殷翔.图论及其应用[M].南京:东南大学出版社, 2002.
    [130]孙惠泉.图论及其应用[M].北京:科学出版社, 2004.
    [131]王树禾.图论[M].北京:科学出版社, 2004.
    [132] F. R. K. Chung. Spectral Graph Theory[M]. Fresno: American Mathematical Society, 1994.
    [133] S. Sarkar, K. L. Boyer. Quantitative measures of change based on feature organization: eigenvalues and eigenvectors[J]. Computer Vision and Image Understanding, 1998, 71 (1): 110-136.
    [134] R. A. Horn, C. R. Johnson. Matrix Analysis[M]. Cambridg,UK: Cambridge University Press, 1990.
    [135] K. Tsuda, M. Minoh, K. Ikeda. Extracting straight lines by sequential fuzzy clustering[J]. Pattern Recognition Letters, 1996, 17 (6): 643-649.
    [136] R. N. Dave, R. Krishnapuram. Robust clustering methods: a unified view[J]. IEEE Transactions on Fuzzy Systems, 1997, 5 (2): 270-293.
    [137] H. H. Chang, W. C. Chu. Double bilateral filtering for image noise removal[C]. WRI World Congress on Computer Science and Information Engineering, 2009: 451-455.
    [138] D. Comaniciu, P. Meer. Mean shift analysis and applications[C]. Proceedings. The 7th IEEE International Conference on Computer Vision, 1999: 1197-1203.
    [139] M. Aharon, M. Elad, A. M. Bruckstein. K-SVD and its non-negative variant for dictionary design[C]. Proceedings. SPIE - The International Society for Optical Engineering, 2005: 591411: 1-12.
    [140] Y. H. Lee, S. Y. Park. A study of convex/concave edges and edge-enhancing operators based on the Laplacian[J]. IEEE Transactions on Circuits and Systems, 1990, 37 (7): 940-946.
    [141] S. K. Mitra, H. Li, I. S. Lin, T. H. Yu. A new class of nonlinear filters for image enhancement[C]. Proceedings. International Conference on Acoustics, Speech and signal processing (ICASSP-91), Toronto, Canda: 1991: 2525-2528.
    [142] G. Ramponi, N. Strobel, S. K. Mitra, T. H. Yu. Nonlinear unsharp masking methods for image contrast enhancement[J]. Journal of Electronic Imaging, 1996, 5 (3): 353-366.
    [143] G. Ramponi. A cubic unsharp masking technique for contrast enhancement[J]. Signal Processing, 1998, 67 (2): 211-222.
    [144] G. Ramponi. A simple cubic operator for sharpening an image[C]. Proceedings. IEEE Workshop on Nonlinear Signal and Image Processing, Neos Maranas, Greece: 1995: 963-966.
    [145] S. Guillon, P. Baylou, M. Najim. Robust nonlinear contrast enhancement filters[C]. Proceedings. International Conference on Image Processing, 1996: 757-760.
    [146] G. Deng, L. W. Cahill, G. R. Tobin. The study of logarithmic image processing model and its application to image enhancement[J]. IEEE Transactions on Image Processing, 1995, 4 (4): 506-512.
    [147] A. Polesel, G. Ramponi, V. J. Mathews. Adaptive unsharp masking for contrast enhancement[C]. Proceedings. International Conference on Image Processing, 1997: 267-270.
    [148] G. Ramponi, A. Polesel. A rational unsharp masking technique[J]. Journal of Electronic Imaging, 1998, 7 (2): 333-338.
    [149] R. D. Nowak, R. G. Baraniuk. Adaptive weighted highpass filters using multiscale analysis[J]. IEEE Transactions on Image Processing, 1998, 7 (7): 1068-1074.
    [150] H. Okazaki, M. Nakashizuka. Unsharp masking based on multi-scale brightness gradient[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (Japanese Edition), 2003, J86-A: 119-133.
    [151] M. Kimura, A. Taguchi, H. Murata. A method on the enhancement of the image superposed with noise by means of fuzzy deduction[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (Japanese Edition), 1998, J81-A: 1247-1256.
    [152] M. Nakashizuka, K. Aoki. A cascade configuration of the cubic unsharp masking for noisy image enhancement[C]. Proceedings. International Symposium on Intelligent Signal Processing and Communication Systems, 2005: 161-164.
    [153] K. Aoki, M. Nakashizuka. A cascade configuration of the edge-weighted image enhancement filter[J]. Electronics and Communications in Japan (Part III-Fundamental Electronic Science), 2007, 90 (6): 37-47.
    [154] Y. Qiu, K. Urahama. Edge-preserving cross-sharpening of multi-modal images[J]. IEICE Transactions on Information and Systems, 2011, E94-D (3): 718-720.
    [155] E. P. Bennett, J. L. Mason, L. McMillan. Multispectral bilateral video fusion[J]. IEEE Transactions on Image Processing, 2007, 16 (5): 1185-1194.
    [156]邱宇,田逢春,陈建军,李鹏.一种基于双边滤波的4f光学系统图像去噪方法[J].中国激光, 2010, 37 (02): 514-520.
    [157] X. Zhu, P. Milanfar. Automatic parameter selection for denoising algorithms using a no-reference measure of image content[J]. IEEE Transactions on Image Processing, 2010, 19 (12): 3116-3132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700