光学反馈系统与相位校正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光二维迭代函数系统是光学信息处理和分形与混沌的结合,具有并行性、超高速等优点。光学4f系统是实现全光二维迭代函数系统的一种重要光路,研究4f系统特点与特性是提高迭代函数系统初始输入质量的基础。论文以全光二维迭代函数系统为研究对象,针对迭代系统特点和特性及一种改善迭代函数初始输入的方法进行分析和研究,主要包括以下几个内容:
     1.研究和比较了三种光学反馈系统,确定了使用相干光学反馈系统来实现全光二维迭代函数系统,同时光学4f系统又为相干光学反馈系统中的基础光路。
     2.以光学4f系统仿真为基础,建立了相干光学反馈系统的理论模型。通过对仿真结果的分析,得出全光迭代函数系统的部分特性。即全光迭代函数系统对系统的带宽和输出有一定的改善作用,提高幅度较依赖于反馈中的初始输入图像。
     3.为了提高输入图像质量,本文对影响光学4f系统输出的误差进行分析,讨论了各类误差的主要来源,给出了减小误差的方法和措施。对光学4f系统进行仿真,得出像差和相位扰动对光学4f系统输出影响较大。
     4.采用自适应光学中相位调节方法来减小像差和相位扰动。研究和分析了三种波前探测技术,确定哈特曼-夏克探测技术作为系统仿真中波前探测技术。建立了哈特曼-夏克传感器和相位型空间光调制器的理论模型,实现了泽尼克多项式表示波前相位、波前传感、波前重构以及波前相位校正的仿真,对仿真结果进行了分析。
     论文创新之一是提出了一种改进迭代函数系统初始输入的方法,该方法通过调节相位来校正波前相位扰动及透镜的像差从而达到改善迭代系统初始输入的目的;创新之二是提出一种使用迭代外推提高图像质量的方法,由于光学器件口径有限导致高频信息的损失,该方法是通过迭代进行频谱的外推,使得图像频谱得到一定的拓展从而达到改善图像质量的目的。
     通过文献参考、理论分析、理论仿真,论文对全光迭代函数系统部分特点与特性和波前相位调制方法对改善迭代函数系统初始输入进行了研究,为进一步提高迭代函数系统初始输入以及最终实现全光迭代函数系统打下了一定的基础。
Optical two-dimensional iterative function system is the combination of optical information processing and fractal, chaos. It integrates some advantages such as parallelism, ultra-high speed and so on. The 4f system is an important optical path for the realization of optical two-dimensional iterative function system. Research on the characteristics of the 4f system is the basis for improving the initial input quality of iterative function system. This paper takes optical two-dimensional iterative function system as the research object, it analyzes and researches characteristics of the 4f system and the method which improves the initial input of iterative function system, it includes several parts.
     1. Three kinds of optical feedback systems were studied and compared, then the coherent optical feedback system was selected to accomplish optical two-dimensional iterative function system, meanwhile, the 4f system is the basis of coherent optical feedback system.
     2. In this thesis, the model of coherent optical feedback system was established and the model is the basis of the 4f system simulation. According to the analysis simulation results, some characteristics of optical iterative function system were obtained. A certain improvement of bandwidth and output quality can be achieved by using optical iterative function system. The increased ranges of bandwidth and output quality were dependent of initial feedback input.
     3. In order to improve figure quality of feedback input, this paper analyzed errors which impact on the 4f system output. A variety of error sources were discussed and the methods of reducing errors were elaborated. This paper drew a conclusion that aberration and phase perturbation have great influence on the 4f system output by simulation of the 4f system.
     4. Aberration and phase perturbation decreased by using method of modulation phase in adaptive optics. Three kinds of wavefront sensing technologies were studied and compared, then the Hartmann-Shack wavefront sensing technology was selected for system simulation. The models of Hartmann-Shack wavefront sensor and phase spatial light modulation were established. The wavefront phase representation by using Zernike polynomial, wavefront sensing, wavefront reconstruction and wavefront phase correction of the system were simulated and the results were analyzed.
     In this paper, one of innovative points is that a method which improved the initial input of iterative function system has been proposed. Aberration and the phase perturbation were reduced by means of modulation phase to improve input of iterative function system. Another one is that a method improving image quality by iterative extrapolation. Diameters of optical devices are limited lead to loss of high-frequency information. The method is that iterative extrapolation widen spectrum of image to improve quality of image.
     Through the literature reference, the theoretical analysis and the theoretical simulations, some researches are done on the characteristics of optical iterative function systems and the wavefront phase modulation method for improving the initial input of the iterative function system in this paper. This has lay the foundation for further improving the initial input of the iterative function system and realization of the optical iterative function system ultimately.
引文
[1] Joseph W.Goodman著,秦克诚等译.傅里叶光学导论[M].北京:电子工业出版社, 2006.9.
    [2]姚启钧.光学教程[M].北京:高等教育出版社, 2002.
    [3]赵建林.高等光学[M].西安:西北工业大学出版社, 1999.
    [4]崔河富.数字图像处理与通信[M].太原:山西人民出版杜, 2007.
    [5]路甬祥.现代科学技术大众百科科学卷[M].杭州:浙江教育出版社, 2001.
    [6] A.W.Lohman, what classical optics can do for digital optical computer[J]. Applied Optics, 1986,25(10):1543-1549.
    [7]姜文汉.自适应光学技术进展[J].光电工程. 1992, 19(4):50-60.
    [8] Babcock. The possibility of compensating astronomical seeing[M]. Publications of the Astronomical Society of the Pacific. 1953.
    [9] J.W.Hardy. Real-time phase correction of optical image systems tech[J], OSA Topical Meeting on Opt.Propagation through Turbulence, 1974.
    [10] http://www.eso.org/sci/facilities/lasilla/telescopes/3p6/index.html.
    [11] Jiang Wenhan, Ling Ning, Tang Guomao, et al. 61-element adaptive optical system for 1.2-m telescope of Yunnan Observatory[J], Proceedings of SPIE-The International Society for Optical Engineering. 1998, V3353:696-703.
    [12] Jiang Wenhan, Li Mingquan, Tang Guomao, et al. 21-element infrared adaptive optics system at 2.16-m telescope[J], Proceedings of SPIE-The International Society for Optical Engineering. 1999, V3762:142-149.
    [13]张凯,施将君,陈津燕,邱服民,岳正普,杨成龙.热晕小尺度不稳定性实验研究[J].强激光与粒子束. 1993, 14(8):824-828.
    [14] Gutlich et al. Forcing and control of localized states in optical single feedback systems, Applied Physics B. 2005, 81.
    [15] J.Cederquist, S.H.Lee. The Use of Feedback in Optical Information Processing, Applied Physics 18. 1979, 311-319.
    [16] D.P.Jablonowski, S.H.Lee. A Coherent Optical Feedback System for Optical Information Processing, Applied Physics 18, 1975, 51-58.
    [17]张以谟,谢功伟.光学信息处理讲座第十一讲相干光学反馈技术[J].物理. 1985, 14(5):315-319.
    [18] Peitgen等著,田逢春主译《混沌与分形》[M].北京:国防工业出版社. 2008.8 .
    [19]廖延彪.光学原理与应用[M].北京:电子工业出版社, 2006.
    [20]陈家璧.光学信息技术原理及应用[M].北京:高等教育出版社, 2002.
    [21]宋菲君.近代光学信息处理[M].北京:北大出版社, 1999.
    [22]苏显渝,李继陶.信息光学[M].北京:科学出版社, 1999.
    [23]游明俊.傅里叶光学[M].北京:兵器工业出版社, 2000.
    [24]王仕璠.信息光学理论与应用[M].北京:北京邮电大学出版社, 2003.
    [25]唐光菊.图像小波变换的光学实现[D].重庆大学硕士毕业论文, 2008.
    [26]李立.光学小波变换的4f系统研究[D].重庆大学硕士毕业论文, 2009.
    [27] Hideki Funamizu et al, Generation of fractal speckles by means of a spatial light modulator, Optics Express, 2007, 15(12).
    [28]张兆田,渠刚荣,姜明.带限函数外推算法收敛性研究[J].工程数学学报, 2004, 21(04):143-148.
    [29]栾文贵.位场、电磁场和波场的延拓[J].中国科学, 1985, 9.
    [30]邱宇,田逢春,陈建军,李鹏.一种基于双边滤波的4f光学系统图像去噪方法[J].中国激光, 2010, 37(2):514-520.
    [31]谈欣柏.大学物理实验[M].天津:天津大学出版社,2000.
    [32]徐鹏,王玉荣.集成薄膜晶体管液晶空间光调制器光调制特性的实验研究[J].液晶与显示, 2005, 20(5):412-416.
    [33]杨昱冰,王石语,蔡德芳,文建国,过振.被动调Q激光器输出波动因素的实验研究[J].红外与激光工程, 2006, 35(1):60-65.
    [34]杨齐民,钟丽云,吕晓旭.激光原理与激光器件[M].昆明:云南大学出版社, 2003.
    [35]廖延彪.成像光学导论[M].北京:清华大学出版社, 2008.
    [36] Robert K.Tyson. Principles of Adaptive Optics[M]. California:Academic Press, 1998.
    [37] http://img.thefreedictionary.com/wiki/7/75/Lens-coma.png.
    [38]蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展[J].电子与信息学报, 2010, 32(1):219-226.
    [39]余成波.数字图像处理及Matlab实现[M].重庆:重庆大学出版社, 2003.
    [40]时红伟,陈世平.一种基于现代通信理论的图像质量评价技术[J].中国空间科学技术, 5(1):1-6.
    [41]黄华,程威.实时图像素描风格化[J].计算机学报, 2009, 32(10):2023-2029.
    [42] DiGesu V,Staravoitov V V. Distance-based functions for image comparison[J]. Pattern Recognition Letters, 1999, 20(2):207-213.
    [43] Starovitov V V, Kose C, Sankur B. Generalized distance based matching of non-binary images[J]. IEEE International Conference on Image Processing. 1998.
    [44] Avcibas I, Sankur B, Sayood K. Statistical Evaluation of Image Quality Measures[J]. Journal of Electronic Imaging, 2002, 206-223.
    [45] Eskicioglu A M,Fisher P S. Image Quality Measures and Their Performance[J]. IEEE Transactions on Communication, 1995, 43(12):2959-2965.
    [46]李新阳,姜文汉.自适应光学控制系统的有效带宽分析[J].光学学报, 1997, 17(12):1698-1702.
    [47] B. Platt, R. Shack. History and principles of Shack-Hartmann wavefront sensing.Journal of Refractive Surgery[J]. 2001, 17(4):214-218.
    [48]何丽萍,王英俭,范承玉.利用剪切干涉测量激光大气传输相位畸变[J].量子电子学报,2001,18(6):92-96.
    [49] http://www.ctio.noao.edu/~atokovin/tutorial/part3/shwfs.gif.
    [50] http://www.ctio.noao.edu/~atokovin/tutorial/part3/wfs.html#sec3.2.
    [51] N.Roddier. Atmospheric Wavefront simpulation using Zernike polynomials. Opt.Engng, 1990, 29(10):1174-1180.
    [52] Jiang Wenhan, Li Huagui. Hartmann-Shark wavefront sensing and wavefront control algorithm.SPIE, 1990, V1271:82-93.
    [53]张强,姜文汉,许冰.利用Zernike多项式对湍流波前进行波前重构[J].光电工程. 1998, 25(6):15-19.
    [54]姜文汉,吴旭斌,凌宁等. 37单元自适应光学系统[J].光电工程, 1995, 22(1):38-45.
    [55]葛爱明,隋展,徐克璹.反射型LCOS器件纯相位调制特性的研究[J].物理学报, 2003, 52(10):2481-2485.
    [56]蔡冬梅,凌宁,姜文汉.纯相位液晶空间光调制器拟合泽尼克像差性能分析[J].物理学报, 2008, 57(2):897-903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700