过渡金属修饰的磷钼氧簇合物的合成及催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐杂化材料具有富氧表面和多样的拓扑结构,在催化科学、磁学研究和材料科学等领域有着广泛的应用前景。利用过渡金属离子修饰多金属氧簇阴离子,进而获得具有独特结构和优异性能的晶体材料是当前多金属氧酸盐研究领域的热点之一。本论文在水热条件下,设计合成了七种过渡金属修饰的磷钼氧酸盐。利用元素分析、红外光谱、紫外-可见漫反射光谱、光电子能谱和X-射线单晶衍射等分析手段对所合成的晶体材料进行了结构表征;研究了晶体材料的热稳定性;以阿司匹林的合成为探针反应,详细研究了合成材料的催化性能。通过研究取得了如下结果:
     通过对水热合成反应影响因素的研究,得出过渡金属修饰磷钼氧酸盐的合成工艺为:反应物浓度为0.1~0.5mol·L~(-1);反应温度为180℃;pH值范围为3.5~6.0;反应物中n(Mo): n(Metal)的比值为6.1~6.5。
     利用元素分析和X-射线单晶衍射分析确定七种化合物的化学式分别为: (C_2N_2H_(10))_5[(P_4Mo_6O_(25)(OH)_6)_2Co] (1);(Co(H_2O)_6)_2(C_5NH_6)_6 [(P_4Mo_6O_(25_)(OH)_6)_2Co]·10H_2O (2);[H_2en]_3Na_4[Ni(H_2O)_3][H_30(MoV_(16)O_(32))Ni_(14)(PO_4)_(26)O_2(OH)_4(H_2O)_8]·8H_2O (3);(C_2N_2H_(10)) [HCo(H_2O)2P_2MoO_(10)] (4);(C_3N_2H_(12))_4[Co_3 [P_4Mo_6O_(26)(OH)_5]_2]·5H_2O (5);(C_2N_2H_(10))_4{Mn_3 [P_4Mo_6O_(26) (OH)_5]_2}·6H_2O (6);(C_2N_2H_(10))_4{Cd_3 [P_4Mo_6 O_(26) (OH)_5]_2}·6H_2O (7)。
     X-射线单晶衍射分析表明:化合物1和2都是由[P_4Mo_6O_(31)]~(12-)与Co~(2+_结合而成的夹心型双聚体簇阴离子零维结构;化合物3是由双缺位轮型簇阴离子[H_(30)P_(26)Ni_(14)Mo_(16)O_(138)(OH)_4(H_2O)_8]~(12-)经[Ni(H_2O)3]~(2+)连接形成一维链状结构;化合物4和5分别是由[CoMoP_2]型和[Co(Mo_6P_4)_2]型簇阴离子形成二维层状结构;化合物6和7是同构化合物,都是由[M(Mo_6P_4)_2]型簇阴离子通过{MO6}八面体(M=Mn~(2+)或Cd~(2+))连接形成三维孔道结构。对七种化合物的晶体结构进行分析后发现,含氮有机配体的种类和过渡金属离子的核外电子构型共同决定着化合物的晶体结构类型。
     热稳定性研究表明,七种晶体材料的簇阴离子结构在低于200℃的温度下均能稳定存在。催化合成阿司匹林的结果表明,所有化合物均具有较高的催化活性,均可再生、重复使用,其催化合成阿司匹林的工艺条件分别为:化合物1用量0.09g(质量分数3%),反应温度80℃,反应时间25min;化合物2用量0.06g(质量分数2%),反应温度80℃,反应时间20min;化合物3用量0.12g(质量分数4%),反应温度80℃,反应时间20min;化合物4用量0.06g(质量分数2%),反应温度80℃,反应时间30min;化合物5用量0.12g(质量分数4%),反应温度80℃,反应时间15min;化合物6用量0.09g(质量分数3%),反应温度80℃,反应时间25min;化合物7用量0.09g(质量分数3%),反应温度80℃,反应时间25min。同时,确定了反应的速率方程,计算了反应的表观活化能。通过对催化实验结果分析,发现水杨酸转化率随化合物的比表面积增大而增高;比表面积大的高维高核化合物的催化选择性高、催化活性好。同时,催化反应机理研究发现,过渡金属修饰的磷钼氧簇合物的质子的可流动性是其能够催化合成阿司匹林的主要原因;其簇阴离子表面较大的负电性可以很好地稳定碳正离子反应中间体,从而促进催化反应的进行。
With nucleophiclic oxygen-enriched surfaces and abundant topologies, polyoxometalate hybrid materials have broad applications in many fields such as catalysis, magnetism and materials science. Currently, an important advance is to decorate polyoxoanions with transition metal ions and then to assemble into different dimensional polyoxometalate clusters with unique structures. In this dissertation, seven transition metal-modified molybdenum phosphate oxide clusters have been designed and synthesized by hydrothermal synthesis. These crystalline materials have been structurally characterized by elemental analyses, single-crystal X-ray diffraction, IR spectroscopy, XPS, XRD and UV-vis spectra. By using synthesis of aspirin as a probe reaction, catalytic properties of crystalline materials have been studied in detail. The results as follow:
     On the basis of summarizing the law of synthesis, the synthesis conditions for product have been determined: concentration of reactant is between 0.1 mol?L-1 and 0.5mol?L-1, pH=3.5-6.0, T=180℃, nMo:nMetal (mole ratio of atoms of reactants) should be between 6:5 and 6:1.
     By elemental analyses and single-crystal X-ray diffraction analyses, the chemical formulas of seven compounds have been determined. Chemical formulas are as follows: (C_2N_2H_(10))_5[(P_4Mo_6O_(25)(OH)_6)_2Co] (1), (Co(H_2O)_6)_2(C_5NH_6)_6 [(P_4Mo_6 O_(25)(OH)_6)_2Co]·10H_2O (2), [H_2en]_3Na_4[Ni(H_2O)_3][H_(30)(MoV_(16)O_(32))Ni14(PO4)_(26)O_2 (OH)_4(H_2O)_8]·8H_2O (3), (C_2N_2H_(10))[HCo(H_2O)_2P_2MoO_(10)] (4), (C_3N_2H_(12))_4[Co_3 [P_4Mo_6 O_(26)(OH)_5]_2]·5H_2O (5), (C_2N_2H_(10))4{Mn3 [P_4Mo_6O_(26) (OH)_5]2}·6H_2O (6), (C_2N_2H_(10))4 {Cd3 [P_4Mo_6O_(26) (OH)_5]2}·6H_2O (7).
     Single-crystal X-ray diffraction analyses reveal that both structures of compound 1 and 2 are zero-dimensional units consisting of sandwich-shaped dimers formed by [P_4Mo_6O31]12-and Co~(2+). Compound 3 represents a one-dimension chainlike structure which is constructed from unusual divacant wheel-type polyoxoanions [H30P_26Ni14Mo16O138(OH)_4(H_2O)8]12- and the [Ni(H_2O)3]~(2+) linkers. The vacant sites of the wheels are occupied by the H_2en ligands via H-bonds. Both anions of compound 4 and 5 possess two-dimensional layered structure. The layered structure of compound 4 is composed of [CoMoP_2] cluster anions that consist of {MoO6} octahedra, {CoO6} octahedra and {PO4} tetrahedra through sharing vertices. Compound 5 represents two-dimensional structure constructed from sandwich-shaped anions Co [P_4Mo_6O_(26)(OH)_5]2 2- and [CoO4]6- linkers. Compound 6 and 7 are isomorphic and represent three-dimension framework based on sandwich-shaped [M(P_4Mo_6)_2] cluster anions linked with {MO6} octahedra (M=Mn or Cd). By comparative analysis of results, we found that the structural types of the polyoxoanions depend on types of organic ligands with nitrogen and electron configuration of transition metal ions.
     The thermal stabilities show that polyoxoanions of all compounds are stable below 200℃. Catalytic results show that all compounds have catalytic activities for preparation of aspirin, and these catalysts can be recovered, reactivated and reused several times. The best experimental condition is: For compound 1, catalyst dose is 0.09g (mass fraction 3%), temperature is 80℃, time is 25min; For compound 2, catalyst dose is 0.06g (mass fraction 2%), temperature is 80℃, time is 20min; For compound 3, catalyst dose is 0.12g (mass fraction 4%), temperature is 80℃, time is 20min; For compound 4, catalyst dose is 0.09g (mass fraction 3%), temperature is 80℃, time is 15min; For compound 5, catalyst dose is 0.12g (mass fraction 4%), temperature is 80℃, time is 25min; For compound 6, catalyst dose is 0.09g (mass fraction 3%), temperature is 80℃, time is 25min; For compound 7, catalyst dose is 0.09g (mass fraction 3%), temperature is 80℃, time is 25min, respectively. The chemical reaction kinetics was studied and the apparent activation energy was calculated. By comparative analysis of the results of experimentation, the relationships between structures and catalytic properties of the compounds have been summarized: The conversion of salicylic acid increases with the surface area of compound; High nuclear structure of high dimensional compounds with large surface area show high catalytic selectivities and high activities. Furthermore, the reaction mechanisms have been inferred. Surface proton migration of transition metal-modified molybdenum phosphate oxide cluster anions were crucial to the catalytic synthesis of asprin. Meanwhile, we found that larger negative charge density on the surface of the cluster anions could stabilize the carbocation intermediates and then accelerate the reaction.
引文
[1] Hill C L. Introduction:?Polyoxometalates Multicomponent Molecular Vehicles to Probe Fundamental Issues and Practical Problems[J]. Chemical Reviews, 1998, 98(1): 1-2.
    [2] Rosenheim A, Bilecki R. Iso- and Hetero-poly Acid. VIII. Molybdic Acid Alkylarsinates[J]. Chemische Berichte, 1913, 46: 539-557.
    [3] Gouzerh P, Proust A. Main-Group Element, Organic, and Organometallic Derivatives of Polyoxometalates[J]. Chemical Reviews, 1998, 98(1): 77-112.
    [4] Kortz U, Savelieff M G, Ghali F Y A, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV Functionalized by Amino Acids[J]. Angewandte Chemie International Edition, 2002, 41(21): 4070-4073.
    [5] Nyman M, Bonhomme F, Alam T M, et al. A General Synthetic Procedure for Heteropolyniobates[J]. Science, 2002, 297(5583): 996-998.
    [6] Chang S, Qin C, Wang E B, et al. New Potassium Ion-Bridged Chainlike Assembly from Bisupporting Keggin Units: K[M(phen)2(H2O)]2[PW12O40]·H2O (M=Fe, Cu)[J]. Inorganic Chemistry Communications, 2006, 9(7): 727-731.
    [7] Wu C D, Lu C Z, Zhuang H H, et al. Hydrothermal Assembly of a Novel Three-Dimensional Framework Formed by [GdMo12O42]9- Anions and Nine Coordinated GdIII Cations[J]. Journal of the American Chemical Society, 2002, 124(15): 3836-3837.
    [8] Ishii Y, Takenaka Y, Konishi K. Porous Organic-Inorganic Assemblies Constructed from Keggin Polyoxometalate Anions and Calix[4]arene-Na+ Complexes: Structures and Guest-Sorption Profiles[J]. Angewandte Chemie International Edition, 2004, 43(20): 2702-2705.
    [9] Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(6348): 56-58.
    [10] Müller A, Krickemeyer E, B?gge H, et al. Formation of a Ring-Shaped Reduced“Metal Oxide”with the Simple Composition [(MoO3)176(H2O)80H32] [J]. Angewandte Chemie International Edition, 1998, 37(9): 1220-1223.
    [11] Müller A, Krickemeyer E, B?gge H, et al.“Nanoobjects”by Self-Assembly Concomitant with Modifications under Alterable Boundary Conditions: Incorporation of Paramagnetic Metal Centers (Cu2+) in Ring-Shaped Molybdenum-Oxide Based Clusters[J]. Angewandte Chemie International Edition, 2001, 40(21): 4034-4037.
    [12] Müller A, Shah S Q N, B?gge H, et al. Molecular Growth from a Mo176 to aMo248 Cluster[J]. Nature, 1999, 397(6714): 48-50.
    [13] Müller A, Krickemeyer E, B?gge H, et al. Organizational Forms of Matter: an Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide[J]. Angewandte Chemie International Edition, 1998, 37(24): 3359-3363.
    [14] Cronin L, Beugholt C, Krickemeyer E, et al.“Molecular Symmetry Breakers”Generating Metal-Oxide-Based Nanoobject Fragments as Synthons for Complex Structures: [{Mo128Eu4O388H10(H2O)81}2]20-, a Giant-Cluster Dimer[J]. Angewandte Chemie, 2002, 114(15): 2929-2932.
    [15] Liu T B, Diemann E, Li H, et al. Self-Assembly in Aqueous Solution of Wheel-Shaped Mo154 Oxide Clusters into Vesicles[J]. Nature, 2003, 426(6962): 59-62.
    [16] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters Nanoscale Magnets[J]. Chemical Reviews, 1998, 98(1): 239-272.
    [17] Müller A, Roy S, Schmidtmann M, et al. Urea as‘Deus Ex Machina’in Giant Molybdenum Blue Type Cluster Synthesis: an Unusual Hybrid Compound with Perspectives for Related Nano, Supramolecular and Extended Structures[J]. Chemical Communications, 2002(18): 2000-2002.
    [18] Müller A, Roy S. En Route from the Mystery of Molybdenum Blue via Related Manipulatable Building Blocks to Aspects of Materials Science[J]. Coordination Chemistry Reviews, 2003, 245(1-2): 153-166.
    [19] Müller A, K?gerler P, Kuhlmann C. A Variety of Combinatorially Linkable Units as Disposition: [Dagger] from a Giant Icosahedral Keplerate to Multi-Functional Metal-Oxide Based Network Structures[J]. Chemical Communications, 1999(15): 1347-1358.
    [20] Müller A, K?gerler P, Dress A W M. Giant Metal-Oxide-Based Spheres and Their Topology: from Pentagonal Building Blocks to Keplerates and Unusual Spin Systems[J]. Coordination Chemistry Reviews, 2001, 222(1): 193-218.
    [21] Müller A, Das S K, Krickemeyer E, et al. Cross-Linking Nanostructured Spherical Capsules as Building Units by Crystal Engineering: Related Chemistry[J]. Solid State Sciences, 2000, 2(8): 847-854.
    [22] Kurth D G, Lehmann P, Volkmer D, et al. Surfactant-Encapsulated Clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a Case Study[J]. Chemistry-A European Journal, 2000, 6(2): 385-393.
    [23] Niu J Y, Ma P T, Niu H Y, et al. Giant Polyniobate Clusters Based on [Nb7O22]9? Units Derived from a Nb6O19 Precursor[J]. Chemistry-A European Journal, 2007, 13(31): 8739-8748.
    [24] Soghomonian V, Chen Q, Haushalter R C, et al. An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH2]K4 [V10O10(H2O)2(OH)4(PO4)7]·4H2O[J]. Science, 1993, 259(5101): 1596-1599.
    [25] Shi Z, Feng S H, Gao S, et al. Inorganic-Organic Hybrid Materials Constructed from [(VO2)(HPO4)]∞Helical Chains and [M(4,4’-bpy)2]2+ (M=Co, Ni) Fragments[J]. Angewandte Chemie International Edition, 2000, 39(13): 2325-2327.
    [26] Tan H Q, Li Y G, Zhang Z M, et al. Chiral Polyoxometalate-Induced Enantiomerically 3D Architectures: a New Route for Synthesis of High-Dimensional Chiral Compounds[J]. Journal of the American Chemical Society, 2007, 129(33): 10066-10067.
    [27] Berzelius J. The Preparation of the Phosphomolybdate Ion [PMo12O40]3-[J]. Poggendorff’s Annalen, 1826, 6: 369-371.
    [28] Li Y G, Dai L M, Wang Y H, et al. A New Molybdenum-Oxide-Based Organic-Inorganic Hybrid Framework Templated by Double-Keggin Anions[J]. Chemical Communications, 2007(25): 2593-2595.
    [29] L J, Xiao F X, Shi L X, et al. Synthesis, Structure and Luminescent Property of a New Hybrid Solid Based on Keggin Anions and Silver-Organonitrogen Fragments[J]. Journal of Solid State Chemistry, 2008, 181(2): 313-318.
    [30] Wu D, Lin S, Tang E, et al. Hydrothermal Synthesis and Crystal Structure of a Novel Two-Dimensional Molybdenum(V) Phosphate with Manganese Coordination Cations[J]. Comptes Rendus Chimie, 2008, 11(1-2): 152-158.
    [31] Liu J, Wang E B, Wang X L, et al. An Interesting Fourfold Interpenetrating Network Constructed by Polyoxometalates and Metal-Organic Coordination Complexes: CuI5(bpy)5(H2O)2][[CuII(H2O)3]2CuII[P4MoV6O25(OH)6]2]·H3O+·2H2O[J]. Journal of Molecular Structure, 2008, 876(1-3): 206-210.
    [32] Wang J P, Zhao J W, Ma P T, et al. A Novel Type of Heteropolyoxoanion Precursors {[Ca(H2O)]6[P4M6O34]2}12-(M=WVI, MoVI) Constructed by Two [P4M6O34]12- Subunits via a Rare Hexa-Calcium Cluster[J]. Chemical Communications, 2009(17): 2362-2364.
    [33] Pettersson L. Multicomponent Polyanions. I. on Yellow and Colorless Molybdophosphates in 3M Na(ClO4). a Determination of Formation Constants for Three Colourless Pentamolybdodiphosphates in the pH-Range 3-9[J]. Acta Chemica Scandinavica, 1971, 25(6): 1959-1974.
    [34] Strandberg R. Multicomponent Polyanions IV. Molecular and Crystal Structure of Na6Mo5P2O23(H2O)13[J]. Acta Chemica Scandinavica, 1973, 27: 1004-1018.
    [35] Hedman B. Multicomponent Polyanions. VI. the Molecular and Crystal Structure of Na4H2Mo5P2O23(H2O)10, a Compound Containing Sodium- coordinated Dihydrogenpentamolybdodiphosphate Anions[J]. Acta Chemica Scandinavica, 1973, 27(9): 3335-3354.
    [36] Fischer J, Ricard L, Toledano P. A Novel Phosphomolybdate Structure: Crystal Structure of [NH4]5[(MoO3)5(PO4)(HPO4)]·3H2O[J]. Journal of theChemical Society, Dalton Transactions, 1974(9): 941-946.
    [37] Lu X M, Wang X J, Li P Z, et al. Self-assembly of Two Novel 1D Chains Constructed from {P2Mo5} Phosphomolybdate Clusters Linked through Copper (II) Complexes[J]. Journal of Molecular Structure, 2008, 872(2-3): 129-134.
    [38] Armatas N G, Allis D G, Prosvirin A, et al. Molybdophosphonate Clusters as Building Blocks in the Oxomolybdate-Organodiphosphonate/Cobalt(II)- Organoimine System: Structural Influences of Secondary Metal Coordination Preferences and Diphosphonate Tether Lengths[J]. Inorganic Chemistry, 2008, 47(3): 832-854.
    [39] Burkholder E, Golub V, O’Connor C J, et al. Solid State Coordination Chemistry: One-, Two-, and Three-Dimensional Materials Constructed from Molybdophosphonate Subunits Linked through Binuclear Copper Tetra-2-pyridylpyrazine Groups[J]. Inorganic Chemistry, 2003, 42(21): 6729-6740.
    [40] Jin H J, Zhou B B, Yu Y, et al. Inorganic-Organic Hybrids Constructed from Heteropolymolybdate Anions and Copper-Organic Fragments: Syntheses, Structures and Properties[J]. CrystEngComm, 2011, 13(2): 585-590.
    [41] Dawson B. The Structure of the 9(18)-Heteropoly Anion in Potassium 9(18)-Tungstophosphate, K6(P2W18O62)·14H2O[J]. Acta Crystallographica, 1953, 6(2): 113-126.
    [42] Himeno S, Saito A, Hori T. Synthesis and Characterization of 18-Molybdopyrophosphate Complex[J]. Bulletin of the Chemical Society Japan, 1990, 63: 1602-1606.
    [43] Kortz U, Pope M T. Polyoxometalate-Diphosphate Complexes. 2.1 Structure of 18-Molybdopyrophosphate, [(P2O7)Mo18O54]4-, Which Encloses a Linear, Eclipsed Conformation of the Pyrophosphate Anion, and Preliminary Characterization of its One- and Two-Electron Heteropoly Blues[J]. Inorganic Chemistry, 1994, 33(25): 5643-5646.
    [44] Liu J H, Peng J, Wang E B, et al. A Novel Amino Acid Salt of 18-Molybdodiphosphate: Synthesis and Structural Characterization of (Lys)2H6[P2Mo18O62]·16H2O[J]. Journal of Molecular Structure, 2000, 525(1-3): 71-77.
    [45] Wang J P, Wei M L, Niu J Y. Synthesis, Crystal Structure and Characterization of a Novel Cerium(III) Coordination Compound Based on the Dawson Cluster[J]. Transition Metal Chemistry, 2004, 29(1): 81-85.
    [46] Marchal R C, Ayrault E, Lisnard L, et al. Dimerization in Acetonitrile of [H6PMo9O34]3- into [P2Mo18O62]6-: Structural Characterization of the Tetrabutyl Ammonium Salt[J]. Journal of Cluster Science, 2006, 17(2):283-290.
    [47] Qu X S, Xu L, Qiu Y F, et al. New Series of Porous Ionic Crystals Constructed from Various Polyoxometalate Anions and Macrocations: Syntheses, Crystal Structures, and Comparison with Diverse Spatial Arrangement[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2007, 633(7): 1040-1047.
    [48] Zhang X M, Wu H S, Zhang F Q, et al. The Three-Electron Heteropoly Blue [P6Mo18O73]11- with a Basket-Shaped Skeleton[J]. Chemical Communications, 2004(18): 2046-2047.
    [49] Yu K, Li Y G, Zhou B B, et al. A Basket-Like [SrP6MoV4MoVI14O73]10- Polyoxoanion Modified with {Cu(phen)(H2O)x} (x=1-3) Fragments: Synthesis, Structure, Magnetic, and Electrochemical Properties[J]. European Journal of Inorganic Chemistry, 2007(36): 5662-5669.
    [50] Zhang F Q, Zhang X M, Fang R Q, et al. P6Mo18O73 Heteropolyanion and its Four-Copper Complex: Theoretical and Experimental Investigation[J]. Dalton Transactions, 2010, 39: 8256-8260.
    [51] Su Z H, Zhou B B, Zhao Z F, et al. Synthesis, Characterization and Magnetic Behaviour of a Linear Chain Poly(oxomolybdophosphate) Compound[J]. Crystal Research and Technology, 2008, 43(5): 572-576.
    [52] Liu C M, Luo J L, Zhang D Q, et al. Spin Glass Behaviour in a 1D Mixed Molybdenum-Vanadium Heteropolyoxometalate-Bridged Coordination Polymer[J]. European Journal of Inorganic Chemistry, 2004(24): 4774-4779.
    [53] Dai L M, Ma Y, Wang E B, et al. A Novel Two-Dimensional Mixed Molybdenum-Vanadium Polyoxometalate: Synthesis, Magnetic Property and Characterization of [PMo8VIMo4VO40(VIVO)2{Co(phen)2}2](H3O)2[PMo4VIMo8V O40(VIVO)2{Co(phen)2(H2O)}2][J]. Journal of Molecular Structure, 2007, 829(1-3): 74-79.
    [54] Li G Z, Salim C, Hinode H. Hydrothermal Syntheses and Crystal Structures of Two Hybrid Materials Constructed from Polyoxometalate Clusters and Metal-Dipyridine Complexes[J]. Solid State Sciences, 2008, 10(2): 121-128.
    [55] Peloux C, Mialane P, Dolbecq A, et al. Three-dimensional Mn/Fe Molybdenum(V) Phosphates[J]. Solid State Sciences, 2004, 6(7): 719-724.
    [56] Niu J Y, Wei M L, Wang J P, et al. 1D-Polyoxometalate-Based Composite Compounds-Design, Synthesis, Crystal Structures, and Properties of [{Ln(NMP)6}(PMo12O40)]n (Ln=La, Ce, Pr; NMP=N-methyl-2-pyrrolidone)[J]. European Journal of Inorganic Chemistry, 2004(1): 160-170.
    [57] Lei C, Mao J G, Sun Y Q, et al. A Novel Organic-Inorganic Hybrid Based on an 8-Electron-Reduced Keggin Polymolybdate Capped by Tetrahedral, Trigonal Bipyramidal, and Octahedral Zinc: Synthesis and Crystal Structure of (CH3NH3)(H2bipy)[Zn4(bipy)3(H2O)2MoV8MoVI4O36(PO4)]·4H2O[J]. InorganicChemistry, 2004, 43(6): 1964-1968.
    [58] Lu Y, Xu Y, Wang E B, et al. Novel Two-Dimensional Network Constructed from Polyoxomolybdate Chains Linked through Copper-Organonitrogen Coordination Polymer Chains: Hydrothermal Synthesis and Structure of [H2bpy][Cu(4,4’-bpy)]2[HPCuMo11O39][J]. Crystal Growth & Design, 2005, 5(1): 257-260.
    [59] Chen J, Sha J Q, Peng J, et al. Self-Assembly of Two Novel Bisupporting Keggin-Polyoxometalate Derivatives: Hydrothermal Synthesis and Structure Characterization of [Cu(2,2’-bpy)2]2[HmXMoVI10MoV2O40]·2H2O (X=P, m=1; X=Si, m=2)[J]. Journal of Molecular Structure, 2007, 846(1-3): 128-133.
    [60] Sha J Q, Peng J, Liu H S, et al. Hydrothermal Syntheses and Crystal Structures of Hybrid Materials Based on Keggin Cluster Modified by Iron Complexes[J]. Journal of Coordination Chemistry, 2008, 61(8): 1221-1233.
    [61] Shi S Y, Sun Y H, Chen Y, et al. First Examples of Extended Structures Based on {PMo12Sb2O40} Polyoxoanions[J]. Dalton Transactions, 2010, 39(5): 1389-1394.
    [62] Zhang X, Yi Z H, Zhao L Y, et al. pH-Dependent Assembly of a Series of Inorganic-Organic Hybrid Molybdenum(V) Phosphate[J]. CrystEngComm, 2010(2): 595-603.
    [63] Qin C, Wang X L, Wang E B, et al. Catenation of Loop-Containing 2D Layers with a 3D PCU Skeleton into a New Type of Entangled Framework Having Polyrotaxane and Polycatenane Character[J]. Inorganic Chemistry, 2008, 47(13): 5555-5557.
    [64] Dai L M, Wang E B, You W S, et al. Synthesis and Electrochemical Properties of a New 1D Organic-Inorganic Hybrid Compound Based on Keggin-Type Heteropolyanions and Isopolyanions Decorated by Transition Metal Fragments[J]. Journal of Cluster Science, 2008, 19(3): 511-519.
    [65] He X, Zhang P, Song T Y, et al. Hydrothermal Synthesis and Structure of a Molybdenum(VI) Phosphate Cluster and a Three Dimensional Cobalt Molybdenum(V) Phosphate[J]. Polyhedron, 2004, 23(13): 2153-2159.
    [66] Meng J X, Li Y G, Wang X L, et al. Synthesis, Crystal Structure, and Characterization of a New High-Dimensional Phosphomolybdate Architecture Built from Silver-Complex Fragments and Hexa-Connected P2Mo5 Clusters[J]. Journal of Solid State Chemistry, 2009, 62(14): 2283-2289.
    [67] Lu Y, Xu Y, Wang E B, et al. Hydrothermal Synthesis and Structures of Two Novel Chain-Like Heteropolymolybdate Formed by Keggin Cluster Units[J]. Journal of Solid State Chemistry, 2004, 177(6): 2210-2215.
    [68] Cui J W, Cui X B, Xu J N, et al. Two New Polyoxometalate Tri-Supported Transition Metal Complexes Constructed from Bi-Capped KegginMolybdenum-Vanadium Clusters and Copper Complex Fragments[J]. Journal of Molecular Structure, 2008, 891(1-3): 35-39.
    [69] Ma Y, Li Y G, Wang E B, et al. Synthesis and Characterization of Two New Inorganic-Organic Hybrid Cobalt Molybdenum(V) Phosphates[J]. Journal of Coordination Chemistry, 2007, 60(7): 719-732.
    [70] Streb C, Long D L, Cronin L. Engineering Porosity in a Chiral Heteropolyoxometalate-Based Framework: the Supramolecular Effect of Benzenetricarboxylic Acid[J]. Chemical Communications, 2007(5): 471-473.
    [71] Misono M, Nojiri N. Recent Progress in Catalytic Technology in Japan[J]. Applied Catalysis, 1990, 64: 1-30.
    [72] Izumi Y. Hydration/hydrolysis by Solid Acids[J]. Catalysis Today, 1997, 33(4): 371-409.
    [73]伊万·科热夫尼科夫.精细化学品的催化合成:多酸化合物及其催化[M].王世荣,唐培堃,李祥高,译.北京:化学工业出版社, 2005.
    [74]王恩波,李阳光,鹿颖,等.多酸化学概论[M].长春:东北师范大学出版社, 2009.
    [75] Onoue Y, Mizutani Y, Akiyama S, et al. Hydration with Water[J]. Chemtech, 1978, 8: 432-440.
    [76]王敬平,牛景扬,周绪亚.杂多酸均相催化合成乙酸乙酯[J].河南化工, 1994(10): 11-13.
    [77] Kozhevnikov I V, Kulikov S M. A Study of the Kinetics and Mechanism of the Decomposition of Isopropylbenzene Hydroperoxide Catalyzed by Heteropoly Acids in Acetone[J]. Kinetika Kataliz, 1981, 22(4): 956-962.
    [78] Izumi Y, Matsuo K, Urabe K. Efficient Homogeneous Acid Catalysis of Heteropoly Acid and its Characterization through Ether Cleavage Reactions[J]. Journal of Molecular Catalysis, 1983, 18(3): 299-314.
    [79] Joshi M V, Narasimhan C S. Catalysis by Heteropolyacids: Some New Aspects[J]. Journal of Catalysis, 1989, 120(1): 282-286.
    [80]姚胜,叶兴凯,李丽丽,等.杂多化合物催化性能的研究——Ⅲ.12-钼和12-钨系杂多酸催化的烷基苯与苯乙烯的烷基化反应[J].石油化工, 1990(9): 607-611.
    [81] Bednarek M, Brzezińska K, Stasiński J, et al. Heteropolyacids-New Efficient Initiators of Cationic Polymerization[J]. Die Makromolekulare Chemie, 1989, 190(5): 929-938.
    [82] Mizuno N, Misono M. Heteropolyanions in Catalysis[J]. Journal of Molecular Catalysis, 1994, 86(1-3): 319-342.
    [83] Misono M. Unique Acid Catalysis of Heteropoly Compounds (Heteropolyoxo- metalates) in the Solid State[J]. Chemical Communications, 2001(13):1141-1152.
    [84]高丽娟,王恩波.磷钼杂多酸催化合成乙酸乙酯[J].东北师大学报(自然科学版), 1999(3): 113-115.
    [85]高丽娟,郭飞军,谢显茂,等.磷钼杂多酸的合成、表征及催化活性的研究[J].黑龙江大学自然科学学报, 2001(1): 72-74.
    [86]叶孔萌.磷钼酸催化精馏合成乙酸乙酯工艺研究[D].浙江大学, 2008.
    [87]柳艳修,宋华,张铁晶,等.微波促进的磷钼酸对酯化反应的催化性能[J].化工进展, 2010(4): 670-672.
    [88] Xu L, Sun Y Q, Wang E B, et al. A Manganese Molybdenum Phosphate with a Tunnel: Hydrothermal Synthesis, Structure and Catalytic Properties of (NH3CH2CH2NH3)10(H3O)3(H5O2)Na2[MnMo12O24(OH)6(PO4)4(PO3OH)4][MnMo12O24(OH)6(PO4)6(PO3OH)2]·9H2O[J]. New Journal of Chemistry, 1999, 23(10): 1041-1044.
    [89] Lin B Z, Han G H, Xu B H, et al. Hydrothermal Synthesis and Characterization of Two New Phosphatomolybdates(V) Containing Sandwich-Shaped [M(Mo6P4)2] Clusters (M=Co, Ni)[J]. Journal of Cluster Science, 2008, 19(2): 379-390.
    [90] Chen Q, Cui Y, Sun Q, et al. Hydrothermal Synthesis, Structure Characterization, Catalytic Property of Four Inorganic-Organic Hybrid Phosphomolybdates[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2009, 635(13-14): 2302-2308.
    [91] Guo H X, Wang Q H, Chen C, et al. A Novel One-dimensional Reduced Molybdenum(V) Decorated with Nickel Coordination Cations:Ni[Mo6O12(OH)3 (PO4)(HPO4)3]2[Ni(H2O)2][Ni(H2O)(bipy)2]4·5H2O[J]. Chinese Journal of Chemistry, 2008, 26(4): 640-644.
    [92]吴丹.一些杂多金属氧簇与后过渡金属有机配合物的合成、结构与催化性能[D].福建师范大学, 2006.
    [93]祁广铎,李翔,王安杰,等. Keggin结构磷钼酸及其钠盐催化的二苯并噻吩氧化脱硫反应[J].石油学报(石油加工), 2008(6): 652-656.
    [94]曹小华,任杰,谢宝华,等. Dawson结构磷钼酸铵催化氧化十八醇清洁合成十八酸[J].化工进展, 2010(1): 58-61.
    [95] Fazaeli R, Tangestaninejad S, Aliyan H. Solvent-Free Selective Oximation of Aldehydes Using Facile and Reusable Heterogenous Polyoxometalate[J]. Catalysis Communications, 2007, 8(2): 205-210.
    [96] Shatalov A A, Pereira H. Molybdo-Vanado-Phosphate Heteropolyanion Catalyzed Pulp Ozonation in Acetone/Water Solution. Part 2. Catalyst Re-Oxidation[J]. Bioresource Technology, 2010, 101(23): 9330-9334.
    [97] Dermeche L, Hocine S, Bettahar M M, et al. Selective Oxidation of Propane over PMoV-M/α-Al2O3(M: Co, Fe, or Ni)[J]. The Canadian Journal of Chemical Engineering, 2009, 87(4): 614-619.
    [98]谭学苓. Keggin型杂多化合物的合成及其催化氧化苯的研究[D].兰州理工大学, 2009.
    [99] Mizuno N, Tateishi M, Iwamoto M. Oxidation of Isobutane Catalyzed by CsxH3-xPMo12O40-Based Heteropoly Compounds[J]. Journal of Catalysis, 1996, 163(1): 87-94.
    [100]Langpape M, Millet J M M, Ozkan U S, et al. Study of Cesium or Cesium-Transition Metal-Substituted Keggin-Type Phosphomolybdic Acid as Isobutane Oxidation Catalysts: II. Redox and Catalytic Properties[J]. Journal of Catalysis, 1999, 182(1): 148-155.
    [101]Marosi L, Cox G, Tenten A, et al. In Situ XRD Investigations of Heteropolyacid Catalysts in the Methacrolein to Methacrylic Acid Oxidation Reaction: Structural Changes during the Activation/Deactivation Process[J]. Journal of Catalysis, 2000, 194(1): 140-145.
    [102]Marosi L, Oteroaren C. Catalytic Performance of Csx(NH4)yHzPMo12O40 and Related Heteropolyacids in the Methacrolein to Methacrylic Acid Conversion: in Situ Structural Study of the Formation and Stability of the Catalytically Active Species[J]. Journal of Catalysis, 2003, 213(2): 235-240.
    [103]Huang Y B, Chen J X, Lan T Y, et al. Syntheses, Structures and Properties of Two Keggin Polyoxometalates [H5PCo(4,4’-bipy)Mo11O39][H3PMo12O40]3.75 (4, 4’-bipy)·1.5H2O and [H3PMo12O40]2(4, 4’-bipy)·1.5H2O[J]. Journal of Molecular Structure, 2006, 783(1-3): 168-175.
    [104]Shi C F, Wang R W, Zhu G S, et al. In Situ Synthesis, Characterization of SiPMo-X, and Different Catalytic Properties of SiPMo-X and SiPW-X[J]. European Journal of Inorganic Chemistry, 2006(15): 3054-3060.
    [105]Sato H, Nagai K, Yoshioka H, et al. Vapor Phase Nitration of Benzene Over Solid Acid Catalysts: III. Nitration with Nitric Acid; Mixed Metal Oxide Treated with Sulfuric Acid and Heteropolyacid Partially Neutralized[J]. Applied Catalysis A: General, 1998, 175(1-2): 209-213.
    [106]刘建行,徐风华.紫外分光光度法同时测定双组分体系中阿司匹林和水杨酸含量[J].中国药业, 2007, 16(5): 12-13.
    [107]Zhang P P, Peng J, Sha J Q, et al. Assembly of Two New Polyoxometalate-Templated Supramolecular Compounds by Utilizing a Ligand with a Combination of Rigidness and Flexibility[J]. CrystEngComm, 2009(5): 902-908.
    [108]Galn Mascars J R, Mart-Gastaldo C. Supramolecular Stabilization of thePhosphite-Based Polyoxomolybdate [Mo6(PO3)(HPO3)3O18]9-[J]. Polyhedron, 2007, 26(3): 626-630.
    [109]Liu X Z, Gao G G, Xu L, et al. Electrochemical and Magnetic Properties of Inorganic Polymers Constructed from Mn(II)/Co(II)-Substituted Heteropoly- molybdates[J]. Solid State Sciences, 2009, 11(8): 1433-1438.
    [110]Thomas J, Ramanan A. Growth of Copper Pyrazole Complex Templated Phosphomolybdates: Supramolecular Interactions Dictate Nucleation of a Crystal[J]. Crystal Growth & Design, 2008, 8(9): 3390-3400.
    [111]Shi F N, Almeida Paz F A, Girginova P I, et al. A Novel Cobalt(II)- Molybdenum(V) Phosphate Organic-Inorganic Hybrid Polymer[J]. Journal of Solid State Chemistry, 2006, 179(5): 1497-1505.
    [112]Hagrman P J, LaDuca R L, Koo H J, et al. Ligand Influences on the Structures of Molybdenum Oxide Networks[J]. Inorganic Chemistry, 2000, 39(19): 4311-4317.
    [113]Streb C, Long D L, Cronin L. Influence of Organic Amines on the Self-Assembly of Hybrid Polyoxo-Molybdenum(V) Phosphate Frameworks[J]. CrystEngComm, 2006(8): 629-634.
    [114]Crist B V. Handbook of Monochromatic XPS Spectra, The elements of Native Oxides[M]. New York: Wiley, 2000.
    [115]Zhang X, Xu J Q, Yu J H, et al. Structural Characterizations and Magnetic Properties of Three New Reduced Molybdenum Phosphates[J]. Journal of Solid State Chemistry, 2007, 180(6): 1949-1956.
    [116]Shi S Y, Pan C L, Chen Y, et al. A Missing Link between Discrete Poms and the Poms as Building Blocks in Extended Structure[J]. Inorganic Chemistry Communications, 2009, 12(11): 1124-1127.
    [117]Gao G G, Xu L, Wang W J, et al. Cobalt(II)/Nickel(II)-Centered Keggin-Type Heteropolymolybdates: Syntheses, Crystal Structures, Magnetic and Electrochemical Properties[J]. Inorganic Chemistry, 2008, 47(7): 2325-2333.
    [118]Li S Z, Zhao J W, Ma P T, et al. Rare Sandwich-Type Polyoxomolybdates Constructed from Di-/Tetra-Nuclear Transition-Metal Clusters and Trivacant Keggin Germanomolybdate Fragments[J]. Inorganic Chemistry, 2009, 48(20): 9819-9830.
    [119]Bondi J F, Oyler K D, Ke X L, et al. Chemical Synthesis of Air-Stable Manganese Nanoparticles[J]. Journal of the American Chemical Society, 2009, 131(26): 9144-9145.
    [120]Duan L Y, Liu F C, Wang X L, et al. A New 3D Cadmium Molybdenum Phosphate with Intersecting Tunnels: Hydrothermal Synthesis, Structure and Electrochemical Properties of [C3H12N2]4[CdMo12O24(HPO4)6(PO4)2(OH)6] [(Cd(H2O))2]·3H2O[J]. Journal of Molecular Structure, 2004, 705(1-3): 15-20.
    [121]Wang Y, Xiao L N, Ding H, et al. Hydrothermal Synthesis and Crystal Structure of the First Keggin Polyoxometalate Supported Cadmium Coordination Complex[J]. Inorganic Chemistry Communications, 2010, 13(10): 1184-1186.
    [122]Pope M T. Heteropoly and Isopoly Oxometalates[M]. Berlin: Springer-Verlag, 1983.
    [123]王恩波,许林,黄如丹,等. Keggin结构钼系杂多蓝的离析和性质研究[J].中国科学(B辑化学生命科学地学), 1991(11): 1121-1129.
    [124]周端文,王恩波.杂多酸化合物中的紫外──可见光谱[J].吉林化工学院学报, 1994(4): 20-26.
    [125]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社, 1998.
    [126]赵士龙,黄长沧,张汉辉.超分子化合物(bipyH2)2(H2P2Mo5O23)·H2O的水热合成、晶体结构和性质[J].高等学校化学学报, 2002(4): 521-525.
    [127]Sheldrick G M. SHELXL-97, Program for Crystal Structure Refinement[M]. G?ttingen: University of G?ttingen, 1997.
    [128]Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution[M]. G?ttingen: University of G?ttingen, 1997.
    [129]Brown I D, Altermatt D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database[J]. Acta Crystallographica Section B, 1985, 41(4): 244-247.
    [130]Mahdi J G. Medicinal potential of willow: A Chemical Perspective of Aspirin Discovery[J]. Journal of Saudi Chemical Society, 2010, 14(3): 317-322.
    [131]王英俊,赵贝贝.阿司匹林的作用及其机制研究进展[J].现代农业科技, 2009(18): 334-335.
    [132]刘达波.固体酸SO42-/Silinaite催化制备乙酰水杨酸及阿司匹林锰的合成初探[D].南昌大学, 2008.
    [133]Snoep J D, Hovens M M C, Eikenboom J C J, et al. Association of Laboratory-Defined Aspirin Resistance with a Higher Risk of Recurrent Cardiovascular Events: a Systematic Review and Meta-analysis[J]. Archives of Internal Medicine, 2007, 167(15): 1593-1599.
    [134]李耀宗,王锐,张灿.固体超强酸SO42-/ZrO2催化合成乙酰水杨酸[J].中国实用医药, 2010(13): 253-255.
    [135]Montes I, Sanabria D, García M, et al. A Greener Approach to Aspirin Synthesis Using Microwave Irradiation[J]. Journal of Chemical Education, 2006, 83(4): 628.
    [136]聂鑫,翁铭图,崔剑清,等.维生素C催化合成阿司匹林的条件研究[J].中国医药导报, 2009(21): 58-83.
    [137]韩广甸,赵树纬,李述文.有机制备化学手册.中卷[M].北京:石油化学工业出版社, 1980.
    [138]Tyagi B, Mishra M K, Jasra R V. Solvent Free Synthesis of Acetyl Salicylic Acid Over Nano-Crystalline Sulfated Zirconia Solid Acid Catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1-2): 41-45.
    [139]叶孔萌,袁钢,吴嘉.磷钼酸催化合成乙酸乙酯的动力学研究[J].化学反应工程与工艺, 2008(1): 50-53.
    [140]赵地顺,韩文爱,王爱军,等.磷钼杂多酸催化合成乙酸乙酯的研究[J].河北化工, 2003(2): 23-24.
    [141]许蕾蕾.基于多酸的杂化催化剂的设计及其在生物柴油合成中的应用[D].东北师范大学, 2009.
    [142]李捷.催化酯化合成乳酸正丁酯[D].北京服装学院, 2008.
    [143]任春晖,高文革.阿司匹林的用途及进展[J].中华临床内科杂志, 2004, 12(6): 1045-1046.
    [144]山东大学、山东师范大学等高校合编.基础化学实验[M].北京:化学工业出版社, 2004.
    [145]Kozhevnikov I V. Advances in Catalysis by Heteropolyacids[J]. Russian Chemical Reviews, 1987, 56(9): 811-825.
    [146]Tatsumisago M, Minami T. Preparation of Proton-Conducting Amorphous Films Containing Dodecamolybdophosphoric Acid by the Sol-Gel Method[J]. Journal of the American Ceramic Society, 1989, 72(3): 484-486.
    [147]Kozhevnikov I V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions[J]. Chemical Reviews, 1998, 98(1): 171-198.
    [148]Uchida S, Inumaru K, Misono M. States and Dynamic Behavior of Protons and Water Molecules in H3PW12O40 Pseudoliquid Phase Analyzed by Solid-State MAS NMR[J]. The Journal of Physical Chemistry B, 2000, 104(34): 8108-8115.
    [149]Okuhara T, Mizuno N, Misono M. Catalytic Chemistry of Heteropoly Compounds[J]. Advances in Catalysis, 1996, 41: 113-252.
    [150]Izumi Y, Urabe K, Onaka M. Zeolite, Clay, and Heteropoly Acid in Organic Reactions[M]. Tokyo: Kodansha/VCH, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700