铀(Ⅵ)、钍(Ⅳ)和铕(Ⅲ)在磷酸盐上的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸盐是土壤及岩石中的重要组成部分,对重金属及放射性核素有良好的吸附性能,有望在放射性废物的处置中得到应用。本文中选择三种难溶磷酸盐:焦磷酸锆(ZrP2O7)、磷酸氧锆(Zr2O(PO4)2)和磷酸焦磷酸钍(Th4(PO4)4P2O7)作为吸附剂,研究其对U(Ⅵ)、Th(Ⅳ)和Eu(Ⅲ)的吸附性能并探讨吸附机理。
     首先采用SEM、XRD和FT-IR对磷酸盐进行详细的表征,采用质量滴定法测定了三种磷酸盐的零电荷点,然后采用静态法研究了三种磷酸盐对U(Ⅵ). Th(Ⅳ)和Eu(Ⅲ)的吸附性能,考察了接触时间、pH值、吸附剂浓度、离子强度和不同电解质离子等因素对磷酸盐吸附U(Ⅵ)、Th(Ⅳ)和Eu(Ⅲ)的影响。
     在第四章中比较了ZrP2O7和Zr2O(PO4)2对U(VI)的吸附性能及简单有机物对吸附的影响,结果表明pH强烈影响U(VI)在磷酸盐上吸附,随着pH升高,吸附百分数增大;ZrP2O7,Zr2O(PO4)2两种磷酸盐具有各自不同的吸附突跃范围,ZrP2O7具有较低的pH吸附突跃范围,这可能与两者有不同的磷锆比有关,磷酸根基团的增多,氧原子数增多,吸附作用力增强;简单有机酸、FA和离子强度对吸附影响不大。
     U(Ⅵ)在ZrP2O7和Th(Ⅳ)在Zr2O(PO4)2上的吸附行为在第五、第六章进行了研究,结果发现吸附动力学符合准二级动力学方程;pH强烈影响吸附量,吸附不受离子强度影响,可以推测吸附以表面配位形式结合;吸附过程是吸热、自发过程,温度升高对吸附有利;硫酸根、磷酸根和柠檬酸根对吸附有不同程度的影响,磷酸根能增加吸附,硫酸根则降低吸附,柠檬酸根能大大降低U(VI)和Th(Ⅳ)在吸附剂上的吸附;FA的存在能增加U(VI)和Th(Ⅳ)的吸附。
     在第七章中比较了U(VI)和Th(Ⅳ)在复杂磷酸盐Th4(PO4)4P2O7上的吸附差异,U(VI)和Th(Ⅳ)在复杂磷酸盐Th4(PO4)4P2O7上吸附同样受pH值影响,两者的吸附突跃范围不同,Th(Ⅳ)的吸附量远远高于U(VI)的吸附量;FA能增加U(VI)和Th(Ⅳ)在Th4(PO4)4P2O7上的吸附;电解质种类不同对U(VI)和Th(Ⅳ)在Th4(PO4)4P2O7上的吸附影响不同,这可能与U(VI)和Th(Ⅳ)的水溶液性质不同有关。
     Eu(Ⅲ)在Th4(PO4)4P2O7上吸附及解吸行为在第八章中进行了讨论。Eu(Ⅲ)在Th4(PO4)4P2O7上吸附受pH影响,柠檬酸根存在使得吸附突跃范围向高pH方向移动;硫酸根和磷酸根存在下都能增加]Eu(Ⅲ)在Th4(PO4)4P2O7上的吸附,且硫酸根和磷酸根在吸附剂表面均有吸附;硫酸根和磷酸根介质中加入柠檬酸根对Eu(Ⅲ)的吸附有截然相反的影响,硫酸根介质中增加Eu(Ⅲ)的吸附量,而磷酸根介质中则降低Eu(Ⅲ)的吸附量;FA存在会增加Eu(Ⅲ)在Th4(PO4)4P2O7上吸附,FA在吸附剂上的吸附量随着水相FA浓度的增大而增大。
Insoluble phosphates are components of soil and rocks with good sorption capacity and expected to play an important role in the deep geological disposal of high level nuclear waste. In this dissertation, three insoluble phosphate, zirconium diphosphate (ZrP2O7), zirconium oxophosphate (Zr2O(PO4)2) and thorium phosphate diphosphate (Th4(PO4)4P2O7), were chosen as sorbent to study the sorption of U(VI), Th(IV) and Eu(III).
     The phosphates were characterized by using SEM, XRD and FT-IR in detail and the point of zero charges were estimated by mass titration. The sorption of U(VI), Th(IV) and Eu(III), from aqueous solution on the phosphates was investigated by using a batch technique as a function of contact time, pH, solid content, ionic strength and foreign ions.
     The sorption behavior of UO22+ on the two kinds of zirconium phosphate, 2 and ZrP2O7, and the effects of simple organic compounds were studied in the fourth chapter. The results indicated that the sorption of uranyl ions on the phosphates was strongly dependent on pH and weakly dependent on ionic strength at moderate concentration (10-1~10-3 mol/L). There were different sorption edges of the two phosphates and the sorption edge of ZrP2O7 was at lower pH than that of Zr2O(PO4)2, which was determined possibly by the mole ratio(r= P/Zr). However there were no significant influences on the sorption of UO22+ on ZrP2O7 and Zr2O(PO4)2 in the presence of fulvic acid and the simple organic compounds.
     The sorption processes of U(VI) onto ZrP2O7 and Th(IV) onto Zr2O(PO4)2 were investigated in the fifth and sixth chapter, respectively. The results showed that sorption processes were influenced by time and can be described accurately by the pseudo-second order rate model. The sorption processes were strongly affected by pH, solid-to-liquid ratio (m/V), the species of electrolyte in solution and fulvic acid (FA) but was insensitive to ionic strength. The sorption amounts increased as the temperature of the system increased and sorption processes were spontaneous and endothermic. The presence of phosphate or sulfate caused opposite effects on the sorption processes. The sorption amounts decreased significantly in the presence of citrate while enhanced in the presence of FA.
     The sorption behaviors of U(VI) and Th(IV) on Th4(PO4)4P2O7 were studied in the seventh chapter,. The results indicated that the sorption processes were strongly affected by pH and sorption edges of U(VI) and Th(IV) on Th4(PO4)4P2O7 were different. The sorption edge of Th(IV) on Th4(PO4)4P2O7 was at lower pH than that of U(VI) and the sorption amount of Th(IV) on Th4(PO4)4P2O7 was great. The sorption amounts of U(VI) and Th(IV) on Th4(PO4)4P2O7 were enhanced in the presence of FA. There were opposite effects of U(VI) and Th(IV) on Th4(PO4)4P2O7 in the same electrolyte solution and can be thought as different characteristic of U(VI) and Th(IV) in solution.
     The sorption of Eu(III) on Th4(PO4)4P2O7 was investigated in the eighth chapter. The sorption of Eu(III) on the phosphates was strongly dependent on pH and there was great effect in the presence of citrate. The sorption amounts of Eu(III) on Th4(PO4)4P2O7 can be enhanced in the presence of sulfate and phosphate and the sorption of sulfate and phosphate on Th4(PO4)4P2O7 can be found. There were opposite effects of the Eu(III) desorption from Th4(PO4)4P2O7 in the presence of sulfate and phosphate when the citrate was added into the solution system. The sorption of Eu(III) on Th4(PO4)4P2O7 can be enhanced in the presence of FA and the sorption of FA on Th4(PO4)4P2O7 also increased with the concentration of FA in the solution increasing.
引文
[1]罗上庚.放射性废物处理与处置[M].中国环境科学出版社.2007.
    [2]徐国庆,原型处置库.世界核地质科学,2010,27:41-46.
    [3]王驹,徐国庆,金远新.论高放废物地质处置库围岩.世界核地质科学,2006,23:222-231.
    [4]车申,杨庆坤,王长轩,魏芳.高放废物地质处置处置库选址规范的研究现. 状.大众科技,2009,124(12):92-95.
    [5]王长轩刘晓东刘平辉.高放废物地质处置库粘土岩场址研究现状.辐射防护,2008,28:310-316
    [6]黄贤芳,何建国,徐国庆.高放废物地质处置库花岗岩体预选研究.世界核地质科学,2009,26:219-227.
    [7]Bernard P, Brandel V, Dacheux S, Jaulmes S, Launay, S, Lindecker C, Genet M, Louer D, Quarton M. Th4(PO4)4P2O7, a new Thorium Phosphate:Synthesis, Characterization, and Structure Determination. Chem Mater,1996,8:181-188.
    [8]Sales B C, White C W, Broater L A. Nucleae Chem. Waste Management,1983,4, 281.
    [9]McCarthy G J, White W B, Pfoertsch D E. Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal. Mater Res Bull,1978,13:1239-1245.
    [10]Pepin J G, Vance E R, McCarthy G J. The crystal chemistry of cerium in the monazite structure-type phase of tailored-ceramic nuclear waste forms. Mater Res Bull,1981,16:627-633.
    [11]Kelly K L, Beall G W, Young J P, Boatner L A. In The Scientific Basis for Nuclear Waste Management, Moore J G Ed. Plenum; New York,1981,3:189.
    [12]Eyal Y, Olander D R. Leaching of uranium and thorium from monazite:I. Initial leaching. Geochim Cosmochim,1990,54:1867-1877.
    [13]Olander D R, Eyal Y. Leaching of uranium and thorium from monazite:Ⅱ. Elemental leaching. Geochim Cosmochim,1990,54:1879-1887.
    [14]Olander D R, Eyal Y. Leaching of uranium and thorium from monazite:III. Leaching of radiogenic daughters. Geochim Cosmochim,1990,54:1889-1896.
    [15]Elouear Z, Bouzid J, Boujelben N, Fek M, Jamoussi F, Montiel A. Heavy metal removal from aqueous solutions by activated phosphate rock. J Hazardous Materials, 2008,156:412-420.
    [16]Xinde Cao, Lena Q Ma, Dean R Rhue, Chip S Appel. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution,2004,131: 435-444.
    [17]Perrone J, Fourest B, Giffaut Eric, Surface Characterization of Synthetic and Mineral Carbonate Fluoroapatites, J Colloid and Interface Sci,2002,249:441-452.
    [18]Dacheux N, Podor R, Brandel V, Genet M, Investigations of systems ThO2-MO2-P2O5 (M= U, Ce, Zr, Pu). Solid solutions of thorium-uranium(IV) and thorium-pluonium(IV) phosphate-diphosphates. J. Nuclear Materials,1998,252:179-186.
    [19]Brandel V, Dacheux N, Pichot E, Genet M, Chemical conditions of Synthesis of Th4(PO4)4P2O7. Preparation of thorium Phosphate-Hydrogenphosphate as Precursor. Chem Mater,1998,10:345-350.
    [20]Dacheux N, Chassigneux B, Brandel V, Coustumer P Le, Genet M, Cizeron G.. Reactive Sintering of the Thorium Phosphate-Diphosphate. Study of physical, Thermal, and Thermomechanical Properties and Chemical Durability during Leaching Tests. Chem Mater,2002,14:2953-2961.
    [21]Benard P, Louer D, U(UO2)(PO4)2, a New Mixed-Valence Uranium orthophosphate:Ab Initio Structure Determination from Photoelectron Spectra, Chem Mater,1994,6:1049-1058.
    [22]Cavellec R, Lucas C, Simoni E, Hubert S. Structure Characterization of Sorption Complexes of Cm (III) at the Phosphate Minerals-Soluntion Interface Using Laser Spectrofluorimetry. Radiochim Acta,1998,82:221-225.
    [23]Clavier N, Kerdaniel E F, Dacheux N, Coustumer P, Drot R. Behavior of thorium-uranium (VI) phosphate-diphosphate sintered samples during leaching tests. Part Ⅱ. Saturation processes. J Nuclear materials,2006,349:304-316.
    [24]Zamin M, Shaheen T, Dyer A. Use of Amorphous Zirconium phosphate for the treatment of radioactive waste, J Radioanal Nucl Chem,1994,182:345-348.
    [25]Song Y J, Zhang H, Yang Q L, Zhao A M, Preparation, Characterization of Crystalline Zirconium Phosphates and Study on Their Acid Stability and Ion Exchange Behavior with Uranyl ions, J Radioanal Nucl Chem,1995,198:375-384.
    [26]Jiang P J, Pan B J, Pan B C, Zhang W M, Zhang Q R. A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. Colloids and Surfaces A:Physicochem Eng Aspects,2008,322:108-112.
    [27]Pan B C, Zhang Q R, Du W, Zhang W M, Pan B J, Zhang Q J, Xu Z W, Zhang Q X. Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism, Water Reseach,2007,41:3103-3111.
    [28]Drot R, Lindecker C, Fourest B, Simoni, E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem,1998,1105-1109.
    [29]Drot R, Simoni E, Alnot M, Ehrhardt J.J. Structural environment of uranium (VI) and Europium (III) species sorbed onto phosphate surfaces:XPS and optical spectroscopy studies. J Colloid Interface Sci,1998,205:410-416.
    [30]Drot R, Simoni E. Uranium (VI) and Europium (III) Speciation at the Phosphate Compounds-Solution Interface. Langmuir,1999,15:4820-4827.
    [31]Finck N, Drot R, Mercier-Bion F, Simoni E, Catalette H. Temperature effects on the acidity properties of zirconium diphosphate. J Colloid Interface Sci,2007,321: 230-236.
    [32]Garcia-Gonzalez N., Ordonez-Regil E., Simoni E., Barrera-Diaz C. E. Effect of organic acids on sorption of uranyl ions in solution onto ZrP2O7. J Radioanal Nucl Chem, in press.
    [33]Almazan-Torres M G, Drot R, Mercier-Bion F, Catalette H, Auwer C D, Simoni E. Surface complexation modeling of uranium (VI) sorbed onto zirconium oxophosphate versus temperature:Thermodynamic and structural approaches. J Colloid Interface Sci,2008,323:42-51.
    [34]王冬林,钱丽娟,张茂林,许君政,吴王锁Eu(Ⅲ)和Am(Ⅲ)在Th4(PO4)4P2O7上的吸附行为[J].核化学与放射化学,2008,30:156-161.
    [35]Ordonez-Regil E, Drot R, Simoni E. Surface complexation of uranium (VI) sorbed onto Lanthanum monophosphate. J Colloid Interface Sci,2003,263:391-399.
    [36]Ordonez-Regil E, Drot R, Simoni E, Ehrhardt J J. Sorption of uranium (VI) onto Lanthanum phosphate surfaces. Langmuir,1999,18:7977-7984.
    [37]近藤精一,石川达雄,安部郁夫.吸附科学(第二版)(M).化学工业出版社.2006.
    [38](美)格雷格(Gregg S.J.),(美)辛(Sing K.S.W.)著.《吸附、比表面与孔隙率》(M).化学工业出版社.1989.
    [39]Khan S A, Rehman R, Khan A, Sorption of strontium on bentonite, Waste Management,1995,15:641-650.
    [40]Yahya S A D, Musa I E B, Ayman A I, Majeda A K, Gavin M W, Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents:Equilibrium and kinetic studies, Water Research,2006,40:2645-2658.
    [41]Guo Z J, Yan C, Xu J, Wu W S. Sorption of U(VI) and phosphate on y-alumina: Binary and ternary sorption systems. Colloids surf A,2009,336:123-129
    [42]Sheng G D, Hu J, Wang X K. Sorption properties of Th(IV) on the raw diatiomite-Effect of contact time, pH, ionic strength and temperature. Appl Radiat Isot,2008,66:1313-1320.
    [43]Fan Q H, Tan X L, Li J X, Wang X K, Wu W S, Monsvon G. Sorption of Eu(III) on Attapulgite Studied by Batch, XPS and EXAFS Techniques. Environ Sci Technol, 2009,43:5776-5782
    [44]Tan X L, Fan Q H, Wang X K, Grambow B. Eu(III) Sorption to TiO2 (Anatase and Rutile):Batch, XPS, and EXAFS Study. Environ Sci Technol,2009,43: 3115-3121
    [45]Chen C L, Wang X K. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium (IV) onto γ-Al2O3. Appl Geochem,2007,22: 436-445
    [46]Tan X L, Wang X K, Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol,2008,42:6532-6537
    [47]范桥辉.放射性核素Eu(Ⅲ)、Th(Ⅳ)和重金属离子Pb(Ⅱ)、Ni(Ⅱ)在凹凸棒石上吸附研究.兰州大学硕士毕业论文.2008.
    [48]Hayes K F, Leckie J O. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface. J Colloid Interface Sci,1987,115; 564-572.
    [49]Zhang H X, Dong Z, Tao Z Y. Sorption of thorium (IV) ions on gibbsite:effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid. Colloids surf A,2006,278:46-52
    [50]傅献彩,沈文霞等编,物理化学(下)[M],北京:高等教育出版社,1990.
    [51]Ho Y S, Wase D A J, Forster C F, Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat, Environ Technol,1996,17:71-77.
    [52]Ho Y S, McKay G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res,2000,34:735-742.
    [53]Bertell F E, Thomas T L, Fu Y, Thermodynamics of Adsorption from Solutions. IV. Temperature Dependence of Adsorption, J Phys Chem,1951,55:1456-1462.
    [54]赵振国,赵子建,顾惕人.自溶液中的吸附Ⅻ.活性炭自水中吸附芳香化合物的热力学研究.化学学报,1985,43:813-818.
    [55]耿信笃,叶亚丽.液/固吸附中的溶质计量置换吸附模型.中国科学(B辑)1988,6:571-579。
    [56]Geng X P, Geng X D, Liquid-solid adsorption from binary component mixture, Chinese J Chem,1993,11:385-394.
    [1]Drot R, Lindecker C, Fourest B, Simoni, E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem,1998,1105-1109.
    [2]Noh J S, Schwarz J A. Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interface Sci,1988,130:157-164.
    [3]李湛.放射性示踪法研究镍在大鼠体内的药动参数与镍镉联合制毒机理的研究.兰州大学硕士毕业论文,2008.
    [1]Stumm W, Morgan J J, Aquatic chemistry:Chemical Equilibrium and rates in natural waters-3rded, New York, John Wiley & Sons,1996.
    [2]Sposito G. Point of zero of charge. Environ Sci Technol,1998,32:2815-2819.
    [3]Garcia-Gonzalez N, Ordonez-Regil E, Simoni E, Barrera-Diaz C E. Effect of organic acids on sorption of uranyl ions in solution onto ZrP2O7. J Radioanal Nucl Chem, in press.
    [4]Brandel V, Dacheux N, Pichot E, Genet M. Chemical conditions of Synthesis of Th4(PO4)4P2O7. Preparation of thorium Phosphate-Hydrogenphosphate as Precursor. Chem Mater,1998,10:345-350.
    [5]Finck N, Drot R, Mercier-Bion F, Simoni E, Catalette H. Temperature effects on the acidity properties of zirconium diphosphate. J Colloid Interface Sci,2007,321: 230-236.
    [6]Bernard P, Brandel V, Dacheux S, Jaulmes S, Launay, S, Lindecker C, Genet M, Louer D, Quarton M. Th4(PO4)4P2O7, a new Thorium Phosphate:Synthesis, Characterization, and Structure Determination. Chem Mater,1996,8:181-188.
    [7]Drot R, Lindecker C, Fourest B, Simoni, E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem,1998,1105-1109.
    [8]Almazan-Torres M G, Drot R, Mercier-Bion F, Catalette H, Auwer C D, Simoni E. Surface complexation modeling of uranium (VI) sorbed onto zirconium oxophosphate versus temperature:Thermodynamic and structural approaches. J Colloid Interface Sci,2008,323:42-51.
    [9]Avena M J and Pauli C P D. Proton adsorption and electrokinetics of an argentinean montmorillonite. J Colloid Interface Sci,1998,202:195-204.
    [1]Drot R, Lindecker C, Fourest B, Simoni, E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem,1998,1105-1109.
    [2]Drot R, Simoni E, Alnot M, Ehrhardt J.J. Structural environment of uranium (VI) and Europium (Ⅲ) species sorbed onto phosphate surfaces:XPS and optical spectroscopy studies. J Colloid Interface Sci,1998,205:410-416.
    [3]Bernard P, Brandel V, Dacheux S, Jaulmes S, Launay, S, Lindecker C, Genet M, Louer D, Quarton M. Th4(PO4)4P2O7, a new Thorium Phosphate:Synthesis, Characterization, and Structure Determination. Chem Mater,1996,8:181-188.
    [4]Cavellec R, Lucas C, Simoni E, Hubert S. Structure Characterization of Sorption Complexes of Cm (III) at the Phosphate Minerals-Soluntion Interface Using Laser Spectrofluorimetry. Radiochim Acta,1998,82:221-225.
    [5]Almazan-Torres M G, Drot R, Mercier-Bion F, Catalette H, Auwer C D, Simoni E. Surface complexation modeling of uranium (VI) sorbed onto zirconium oxophosphate versus temperature:Thermodynamic and structural approaches. J Colloid Interface Sci,2008,323:42-51.
    [6]Drot R, Simoni E. Uranium(VI) and Europium(III) Speciation at the Phosphate Compounds-Solution Interface. Langmuir,1999,15:4820-4827.
    [7]Tao Z Y, Chu T W, Du Z J, Dai X X, Gu Y J. Effect of Fulvic acid on sorption of U(VI), Zn, Yb, I and Se(Ⅳ) onto Oxide of Aluminum, Iron and Silicon. Appl Geochem,2000,15:133-139.
    [8]Buerge-Weirich D, Behra P, Sigg L. Adsorption of copper, nickel, and cadmium on goethite in the presence of organic ligands. Aquatic Geochemistry,2003,9:65-85.
    [9]Benyahya L, Garnier J M, Effect of salicylic acid upon trace-metal sorption (Cd(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ)) onto alumina, silica, and kaolinite as a function of pH. Environ Sci Technol,1999,33:1398-1407.
    [1]Drot R, Lindecker C, Fourest B, Simoni, E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem,1998,1105-1109.
    [2]Drot R, Simoni E, Alnot M, Ehrhardt J J. Structural environment of uranium (VI) and Europium (Ⅲ) species sorbed onto phosphate surfaces:XPS and optical spectroscopy studies. J Colloid Interface Sci,1998,205:410-416.
    [3]Bernard P, Brandel V, Dacheux S, Jaulmes S, Launay, S, Lindecker C, Genet M, Louer D, Quarton M Th4(PO4)4O2O7, a new Thorium Phosphate:Synthesis, Characterization, and Structure Determination. Chem. Mater 1996,8:181-188.
    [4]Cavellec R, Lucas C, Simoni E, Hubert S. Structure Characterization of Sorption Complexes of Cm (III) at the Phosphate Minerals-Solution Interface Using Laser Spectrofluorimetry. Radiochim Acta,1998,82:221-225.
    [5]Ho Y.S., Wase D.A.J., Forster C.F., Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat, Environ. Technol,1996,17:71-77.
    [6]Ho YS, McKay G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res,2000,34:735-742.
    [7]Zhang H X, Dong Z, Tao Z Y. Sorption of thorium (IV) ions on gibbsite:effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid. Colloids surf A,2006,278:46-52
    [8]Tan X L, Fan Q H, Wang X K, Grambow B. Eu(III) Sorption to TiO2 (Anatase and Rutile):Batch, XPS, and EXAFS Study. Environ Sci Technol,2009,43:3115-3121
    [9]Chen C L, Wang X K. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium (IV) onto γ-Al2O3. Appl Geochem,2007,22: 436-445
    [10]Tan X L, Wang X K, Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol,2008,42:6532-6537
    [11]Fan Q H, Wu W S, Song X P, Xu J Z, Niu Z W. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th (Ⅳ) on attapulgite. Radiochim Acta,2008,96:159-165
    [12]Fan Q H, Tan X L, Li J X, Wang X K, Wu W S, Monsvon G. Sorption of Eu(III) on Attapulgite Studied by Batch, XPS and EXAFS Techniques. Environ Sci Technol, 2009,43:5776-5782
    [13]Payne T E, Uranium (VI) interaction with mineral surfaces:controlling factors and surface complexation modeling. Dissertation for the Doctoral Degree. University of New South Wales,1999.
    [14]Guo Z J, Yan C, Xu J, Wu W S. Sorption of U(VI) and phosphate on γ-alumina: Binary and ternary sorption systems. Colloids surf A,2009,336:123-129
    [15]Sheng G D, Hu J, Wang X K. Sorption properties of Th(IV) on the raw diatiomite-Effect of contact time, pH, ionic strength and temperature. Appl Radiat Isot,2008,66:1313-1320.
    [1]Guo Z J, Niu L J, Tao Z Y. Sorption of Th(IV) ions onto TiO2:Effects of contact time, ionic strength, thorium concentration and phosphate. J Radioanal Nucl Chem, 2005,266:333-338.
    [2]Zhang H X, Yuan J Q, Tao Z Y. Effects of phosphate and Cr3+ on the sorption and transport of Th(IV) on a silica column. J Radioanal Nucl Chem,2007,273:465-471.
    [3]Zhang H X, Dong Z, Tao Z Y, Sorption of thorium (IV) ions on gibbsite:Effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid. Colloids surf. A,2006,278:46-52.
    [4]Fan Q H, Wu W S, Song X P, Xu J Z, Hu J, Niu Z W. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV)on attapulgite. Radiochim Acta,2008,96:159-165.
    [5]Sheng G D, Hu J, Wang X K, Sorption properties of Th(IV) on the raw diatomite-Effects of contact time, pH, ionic strength and temperature. Appl Radiat Isot,2008,66:1313-1320.
    [6]Li W J, Tao Z Y, Comparative study on Th(IV) sorption on alumina and silica from aqueous solutions. J Radioanal Nucl Chem,2002,254:187-192.
    [7]Chang P, Yu S, Chen T, Ren A, Chen C, Wang X. Effect of pH, ionic strength, fulvic acid and humic acid on sorption of Th(IV) on Na-rectorite. J Radioanal Nucl Chem,2007,274:153-160.
    [8]Humelnicu D, Drochioiu G, Sturza M I, Cecal A, Popal K. Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem,2006,270:637-640.
    [9]Tan X L, Wang X K, Chen C L, Sun A H. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Appl Radiat Isot,2007, 65:375-381.
    [10]Wu W S, Fan Q H, Xu J Z, Niu Z W, Lu S S, Sorption-desorption of Th(IV) on attapulgite:Effects of pH, ionic strength and temperature. Appl Radiat Isot,2007,65: 1108-1114.
    [11]Ho Y S, Wase D A J, Forster C F, Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat, Environ. Technol.,1996,17:71-77.
    [12]Ho Y S, McKay G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res,2000,34:735-742.
    [13]Ordonez-Regil E, Drot R, Simoni E. Surface complexation of uranium (VI) sorbed onto Lanthanum monophosphate. J Colloid Interface Sci,2003,263:391-399.
    [14]Payne T E, Uranium (VI) interaction with mineral surfaces:controlling factors and surface complexation modeling (PHD). University of New South Wales,1999.
    [15]Cromeres L, Moulin V, Fourest B, Guillaumont R, Giffaut E, Sorption of thorium onto hematite colloids. Radiochim Acta,1998,82:249-256.
    [16]Osthols E, Bruno J, Grenthe L, On the influence of carbonate on mineral dissolution:III. The solubility of microcrystalline ThO2 in CO2-H2O media. Geochim Cosmochim Acta,1994,58:613-623.
    [17]Jakobsson A M. Measurement and Modeling of Th Sorption onto TiO2. J Colloid Interface Sci,1999,220:367-373.
    [18]Bradbury M H, Baeyens B, Sorption of Eu on Na-and Ca-montmorillonites: Experimental investigations and modeling with cation exchange and surface complexation. Geochim Cosmochim Acta,2002,66:2325-2334.
    [19]Das D K, Parthak P N, Kumar S, Manchanda V K, Sorption behavior of Am3+ on suspended pyrite. J Radioanal Nucl Chem,2009,281:449-455.
    [20]Parthak P N, Choppin G R, Sorption of Am3+ cations on suspended silicate: Effects of pH, ionic strength, complexing anions, humic acid and metal ions. J Radioanal Nucl Chem,2007,274:517-523.
    [21]Guo Z J, Chao Y, Xu J, Wu W S, Sorption of U(VI) and phosphate on γ-alumina: Binary and ternary sorption systems Colloids surf A,2009,336:123-129.
    [22]Chen C L, Wang X K, Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium (IV) ontoγ-Al2O3. Appl Geochem,2007,22: 436-445.
    [1]Dacheux N, Podor R, Brandel V, Genet M. Investigations of systems ThO2-MO2-P2O5 (M= U, Ce, Zr, Pu). Solid solutions of thorium-uranium(IV) and thorium-plutonium(IV) phosphate-diphosphates. J Nuclear Materials,1998,252: 179-186.
    [2]Brandel V, Dacheux N, Pichot E, Genet M. Chemical conditions of Synthesis of Th4(PO4)4P2O7. Preparation of thorium Phosphate-Hydrogen phosphate as Precursor. Chem. Mater,1998,10:345-350.
    [3]Dacheux N, Chassigneux B, Brandel V, Coustumer P Le, Genet M, Cizeron G. Reactive Sintering of the Thorium Phosphate-Diphosphate. Study of physical, Thermal, and Thermomechanical Properties and Chemical Durability during Leaching Tests. Chem Mater,2002,14:2953-2961.
    [4]Benard P, Louer D. U(UO2)(PO4)2, a New Mixed-Valence Uranium orthophosphate:Ab Initio Structure Determination from Photoelectron Spectra. Chem Mater,1994,6:1049-1058.
    [5]Cavellec R, Lucas C, Simoni E, Hubert S. Structure Characterization of Sorption Complexes of Cm (III) at the Phosphate Minerals-Soluntion Interface Using Laser Spectrofluorimetry. Radiochim Acta,1998,82:221-225.
    [6]Clavier N. Kerdaniel E F, Dacheux N, Coustumer P, Drot R. Behavior of thorium-uranium (VI) phosphate-diphosphate sintered samples during leaching tests. Part II. Saturation processes. J Nuclear materials,2006,349:304-316.
    [7]Drot R, Lindecker C, Fourest B, Simoni, E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem,1998,1105-1109.
    [8]Drot R, Simoni E, Alnot M, Ehrhardt J J. Structural environment of uranium (VI) and Europium (III) species sorbed onto phosphate surfaces:XPS and optical spectroscopy studies. J Colloid Interface Sci,1998,205:410-416.
    [9]Drot R, Simoni E. Uranium (VI) and Europium (III) Speciation at the Phosphate Compounds-Solution Interface. Langmuir,1999,15:4820-4827.
    [10]王冬林,钱丽娟,张茂林,许君政,吴王锁Eu(Ⅲ)和Am(Ⅲ)在Th4(PO4)4P2O7 上的吸附行为.核化学与放射化学,2008,30:156-161.
    [11]Jakobsson A M. Measurement and Modeling of Th Sorption onto TiO2. J Colloid Interface Sci,1999,220:367-373.
    [12]Tan X L, Fan Q H, Wang X K, Grambow B. Eu(III) Sorption to TiO2 (Anatase and Rutile):Batch, XPS, and EXAFS Studies. Environ Sci Technol,2009,43: 3115-3121
    [13]Guo Z J, Niu L J, Tao Z Y. Sorption of Th(IV) onto TiO2:Effects of contact time, ionic strength, thorium concentration and phosphate, J Radioanal Nucl Chem,2005, 266:333-338.
    [14]Osthols E, Thorium sorption on amorphous silica, Geochim Cosmochim Acta, 1995,7:1235-1249.
    [15]Chen C L, Wang X K. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium (IV) onto γ-Al2O3. Appl Geochem,2007,22: 436-445.
    [16]Zhang H X, Dong Z, Tao Z Y. Sorption of thorium (IV) ions on gibbsite:effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid. Colloids surf A,2006,278:46-52.
    [17]Yang S T, Li J X, Lu Y, Chen Y X, Wang X K. Sorption of Ni(II) on GMZ bentonite:Effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl Radiat Isot,2009,67:1600-1608.
    [18]Fan Q H, Shao D D, Hu J, Wu W S, Wang X K. Comparison of Ni2+ sorption to bare and ACT-Graft attapuligite:Effect of pH, temperatures and foreign ions. Surface Science,2008,602:778-785.
    [1]Naveau A, Monteil-Rivera F. Sorption of europium on a goethite surface: influence of background electrolyte. J Cont Hydrol,2005,77:1-16.
    [2]Tan X L, Fan Q H, Wang X K, Grambow B. Eu(III) Sorption to TiO2 (Anatase and Rutile):Batch, XPS, and EXAFS Studies. Environ Sci Technol,2009,43:3115-3121.
    [3]Tan X L, Wang X K, Geckeis H, Rabung T H. Sorption of Eu(III) on Humic acid or Fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ Sci Technol,2008,42:6532-6537.
    [4]Fan Q H, Tan X L, Li J X, Wang X K, Wu W S, Montavon G. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFA techniques. Environ Sci Technol, 2009,43:5776-5782.
    [5]Bradbury M H, Baeyens B. Sorption of Eu on Na- and Ca- montmorillonites: Experimental investigations and modeling with cation exchange and surface complexation. Geochim Cosmochim Acta,2002,66:2325-2334.
    [6]Drot R, Simoni E. Uranium(IV) and Europium(III) Speciation at the Phosphate Compounds-Solution Interface. Langmuir,1999,15:4820-4827.
    [7]Tertre E, Berger G, Simoni E, Caster S, Giffaut E, Loubet M, Catlette H. Europium retention onto clay minerals from 25 to 150℃:Experimental measurements, spectroscopy features and sorption modeling. Geochim Cosmochim Acta,2006,70: 4563-4578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700