8个绵羊品种(品系)多羔性候选基因多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绵羊的繁殖性能受到基因、年龄、季节和营养等的影响,其中基因是影响绵羊多胎性状的一个重要因素。绵羊多胎性状由多个基因控制,在这多个基因中可能存在一个主基因,并且不同的绵羊品种,控制多胎性状的主基因可能是不同的。本研究采用候选基因法对BMPR-IB基因的A746G突变、BMP15基因的FecXG和FecXL位点、GDF9基因的外显子1和外显子2、PRLR基因的内含子9和外显子10、ESR基因的外显子1以及IGF-I基因的5`-侧翼区在小尾寒羊、中国美利奴(新疆型)多胎品系、中国美利奴(新疆型)肉用品系、中国美利奴(新疆型)体大品系、中国美利奴(新疆型)、德国肉用美利奴、萨福克以及陶赛特8个品种(品系)中约330例的多态性及其与平均窝产羔数间的关系进行了研究。研究结果表明:(1)采用PCR-RFLP技术除在小尾寒羊中检测到BMPR-IB A746G突变外,同时在中国美利奴(新疆型)多胎品系、肉用品系以及萨福克中存在该突变。但只有在小尾寒羊群中B等位基因为优势基因。BB基因型小尾寒羊平均窝产羔数比B+基因型和++基因型多0.97只和1.89只(P<0.01),B+基因型母羊平均窝产羔数比++基因型多0.92只(P<0.01)。B等位基因与小尾寒羊的多羔性有关,可应用于小尾寒羊多羔个体的选育工作。但在中国美利奴(多胎)品系中,BMPR-IB A746G突变可能不是影响其繁殖性能的主基因。(2)在小尾寒羊等8个品种(品系)中未发现BMP15 FecXG多态性;但在FecXL所在区域发现一个G1047A突变,该突变与FecXL(G962A)不同,不影响编码氨基酸,是在BMP15中新发现的一个突变,该突变也不影响小尾寒羊等7个品种(品系)的产羔数。(3)在小尾寒羊等8个品种(品系)GDF9基因外显子1编码区未发现多态性。在GDF9外显子2发现G4突变,该突变不影响小尾寒羊等7个品种(品系)的平均产羔数。(4)在绵羊PRLR内含子9的第259bp处,存在一个C→T,在小尾寒羊,BB基因的平均产羔数分别较AA和AB基因型提高0.81和0.87只(P<0.05);在PRLR外显子10的第304bp处存在一个G→A突变,该突变导致PRLR第387位氨基酸残基由Glu突变为Lys。该突变使中国美利奴(新疆型)多胎品系中AB基因型的平均产羔数较AA基因型和BB基因型增加0.58和0.80只(P<0.05)。在PRLR外显子10第571bp、585bp和606bp处分别存在G→A、C→G和C→T突变;其中前2处突变分别导致PRLR的第476位氨基酸由Ala突变为Thr;第480位氨基酸由Ser突变为Arg。其中Ala476Thr突变导致小尾寒羊的AB基因型的平均窝产羔数显著高于AA基因型的窝产羔数,增加0.8只(P<0.05)。(5)采用2对PCR引物对绵羊ESR外显子1进行PCR-SSCP分析,在该分析区域未发现多态性。(6)在绵羊IGF-I 5`端侧翼区,即外显子1起始密码子ATG上游-651bp和-649bp处分别发生了G→C和G→A的突变。在小尾寒羊AA基因型和AB基因型的产羔数较BB基因型高1.2和1.45只(P<0.05)。在中国美利奴(新疆型)多胎品系中,AB基因型有增加产羔数的趋势,AB基因型较AA基因型的产羔数高0.67只(P=0.077)。其它品种不同基因型的产羔数之间无显著差异。本研究结果提示:绵羊多羔个体的选择有品种差异,应根据不同品种(系)各自的多羔基因型进行选择。小尾寒羊多羔个体可选择BMPR-IB基因A746G位点的BB基因型,中国美利奴(新疆型)多胎品系多羔个体可选择PRLR基因外显子10 G304A的AB基因型。控制其它绵羊品种多羔性的主基因还需要进一步研究。
The prolificacy of sheep was affected by many factors, such as genetic, age, season, nutrition, and so on. Genetic was the most important one. In some instances, the differences in ovulation rate have been attributed to the action of a single or a closely-linked group of genes. Mutations in these genes may change litter size of sheep. In the present research, the polymorphism of A746G of bone morphogenetic protein receptor IB (BMPR-IB), FecXG and FecXL locus of bone morphogenetic protein 15 (BMP15), exon 1 and exon 2 of growth differentiation factor 9 (GDF9), intron 9 and exon 10 of prolactin receptor (PRLR), exon 1 of estrogen receptor (ESR) and the 5` flanking region of insulin-like growth factor-I (IGF-I) gene in 330 sheep of eight breeds or strains, which including Small Tail Han (STH), Poll Dorset (PD), Suffolk (S) Germany Mutton Merino (GMM) and Chinese Merino (Xinjiang type) (including Prolific strain (PS), Meat strain (MS) and Large Frame strain (LFS) ), were detected and the relationship between genotypes and average litter size were analyzed. The results showed that (1) the A746G mutation in BMPR-IB gene was found not only in STH but also in PS, MS and S. Whereas B allele of the A746G mutation was the dominant gene only in STH population. The average litter size of BB genotype was 1.89 and 0.97 greater than those with genotype + + and B+, and B+ was more than 0.92 compare to that of ++ in Han sheep (P<0.01). But the different was not observed in PS. The results indicated that there was a significant positive correlation between B allele and prolificacy in STH, which could be used for the selection the prolificacy individual of STH. However, there was no correlation between B allele and litter size in other breeds or strains. (2) The polymorphism of FecXG locus of BMP15 was not detected in these 8 pupolations. A novel mutation, G1047A, was found in FecXL locus. However the new-found mutation did not affect the coding amino acid of sheep BMP15. There was no correlation between genotypes and average litter size of this locus. (3) The polymorphism in exon 1 of GDF9 was not found by PCR-SSCP in the 8 breeds/strains, but the known G4 mutation in the exon 2 of GDF9 gene was detected in these breeds/strains. However, further analysis displayed that the correlation between genotypes and litter size did not exist. (4) A C→T at No.259bp in PRLR intron 9 was found. The average litter size of BB genotype of this mutation was 0.81 and 0.87 more than that with AA and AB genotype in STH (P<0.05). In addition, four mutations, including G→A, G→A, C→G, and C→T, at No.304, 571, 585 and 606bp in PRLR exon 10 were found, respectively. Among these mutations, 304G→A, 571G→A and 585C→G leaded Glu changed to Lys at 378, Ala to Thr at 476, Ser to Arg at 480 in sheep PRLR, respectively. For the 304G→A, the average litter size of AB genotype was 0.58 and 0.80 greater than those with AA and BB genotype in PS population (P<0.05). In STH, the average litter size of the AB was 0.80 greater than that of AA genotype of 571G→A mutation. (5) Single nucleotide polymorphisms of exon 1 of ESR gene were detected by PCR-SSCP. No polymorphism was detected in the amplified region in the eight sheep breeds/strains. (6) PCR-SSCP analysis and DNA sequencing of the 5’flanking region of IGF-I revealed that there were two mutations, G→C and G→A, located at -651bp and -649bp upstream of initiator ATG. In STH, the average litter size of the AA and AB was 1.2 and 1.45 greater than that of BB genotype (P<0.05). In PS strain, the mutation has the tendency to increase the litter size. The average litter size of AB genotype was 0.67 greater than that of AA genotype in PS (P=0.077). In other population, the difference was not detected.
     These results suggested that species differences must be considered for prolificacy individual selection. For genetic selection, respective prolificacy genotype should be based on, such as BB genotype of A746G mutation in BMPR-IB gene for STH, AB genotype of G304A mutation in PRLR exon 10 for PS. For other sheep breeds or strains, the major genes controlling prolificacy require further study.
引文
[1].白杰. 2007.新疆策勒黑羊和多浪羊多胎候选基因的研究[D].石河子大学硕士学位论文.
    [2].毕晓丹,储明星,金海国,方丽,叶素成. 2005.小尾寒羊高繁殖力候选基因ESR的研究[J].遗传学报, 2005, 32 (10) : 1060-1065.
    [3].陈晓军,钟发刚,罗淑萍,王新华. 2004.多浪羊BMPR-IB基因多态性的初步研究[J].新疆农业科学, 41(1):6-9.
    [4].陈勇,雒秋江,李登忠,张亚军,杨风云,杨菊清,朱文渊. 2008. 6群不同品种(系)绵羊BMPR-IB基因多态性及与产羔数的关系研究[J].新疆农业大学学报, 31(2):12-16.
    [5].储明星. 2001.猪产仔数性状候选基因的研究进展[J].畜牧与兽医, 33(1):36-37.
    [6].储明星,李碧侠,王金玉. 2003.一种预测羊产羔数的方法及其应用[P].中国, 03104508.1, 2003.2.17.
    [7].储明星,毕晓丹,金国海. 2004a.一种利用单核苷酸多态性预测绵羊窝平均产羔数的方法[P].中国, 200410073601.1, 2004.8.30.
    [8].储明星,牟玉莲,孙少华. 2004b.利用单核苷酸多态性预测绵羊窝平均产羔数的方法[P].中国, 200410074434.2, 2004.9.15.
    [9].储明星,成荣,陈国宏,方丽,叶素成. 2005a.小尾寒羊和湖羊高繁殖力候选基因BMP15的研究[J].安徽农业大学学报, 32(3):278-282.
    [10].储明星,桑林华,王金玉,方丽,叶素成. 2005b.小尾寒羊高繁殖力候选基因BMP15和GDF9的研究[J].遗传学报, 32(1):38-45.
    [11].储明星,成荣,陈国宏,方丽,叶素成. 2005c.小尾寒羊和湖羊高繁殖力候选基因BMP15的研究[J].安徽农业大学学报, 32 (3) : 278-282.
    [12].储明星,孙洁,陈宏权,方丽. 2007.绵羊BMP15基因FecXL突变的检测[J].中国农学通报, 23(10):85-88.
    [13].储明星,张跟喜,王金玉,方丽,叶素成. 2008.催乳素受体基因多态性及其与部分山羊品种产羔数关系[J].农业生物技术学报, 16(4):725-726.
    [14].狄冉,贾立华,储明星,陈宏权,方丽. 2008.绵羊雌激素受体基因外显子4多态性分析[J].中国畜牧兽医, 35(12): 89-92.
    [15].方美英,刘红林,姜志华,李齐贤,陈杰,吴彦宁. 1999. 6个猪种胰岛素样生长因子-1 (IGF-1)基因座位遗传多态性检测[J].畜牧与兽医, 31(1):12-13.
    [16].管峰,艾君涛,刘守仁,石国庆,程瑞禾,杨利国. 2005a. BMPR-IB和BMP15基因作为湖羊多胎性候选基因的研究[J].家畜生态学报, 26(3):9-12.
    [17].管峰,刘守仁,程瑞禾,代蓉,石国庆,艾君涛,杨利国. 2005b.绵羊BMPR-IB基因多态性及其与中国美利奴肉用多胎品系产羔数和生长发育的相关性[J].南京农业大学学报, 28 (2) : 75-79.
    [18].管峰,艾君涛,庞训胜,刘守仁,石国庆,杨利国. 2005c.绵羊GDF9和BMP15基因多态性检测[J].生命科学研究, 9(2):184-188.
    [19].郭晓红,储明星,周忠孝,方丽,叶素成. 2006.小尾寒羊高繁殖力候选基因RARG的研究[J].畜牧兽医学报, 37 (8):756-760.
    [20].何远清,郭晓红,王金玉,储明星,方丽,叶素成,周忠孝. 2006.小尾寒羊高繁殖力候选基因RBP4的研究[J].畜牧兽医学报, 37 (7):646-649.
    [21].贾存灵. 2005.小尾寒羊多胎性状主要候选基因及繁殖相关基因表达量研究[D].中国农业大学博士学位论文.
    [22].蒋英. 1986.中国美利奴羊由国家命名验收[J].中国草食动物, 2: 41
    [23].柳淑芳,姜运良,杜立新. 2003. BMPR-IB和BMP15基因作为小尾寒羊多胎性能候选基因的研究[J].遗传学报, 30(8): 755-760.
    [24].柳广斌. 2008.多浪羊高繁殖力候选基因研究[D].新疆农业大学硕士学位论文.
    [25].刘凤丽,刘永斌,王峰,王瑞,田春英,刘美霞,魏建民,荣威恒. 2007.中国部分绵羊品种BMPR-IB基因RFLP多态性的研究[J].华北农学报, 22 (4):151-154.
    [26].刘源,金岩. 2000. BMPs受体的生物学特性和作用机制[J].牙体牙髓牙周病学杂志, 10(3): 177-180.
    [27].刘永斌,王峰,田春英,莎仁格日乐,刘美霞,荣威恒. 2008.绵羊BMP15基因外显子单核苷酸多态性研究[J].中国草食动物, 28(1): 3-5.
    [28].刘忠慧. 2006.小尾寒羊高繁殖力候选基因GnRHR、BMP15和BMPR-IB的研究[D].扬州大学硕士学位论文.
    [29].刘猛,柳晓晓,王金文,曲绪仙,陈华,李晶,柳楠. 2008. 3个绵羊群体BMPR-IB基因多态性与产羔数的相关分析[J].安徽农业科学, 36(16):6680-6681,6686
    [30].刘守仁,邵长发,张凤林,唐玉芬,吕维斌,张伯洪,陈开阳,钟明超. 1994.中国美利奴羊(新疆军垦型)多胎品系的选育研究[J].新疆农业科学, 5: 227-230.
    [31].李广录,赵宗胜,薛安勇,许汉峰,阿米娜. 2007.湖羊繁殖性状相关候选基因的RFLP分析[J].石河子大学学报(自然科学版), 25(6): 706-710.
    [32].李广录. 2008.绵羊繁殖性状相关的几个功能基因的多态性分析[D].石河子大学硕士学位论文.
    [33].李碧侠,储明星,王金玉. 2003.绵羊GDF9基因PCR-SSCP分析[J].遗传学报, 30 (4) : 307-310.
    [34].牟玉莲,储明星,孙少华,方丽,叶素成. 2006.绵羊催乳素受体基因PCR-SSCP分析[J].畜牧兽医学报, 37(10): 956-960.
    [35].萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T. 2002.分子克隆实验指南(第三版)[M].北京:科学出版社.
    [36].许绍斌,陶玉芬,杨昭庆,褚嘉祐. 2002.简单快速的DNA银染和胶保存方法[J].遗传, 24 (3):335-336.
    [37].史洪才,武坚,朱二勇,张志峰,郭志勤. 2006. BMPR-IB基因作为新疆多浪羊多胎性能候选基因的研究[J].中国草食动物, 26(2): 12-14.
    [38].桑林华,储明星,王金玉,方丽,叶素成. 2006.绵羊高繁殖力候选基因BMPR-IA的研究[J].畜牧兽医学报, 37 (9) : 852-857.
    [39].王根林,毛鑫智, Davis G H,赵宗胜,张利军,曾永庆. 2003. DNA分析发现我国湖羊和小尾寒羊存在Booroola (FecB)多胎基因[J].南京农业大学学报, 26 (1):104-106.
    [40].王启贵,钟发刚,李辉,王新华,刘守仁,陈晓军. 2003.绵羊BMPR-IB基因多态性与其产羔数的相关研究[J].草食家畜, 2: 20-23.
    [41].王公金,窦德宇,花卫华,聂晓伟,储国良,徐晓波,赵伟,刘亚柏. 2007. 5个绵羊群体的BMPR-IB基因多态性分析[J].江苏农业学报, 23(5):447-450.
    [42].王军,约日姑. 1998.前景广阔的优良肉用羊-多浪羊[J].草食家畜, 4: 9-11.
    [43].王文君,任军,陈克飞,丁能水,黄路生. 2002.胰岛素样生长因子-1基因多态性与猪部分生产性能的关系[J].畜牧兽医学报, 33 (4) :336-339.
    [44].肖朝庭,狄冉,储明星,傅衍,方丽,马月辉,李奎,徐作鹏. 2008. 5个绵羊品种BMP6基因部分片段的多态及序列分析.畜牧兽医学报, 39 (12) :1631-1639.
    [45].闫亚东. 2004.小尾寒羊BMPR-IB基因单核苷酸多态性及其与产羔性能关系的研究[D].山东农业大学硕士学位论文.
    [46].杨晶. 2006.小尾寒羊GDF9基因和BMP15基因多态性及其与高繁殖力关系的研究[D].中国农业科学院硕士学位论文.
    [47].姚玉昌,田亮,韩红兵,陈学辉,陆明海,郭鹏程,张超峰,李宁,连正兴,李武. 2006.优良的BMPR-IB基因型可提高绵羊冷冻胚胎的受胎效果[J].生物化学与生物物理进展, 33(11): 1074-1079.
    [48].殷子惠,姜运良,樊新忠,王玉;唐辉,岳永生. 2006.小尾寒羊BMPR-IB基因的多态性、效应及连锁分析[J].畜牧兽医学报, 37 (5) : 510-513.
    [49].银晶. 2004.山羊催乳素受体基因内含子Ⅰ和Ⅱ单链构象多态性与产羔数关系的研究[D].山西农业大学硕士学位论文.
    [50].于佐卿,杨博辉,郭健,郎侠,刘建斌,程胜利,孙晓萍. 2008.两种绵羊杂种GDF9基因和FecB基因的多态性及其与产羔数和体重关系的研究[J].中国草食动物, 28(2): 5-8.
    [51].张巧灵,姜俊兵,贺俊平,赫晓燕,耿建军,董常生. 2007.催乳素受体基因与羊驼繁殖性能关系的初探[J].激光生物学报, 16(1):18-21.
    [52].张佳兰,昝林森,申光磊. 2007.牛催乳素受体(PRLR)基因HinfⅠ多态性与奶牛生产性能相关性研究[J].畜牧兽医学报, 38 (9):888-892.
    [53].张跟喜,储明星,王金玉,方丽,叶素成. 2007.催乳素受体基因外显子10多态性及其与济宁青山羊高繁殖力关系的研究[J].遗传, 29(3):329-336.
    [54].赵文生,张亚君. 1997.中国美利奴羊(新疆型)多胎类型的特点及其利用前景[J].中国养羊, 2: 5-6.
    [55].钟发刚,王新华,刘守仁,李辉,陈晓军,尹君亮,倪建宏. 2005.小尾寒羊和新疆多浪羊群体BMPR-IB基因多态性研究[J].中国草食动物, 25 (6) : 15-16.
    [56].钟发刚,王新华,李辉,刘守仁,甘尚权,杨永林,王建华,张永胜. 2006.中国美利奴多胎品系绵羊BMPR-IB基因多态性与排卵数的相关研究[J].中国草食动物, 269(1): 5-6.
    [57].周文然. 2006.小尾寒羊高繁殖力候选基因的研究[D].河北农业大学硕士学位论文.
    [58].朱二勇,史洪才,武坚,刘明军,简子健,白杰,徐新明. 2006. BMPR-IB基因作为绵羊多胎性能候选基因的研究[J].西北农业学报, 15(6):20-23.
    [59].朱玲. 2005.生长分化因子9在卵泡发育中的作用[J].国外医学计划生育分册, 24(2): 75-79.
    [60]. Adam C. L., Gadd T. S., Findlay P. A., and Wathes D. C. 2000. IGF-I stimulation of luteinizing hormone secretion, IGF-binding proteins (IGFBPs) and expression of mRNAs for IGFs, IGF receptors and IGFBPs in the ovine pituitary gland[J]. Journal of Endocrinology, 166(2):247-254.
    [61]. Adashi E. Y., Resnick C. E., D`Ercole A. J., Svoboda M. E., Van Wyk J. J. 1985. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function[J]. Endocrinology Review, 6(3):400-420.
    [62]. Balemans W., Van Hul W. 2002. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators[J]. Developmental Biology, 250(2):231–250.
    [63]. Barzegari A., Atashpaz S., Ghabili K., Nemati Z., Rustaei M. and Azarbaijani R. 2009. Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran[J]. Reproduction in Domestic Animals, [Epub ahead of print].
    [64]. Bignon C., Binart N., Ormandy C., Schuler L. A., Kelly P. A., Djiane J. 1997. Long and short forms of the ovine prolactin receptor: cDNA cloning and genomic analysis reveal that the two forms arise by different alternative splicing mechanisms in ruminants and in rodents[J]. Journal of Molecular Endocrinology, 19 (2), 109-120.
    [65]. Bodensteiner K. J., Clay C. M., Mueller C. L., Sawyer H. R. 1999. Molecular cloning of the ovine growrth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries[J]. Biology of Reproduction, 60(2):381-386.
    [66]. Bodin L., SanCristobal M., Lecerf F., Mulsant P., BibéB., Lajous D., Belloc J. P., Eychenne F., Amigues Y., Elsen J. M. 2002. Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep[J]. Genetics, Selection, Evolution, 34(4):447-464.
    [67]. Bodin L., Lecerf F., Pisselet C., San Cristhal M., Bibe M., and Mulsant P. 2003. How many mutationsare associated with increased ovulation rate and litter size in progeny of Lacaune meat sheep?[C] In Proceedings of the Third International Workshop on Major Genes and QTL in Sheep and Goats: 8-11 December 2003; Toulouse Edited by: Bodin L. CD-ROM communication, 2-11.
    [68]. Braw-Tal R., McNatty K. P., Smith P., Heath D. A., Hudson N. L., Phillips D. J., McLeod B. J. and Davis G. H. 1993. Ovaries of ewes homozygous for the X linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures[J]. Biology of Reproduction, 49(5):895-907.
    [69]. Cassy S., Charlier M., Belair L., Guillomot M., Charron G., Bloch B. and Djiane J. 1998. Developmental expression and localization of the prolactin receptor (PRLR) gene in ewe mammary gland during pregnancy and lactation: estimation of the ratio of the two forms of PRLR messenger ribonucleic acid [J]. Biology of Reproduction, 58 (5) :1290-1296.
    [70]. Chu M. X., Li B. X., Wang J. Y., Ye S. C., Fang L. 2004. Association between PCR-SSCP of growth differentiation factor 9 gene and high prolificacy in Small Tail Han sheep[J]. Animal Biotechnology, 15(2):111-120.
    [71]. Chu M. X., Liu Z. H., Jiao C. L., He Y. Q., Fang L., Ye S. C., Chen G. H. and Wang J. Y. 2007a. Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries)[J]. Journal of Animal Science, 85(3):598–603.
    [72]. Chu M. X., Mu Y. L., Fang L., Ye S. C., Sun S. H. 2007b. Prolactin receptor as a candidate gene for prolificacy of small tail han sheep[J]. Animal Biotechnology, 18(1):65-73.
    [73]. Chu M. X., Wang X. C., Jin M., Di R., Chen H. Q., Zhu G. Q., Fang L., Ma Y. H., Li K. 2009. DNA polymorphism of 5' flanking region of prolactin gene and its association with litter size in sheep[J]. Journal of Animal Breeding and Genetics, 126(1):63-68.
    [74]. Glava D. and Dean M. 1993. Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations[J]. Human Mutation, 2(5):404– 414.
    [75]. Davis G. H., McEwan J. C., Fennessy P. F. 1991. Evidence for the presence of a major gene influencing ovulation rate on the X chomosome of sheep[J]. Biology of Reproduction, 44(4):620-624.
    [76]. Davis G. H, McEwan J. C, Fennessy P. F., Dodds K. G., McNatty K. P. 1992. Infertility due to bilateralovarian hypoplasia in sheep homozygous (FecXI/FecXI) for the Inverdale prolificacy gene located on the X chromosome[J]. Biology of Reproduction, 46(4):636-640.
    [77]. Davis G. H., Dodds K. G., Bruce G. D. 1999. Combined effect of the Inverdale and Booroola prolificacy genes on ovulation rate in sheep[J]. Proc.13th Assoc. Adv. Anim.Breed. Genet, 13:74-77.
    [78]. Davis G. H., Dodds K. G., Wheeler R., Jay N. P. 2001. Evidence that an imprinted gene on the X chromosome increases ovulation rate in sheep[J]. Biology of Reproduction, 64(1): 216-221.
    [79]. Davis G. H., Galloway S. M., Ross I. K., Gregan S. M., Ward J., Nimbkar B. V., Ghalsasi P. M., Nimbkar C., Gray G. D., Subandriyo, Inounu I., Tiesnamurti B., Martyniuk E., Eythorsdottir E., Mulsant P., Lecerf F., Hanrahan J. P., Bradford G. E., Wilson T. 2002. DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation[J]. Biology of Reproduction, 66(6):1869-1874.
    [80]. Davis G. H. 2004. Fecundity genes in sheep [J]. Animal Reproduction Science, 82-83(July):247-253.
    [81]. Davis G. H. 2005. Major genes affecting ovulation rate in sheep[J]. Genetics, Selection, Evolution, 37 (1) :11-23.
    [82]. Davis G. H., Balakrishnan L., Ross I. K., Wilson T., Galloway S. M., Lumsden B. M., Hanrahan J. P., Mullen M., Mao X. Z., Wang G. L., Zhao Z. S., Zeng Y. Q., Robinson J. J., Mavrogenis A. P., Papachristoforou C., Peter C., Baumung R., Cardyn P., Boujenane I., Cockett N. E., Eythorsdottir E., Arranz J. J., Notter D. R. 2006a. Investigation of the Booroola (FecB) and Inverdale (FecX(I)) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries[J]. Animal Reproduction Science, 92(1-2):87-96.
    [83]. Davis G. H., Farquhar P. A., O'Connell A. R., Everett-Hincks J. M., Wishart P. J., Galloway S. M., Dodds K. G. 2006b. A putative autosomal gene increasing ovulation rate in Romney sheep[J]. Animal Reproduction Science, 92(1-2):65-73.
    [84]. Dickson M. C., Saunders J. C. and Gilmour R. S. 1991. The ovine insulin-like growth factor-I gene: characterization, expression and identification of a putative promoter[J]. Journal of Molecular Endocrinology, 6 (1):17-31.
    [85]. Dong J., Albertini D. F., Nishimori K., Kumar T. R., Lu N., Matzuk M. M. 1996. Growthdifferentiation factor-9 is required during early ovarian folliculogenesis[J]. Nature, 383(6600):531–535.
    [86]. Drogemuller C., Hamann H., Distl O. 2001. Candidate gene markers for litter size in different German pig lines [J]. Journal of Animal Science, 79(10):2565-25701.
    [87]. Dube J. L., Wang P., Elvin J., Lyons K. M., Celeste A. J., Matzuk M. M. 1998. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes[J]. Molecular Endocrinology, 12(12):1809-1817.
    [88]. Echternkamp S. E., Spicer L. J., Gregory K. E., Canning S. F. and Hammond J. M. 1990. Concentrations of insulin-like growth factor-I in blood and ovarian follicular fluid of cattle selected for twins[J].Biology of Reproduction, 43(1):8-14.
    [89]. Elvin J. A., Clark A. T., Wang P., Wolfman N. M., Matzuk M. M. 1999. Paracrine actions of growth differentiation factor-9 in the mammalian ovary[J]. Molecular Endocrinology, 13(6):1035-1048.
    [90]. Fabre S., Pierre A., Pisselet C., Mulsant P., Lecerf F., Pohl J., Monget P., Monniaux D. 2003. The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality[J]. Journal of Endocrinology, 177(3):435-444.
    [91]. Fabre S., Pierre A., Mulsant P., Bodin L., Di Pasquale E., Persani L., Monget P., Monniaux D. 2006. Regulation of ovulation rate in mammals: contribution of sheep genetic models[J]. Reproductive Biology and Endocrinology, 4:20
    [92]. Feary E. S., Juengel J. L., Smith P., French M. C., O'Connell A. R., Lawrence S. B., Galloway S. M., Davis G. H., McNatty K. P. 2007. Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development and characterization of ovarian follicular populations in ewes carrying the Woodlands FecX2W mutation[J]. Biology of Reproduction, 77(6):990-998.
    [93]. Galloway S. M., McNatty K. P., Cambridge L. M., Laitinen M. P., Juengel J. L., Jokiranta T. S., McLaren R. J., Luiro K., Dodds K. G., Montgomery G. W., Beattie A. E., Davis G. H., Ritvos O. 2000. Mutations in an oocyte derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage sensitive manner[J]. Nature Genetics, 25 (3):279-283.
    [94]. Ge W., Davis M. E., Hines H. C. 1997. Two SSCP alleles detected in the 5’-flanking region of bovine IGF-I gene[J]. Animal Genetics, 28(2): 155-156.
    [95]. Ge W., Davis M. E., Hines H. C., Irvin K. M., Simmen R. C. 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle[J]. Journal of Animal Science, 79(7): 1757-1762.
    [96]. Grapes L., Rothschild M. F. 2002. BMP15 maps to the X chromosome in swine[J]. Animal Genetics, 33 (2):165-166.
    [97]. Gootwine E., Reicher S., Rozov A. 2008. Prolificacy and lamb survival at birth in Awassi and Assaf sheep carrying the FecB (Booroola) mutation[J]. Animal Reproduction Science, 108(3-4):402-411.
    [98]. Guan F., Liu S. R., Shi G. Q., and Yang L. G. 2007. Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development[J]. Animal Reproduction Science, 99, (1-2):44-52.
    [99]. Hammond J. M., Hsu C. J., Klindt J. M., Ainsworth L., Downey B. R., Tsang B. K. 1988a. Gonadotropins increase concentrations of immunoreactive insulin-like growth factor-I in porcine follicular fluid in vivo[J]. Biology of Reproduction, 38(2):304-308.
    [100]. Hammond J. M., Hsu C. J., Mondschein J. S., Canning S. F., 1988b. Paracrine and autocrine functions of growth factors in the ovarian follicle[J]. Journal of Animal Science, 66 (Suppl. 2):21-31.
    [101]. Hanrahan J. P., Gregan S. M., Mulsant P., Mullen M., Davis G. H., Powell R., Galloway S. M. 2004. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep(ovisaries)[J]. Biology of Reproduction, 70(4):900-909.
    [102]. Hayashi K., Yandell D. W.1993. How sensitive is PCR-SSCP[J]? Human Mutation, 2(5):338-346.
    [103]. Hogan B. L. M. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development[J]. Genes & Development, 10(13):1580–1594.
    [104]. Incerti B., Dong J., Borsani G., Matzuk M. M. 1994. Structure of the mouse growth/differentiation factor 9 gene[J]. Biochimica et Biophysica Acta, 1222(1): 125-128.
    [105]. Jaatinen R., Laitinen M. P., Vuojolainen K., Aaltonen J., Louhio H., Heikinheimo K., Lehtonen E.,Ritvos O. 1999. Localization of differentiation factor-9 (GDF9) mRNA and protein in rat ovaries and cDNA growth cloning of rat GDF9 and its novel homolog GDF9B[J]. Molecular and Cellular Endocrinology, 156(1-2):189-193.
    [106]. Jenkins Z. A., Henry H. M., Sise J. A., Montgomery G. W. 2000. Follistatin (FST), growth hormone receptor (GHR) and prolactin receptor (PRLR) genes map to the same region of sheep chromosome 16[J]. Animal Genetics, 31(4):280.
    [107]. Jones J. I. and Clemmons D. R. 1995. Insulin-like growth factors and their binding proteins: biological actions[J]. Endocrine. Review. 1995, 16(1):3-34.
    [108]. Jonmundsson J. V., Adalsteinsson S. 1985. Single genes for fecundity in Icelandic sheep[C], in: Land R.B., Robinson D.W. (Eds.), Genetics of Reproduction in Sheep, Butterworths, London, UK, pp. 159–168.
    [109]. Juengel J. L., Hudson N. L., Heath D. A., Smith P., Reader K. L., Lawrence S. B., O'Connell A. R., Laitinen M. P., Cranfield M., Groome N. P., Ritvos O., McNatty K. P. 2002. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep[J]. Biology of Reproduction, 67(6):1777-1789.
    [110]. Juengel J. L., Hudson N. L., Whiting L., McNatty K. P. 2004. Effects of immunization against bone morphogenetic Protein 15 and growth differentiation factor 9 on ovulation rate, fertilization, and pregnancy in ewes[J]. Biology of Reproduction, 70 (3):557-561.
    [111]. Kaivo-Oja N., Bondestam J., K?m?r?inen M., Koskimies J., Vitt U., Cranfield M., Vuojolainen K., Kallio J. P., Olkkonen V. M., Hayashi M., Moustakas A., Groome N. P., ten Dijke P., Hsueh A. J., Ritvos O. 2003. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells[J]. Clinics in Endocrinology and Metabolism, 88(2):755-762.
    [112]. Kasiriyan M. M., Hafezeyan H., Sayahzadeh H., Jamshidi R., Asghari S. R., Irajeyan G. H. and Buesagh H. 2009. Genetic Polymorphism FecB and BMP15 Genes and its Association with Litter Size in Sangsari Sheep Breed of Iran[J]. Journal of Animal and Veterinary Advances, 8 (3): 447-453.
    [113]. Kim E. S., Shi X., Cobanoglu O., Weigel K., Berger P. J. and Kirkpatrick B. W. 2009. Refinedmapping of twinning-rate quantitative trait loci on bovine chromosome 5 and analysis of insulin-like growth factor-1 as a positional candidate gene[J]. Journal of Animal Science, 87(3):835-843.
    [114]. Kirkpatrick B. W. 1992. Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-I gene 5′flank[J]. Animal. Genetics. 23(6):543–548.
    [115]. Knight P. G., Glister C. 2003. Local roles of TGF-beta superfamily members in the control of ovarian follicle development [J]. Animal Reproduction Science, 78 (3-4):165-183.
    [116]. Knight P. G. and Glister C. 2006. Focus on TGF-βsignalling:TGF-βsuperfamily members and ovarian follicle development[J]. Reproduction, 132(2):191–206
    [117]. Kumar S., Mishrab A. K., Koltea A. P., Dashd S. K., and Karimc S. A. 2008a. Screening for Booroola (FecB) and Galway (FecXG) mutations in Indian sheep[J]. Small Ruminant Research, 80 (1-3):57-61.
    [118]. Kumar S., Mishra A. K., Kolte A. P., Arora A. L., Singh D., Singh V. K. 2008b. Effects of the Booroola (FecB) genotypes on growth performance, ewe's productivity efficiency and litter size in Garole x Malpura sheep[J]. Animal Reproduction Science, 105(3-4):319-331.
    [119]. Lecerf F., Mulsant P., Elsen J. M., Bodin L. 2002. Localisation and mapping of a major gene controlling ovulation rate in Lacaune sheep[C]. In Proceedings of the 7th WCGALP Volume 30. Montpellier, 753-756.
    [120]. Lewin B. 2004. Gene VIII. Pearson Education, Inc., New Jersey (USA).
    [121]. Linville R. C., Pomp D., Johnson R. K., Rothschild M. F. 2001. Candidate gene analysis for loci affecting litter size and ovulation rate in swine [J]. Journal of Animal Science, 79(1):60-67.
    [122]. Malher X., Le Chere A. K. 1998. High prolificacy in Belle-Ile sheep (Brittany, France):major effects of a putative single gene and the Awh colour gene on ovulation rateand litter size[J]. Reproduction, Nutrition, Development, 38(4):473–484.
    [123]. Martinez-Royo A., Jurado J. J., Smulders J. P., MartíJ. I., Alabart J. L., Roche A., Fantova E., Bodin L., Mulsant P., Serrano M., Folch J., Calvo J. H. 2008. A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep[J]. Animal Genetics, 39(3):294-297.
    [124]. Martyniuk E., Radomsa M. J. 1991. A single gene for prolificacy in Olkuska sheep[C]. in: Elsen J.M., Bodin L., Thimonier J. (Eds.), Major Genes for Reproduction inSheep, Inra, Paris, France, pp. 85-92.
    [125]. McNatty K. P., Juengel J. L., Wilson T., Galloway S. M., Davis G. H. 2001. Genetic mutations influencing ovulation rate in sheep[J]. Reproduction, Fertility, and Development, 13(7-8):549-555.
    [126]. McNatty K. P., Kieboom L. E., McDiarmid J., Heath D. A., Lun S. 1986. Adenosine cyclic 3',5'-monophosphate and steroid production by small ovarian follicles from Booroola ewes with and without a fecundity gene[J]. Journal of Reproduction and Fertility, 76(1):471-480.
    [127]. McNatty K. P., Moore L. G., Hudson N. L., Quirke L. D., Lawrence S. B., Reader K., Hanrahan J. P., Smith P., Groome N. P., Laitinen M., Ritvos O. and Juengel J. L. 2004. The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology[J]. Reproduction, 128(4):379-386.
    [128]. McPhenon A. C., Lee S. J. 1993. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines[J]. The Journal of Biological Chemistry, 268(5):3444-3449.
    [129]. Mishina Y., Suzuki A., Gilbert D. J., Copeland N. G., Jenkins N. A., Ueno N., Behringer R. R. 1995. Genomic organization and chromosomal location of the mouse type I BMP-2/4 receptor[J]. Biochemical and Biophysical Research Communications, 206(1):310-317.
    [130]. Mishra A. K., Arora A. L., Kumar S., Prince L. L. 2009. Studies on effect of Booroola (FecB) genotype on lifetime ewes' productivity efficiency, litter size and number of weaned lambs in GarolexMalpura sheep[J]. Animal Reproduction Science,113(1-4):293-298
    [131]. Monteagudo L. V., Ponz R., Tejedor M. T., Lavi?a A., Sierra I. 2009. A 17bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed[J]. Animal Reproduction Science, 110(1-2):139–146.
    [132]. Montgomery G. W., McNatty K. P., Davis G. H. 1992. Physiology and molecular genetics of mutations that increase ovulation rate in sheep[J]. Endocrine Review, 13(2):309-328.
    [133]. Montgomery G. W., Galloway S. M., Davis G. H., McNatty K P. 2001. Genes controlling ovulation rate in sheep[J]. Reproduction, 121(6):843-852.
    [134]. Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., MonniauxD., Callebaut I., Cribiu E., Thimonier J., Teyssier J., Bodin L., CogniéY., Chitour N., Elsen J. M. 2001. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation in Booroola ewes[J]. Proceedings of the National Academy of Sciences of the United States of America, 98(9):5104–5109.
    [135]. Notter D. R. 2008. Genetic aspects of reproduction in sheep[J]. Reproduction in domestic animals, 43 (Suppl 2):122-128.
    [136]. Otsuka F., Yao Z., Lee T. H., Yamamoto S., Erickson G. F., Shimasaki S. 2000. Bone morphogenetic protein-15: identification of target cells and biological functions[J]. The Journal of Biological Chemistry, 275(50):39523-39528.
    [137]. Otsuka F., Moore R. K., Shimasaki S. 2001. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary[J]. The Journal of Biological Chemistry, 276(35):32889-32895.
    [138]. Otsuka F., Shimasaki S. 2002. A negative feedback system between oocyte bone morphogenetic Protein 15 and cell kit ligand: its role inregulating granulose cell mitosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 99(12):8060-8065.
    [139]. Piper L. R., Bindon B. M. 1982. The Booroola Merino and the performance of medium non-peppin crosses at Armidale[C]. The Booroola Merino, Proceedings of a workshop, Armidale, CSIRO, 161-173.
    [140]. PutnováL., Knoll A., Dvo?ák J., ?epica S. 2002. A new HpaII PCR-RFLP within the porcine prolactin receptor (PRLR) gene and study of its effect on litter size and number of teats[J]. Journal of Animal Breeding and Genetics, 119(1):57-63.
    [141]. Rothschild M. F., Vincent A. L., Tuggle C. K., Evans G., Short T. H., Southwood O. I., Wales R., Plastow G. S. 1998. A mutation in the prolactin receptor gene is associated with increased litter size in pigs[J]. Animal Genetics, 29(Suppl.1):691.
    [142]. Rothschild M., Jacobson C., Vaske D., Tuggle C., Wang L., Short T., Eckardt G., Sasaki S., Vincent A., McLaren D., Southwood O., van der Steen H., Mileham A., Plastow G. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs[J]. Proceedings of theNational Academy of Sciences of the United States of America, 93 (1) :201-205.
    [143]. Rosenzweig B. L., Imamura T., Okadome T., Cox G. N., Yamashita H., ten Dijke P., Heldin C. H., Miyazono K. 1995. Cloning and characterization of a human type II receptor for bone morphogenetic proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 92(17): 7632-7636.
    [144]. Schams D., Koll R., Li C. H., 1988. Insulin-like growth factor-I stimulates oxytocin and progesterone production by bovine granulosa cells in culture[J]. Journal of Endocrinology, 116(1):97-100.
    [145]. Shackell G. H., Hudson N. L., Heath D. A., Lun S., Shaw L., Condell L., Blay L. R., McNatty K. P. 1993. Plasma gonadotropin concentrations and ovarian characteristics in Inverdale ewes that are heterozygous for a major gene (FecXI) on the X chromosome that influences ovulation rate[J]. Biology of Reproduction, 48(5):1150-1156.
    [146]. Sheffield V. C., Beck J. S., Kwitek A. E., Sandstrom D. W., Stone E. M. 1993. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions[J]. Genomics, 16(2):325-332
    [147]. Shen W., Wisniowski P., Ahmed L., Boyle D. W., Denne S. C., Liechty E. A. 2003. Protein anabolic effects of insulin and IGF-I in the ovine fetus[J]. American Journal of Physiology. Endocrinology and Metabolism, 284(4): E748–756.
    [148]. Shimasaki S., Moore R. K., Otsuka F., Erickson G. F. 2004. The Bone morphogenetic protein system in mammalian reproduction[J]. Endocrine Reviews, 25(1): 72-101.
    [149]. Smith P., Hudson N. L.1993. Effects of the Booroola gene (FecB) on body weight, ovarian development and hormone concentrations during fetal life [J]. Journal of Reproduction and Fertility, 98 (1) : 41-54.
    [150]. Spicer L. J., Echternkamp S. E., Canning S. F., Hammond J. M., 1988. Relationship between concentrations of immunoreactive insulin-like growth factor-I in follicular fluid and various biochemical markers of differentiation in bovine antral follicles[J]. Biology of Reproduction, 39(3):573-80.
    [151]. Vincent A. L., Evans G., Short T. H., Southwood O. I., Plastow G. S., Tuggle C. K., and Rothschild M. F. 1998. The prolactin receptor gene is associated with increased litter size in pigs[A] . Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia. 27:15-181.
    [152]. Vitt U. A., Hayashi M., Klein C., Hsueh A. J. 2000. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles[J]. Biology of Reproduction, 62(2): 370-377.
    [153]. van Rens B. T., van der Lende T. 2002. Litter size and piglet traits of gilts with different prolactin receptor genotypes[J]. Theriogenology, 57 (2) :883-893.
    [154]. van Rens B. T., Evans G. J., van der Lende T. 2003. Component s of litter size in gilts with different prolactin receptor genotypes[J]. Theriogenology, 59(3 -4):915-921.
    [155]. Wilson T., Wu X. Y., Juengel J. L., Ross I. K., Lumsden J. M., Lord E. A., Dodds K. G., Walling G. A., McEwan J. C., O'Connell A. R., McNatty K. P., Montgomery G. W. 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells[J]. Biology of Reproduction, 64(4):1225-1235.
    [156]. Wang A., Hu X., Li N., Wu C. 2003. Characterization of three single nucleotide polymorphisms in the porcine BMP15 gene [J]. Animal Genetics, 34 (4):305-306.
    [157]. Yilmaz A., Davis M. E., Hines H. C., Chung H. 2005. Detection of two nucleotide substitutions and putative promoters in the 5’flanking region of the ovine IGF-I gene[J]. Journal of Applied Genetics, 46(3):307-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700