溴甲烷催化脱HBr制高碳烃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,天然气制高碳烃液体燃料主要是从合成气出发,经费-托合成转化生成。但是,在天然气水蒸汽重整制合成气的过程中,需要消耗掉四分之一以上的天然气来供给反应热量,能量消耗大,造成资源的巨大浪费。本实验室设计的天然气经非合成气途径合成高碳烃的新工艺流程,可以有效地将甲烷等低碳烃转化为高碳烃,能耗和CO2排放大幅降低。新工艺流程包括两步反应:第一步,甲烷通过与氢溴酸和氧气的反应转化成溴甲烷;第二步,溴甲烷脱溴化氢制高碳烃,溴化氢循环使用。
     本文主要是对溴甲烷脱溴化氢制高碳烃的催化剂进行研究。实验中所使用的溴甲烷原料是由氢溴酸和无水甲醇混合液在HZSM-5催化剂上生成的。论文在自制的固定床反应器中开展溴甲烷脱溴化氢制高碳烃催化剂的研究,主要考察了分子筛载体、MgO或ZnO负载量、反应温度(200°C~300°C)、空速等因素对反应的影响,考察了几种典型催化剂的寿命,并在GC-MS (Agilent 6890N/5973N)上对气体、液体产物进行了定性定量分析。结果表明:HZSM-5负载的ZnO、MgO是溴甲烷转化的最好催化剂,ZnO、MgO的最佳含量在1.0~5.0wt%之间;温度升高有利于溴甲烷的转化,升至260°C~300°C时,溴甲烷的转化率趋于稳定,高达99.7% ;气相、液相产物的组成也随温度的升高而变化,在3.0wt%ZnO/HZSM-5催化剂上高温有利于芳烃的生成,在3.0wt%MgO/HZSM-5催化剂上,温度升高时低碳烃选择性高;MgO/HZSM-5较ZnO/HZSM-5催化剂具有更好的稳定性,连续反应近一个月效率仍然较高。产物的主要组成是C_2~C_(13)的烷烃、烯烃和芳烃。
Recent years, the major process for the conversion of natural gas to liquid fuels is initially from syngas, which is called Fischer-Tropsch process. But it is an energy consuming and resource wasting process. More than one fourth of the natural gas must be burned to generate heat for the steam reforming of the raw material. Here, we designed a new process in which higher hydrocarbons can be synthesized from non-syngas and the process is effective to convert methane and other low-carbon hydrocarbons into higher hydrocarbons. Meanwhile, the energy consumption and CO2 emissions are substantially reduced. In the process, the first step was to convert methane to methyl bromide by the reaction of methane with hydrogen bromide and oxygen, then, higher hydrocarbons were produced by the condensation of methyl bromide in the second step. The produced hydrogen bromide can be recycled. By this method, methane could be high efficiently converted to higher hydrocarbons.
     This paper mainly developed the catalysts of methyl bromide catalytic dehydrobromination to prepare higher hydrocarbons in the self-made fixed-bed reactor. In the experiments, methyl bromide was generated by the reaction of the mixture of hydrobromic acid and methanol on HZSM-5 catalyst. In the current investigation, the influence of zeolite carriers, MgO or ZnO concentrantion, reaction temperature(200°C~300°C) and space velocity on CH3Br conversion was tested. In addition, the aging reaction of several typical catalysts was investigated; the qualitative and quantitative analysis of all products in gas and liquid phase was performed on GC-MS (Agilent 6890N/5973N). The results were that on the HZSM-5 supported MgO or ZnO catalysts, MgO and ZnO concentration between 1.0wt% and 5.0wt% were the best; higher temperature was favor to CH3Br reaction, when the temperature was up to 260°C~300°C, CH3Br conversion would be stable, 99.7% the highest; the constitute of gas and liquid phase products changed with the temperature increasing: on 3.0wt% ZnO/HZSM-5 catalyst, higher temperature was favor to the aroma, while to the lower hydrocarbons on 3.0wt% MgO/HZSM-5 catalyst; the catalyst MgO/HZSM-5 was better than ZnO/HZSM-5 because the former showed better activity at lower temperature and better stability, which could keep higher CH3Br conversion in one month. The major components of the products were alkanes, olefins and aromatic compounds with carbon number in the region of C_2 to C_(13_.
引文
[1] 沈师孔. 天然气转化利用技术的研究进展. 石油化工,2006,35(9):799-809
    [2] 黄福堂,沈殿成,张永兴等. 国内外天然气利用技术发展概况. 国外油田工程,2000,16(12):28-31
    [3] 汪寿建. 天然气综合利用评析(上). 化肥设计,1999,37(5):5-8
    [4] 汪寿建. 天然气综合利用评析(下). 化肥设计,2000,38(1):5-8
    [5] Shilov A E. Activation of saturated hydrocarbons by transition metal complexes. Dordrecht: D. reidel,1984
    [6] Roberts R W. A study of the adsorption and decomposition of hydrocarbons on clean iridium surfaces. Journal of Physical Chemistry,1963,67(10):2035-2038
    [7] Stewart C N, Ehrlich G. Dynamics of activated chemisorption: methane on rhodium. Journal of Chemical Physics,1975,62:4672-4676
    [8] Westerberg J, Blomberg M R A. Methane activation by naked Rh+ atoms. A theoretical study. Journal of Physical Chemistry A,1998,102:7303-7307
    [9] Lee M B, Yang Q Y, Ceyer S T. Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gas in catalysis: A molecular beam–high resolution electron energy loss study. Journal of Chemical Physics,1987,87:2724-2745
    [10] Yang Q Y, Johnson A D, Maynard K J, et al. Synthesis of benzene from methane over a nickel(111) catalyst. Journal of the American Chemical Society,1989,111(23):8748-8749
    [11] Beebe T P, Goodman D W, Kay B D, et al. Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces. Journal of Chemical Physics,1987,87:2305-2314
    [12] Trevor D J, Cox D M, Kaldor A, et al. Methane activation on unsupported platinum clusters. Journal of the American Chemical Society,1990,112(10):3742-3749
    [13] Cui Q, Musaev D G, Morokuma K. Molecular orbital study of H2 and CH4 activation on small metal clusters. 1. Pt, Pd, Pt2 and Pd2. Journal of Chemical Physics,1998,108:8418-6422
    [14] Cui Q, Musaev D G, Morokuma K. Molecular orbital study of H2 and CH4 activation on small metal clusters. 2. Pd3 and Pt3. Journal of Physical Chemistry A,1998,102(31):6373-6384
    [15] Au C T, Liao M S, Ng C F. A detailed theoretical treatment of the partial oxidation of methane to syngas on transition and coinage metal (M) Catalysts (M = Ni, Pd, Pt, Cu). Journal of Physical Chemistry A,1998,102(22):3959-3969
    [16] 杨华清,胡常伟等. MgO 活化甲烷碳氢键的密度泛函研究. 化学学报,2002,60(7):1334-1338
    [17] 徐文渊,蒋长安. 天然气利用手册. 北京:中国石化出版社,2002,573-635
    [18] Li Shuben. Reaction chemistry of W-Mn/SiO2 catalyst for the oxidative coupling of methane. Journal of Natural Gas Chemistry,2003,12(1):1-9
    [19] Ji S F, Xiao T C, Li S B, et al. The critical role of the surface WO4 tetrahedron on the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane. Studies in Surface Science and Catalysis,2004,147:607-612
    [20] Gradassi M J, Green N W. Economics of natural gas conversion processes. Fuel Processing Technology,1995,42:65-83
    [21] Bone W A. Formation of methyl alcohol by direct oxidation of methane over molybdenum oxide supported on silica. Nature,1931,127:481-482
    [22] Hall T J, Hargreaves J S J, Taylor S H, et al. Catalytic synthesis of methanol and formaldehyde by partial oxidation of methane. Fuel Processing Technology,1995,42:151-178
    [23] Liu R S, Iwamoto M, Lunsford J H. Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica. Journal of the Chemical Society, Chemical Communications,1982,78-79
    [24] Yarlagadda P S, Morton L A, Hnuter N R, et al. Direct conversion of methane to methanol in a flow reactor. Industrial & Engineering Chemistry Research,1988,27(2):252-256
    [25] Liu H F, Liu R S, Lunsford J H, et al. Partial oxidation of methane by nitrous oxide over molybdenum on silica. Journal of the American Chemical Society,1984,106(15):4117-4121
    [26] Zhang X, He D H, Zhang Q J, et al. Methanol from oxidation of methane over MoOx /La-Co-oxide catalysts. Studies in Surface Science and Catalysis,2004,147:541-546
    [27] Foulds G A, Gray B F. Homogeneous gas-phase partial oxidation of methane to methanol and formaldehyde. Fuel Processing Technology,1995,42:129-150
    [28] Wang Linsheng, Tao Longxiang, Xie Maosong, et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters,1993,21:35-41
    [29] Shu Yuying, Ichikawa M. Catalytic dehydrocondensation of methane towards benzene and naphthalene on transition metal supported zeolite catalysts: Templating role of zeolite micropores and characterization of active metallic sites. Catalysis Today,2001,71(1-2):55-67
    [30] Huang L Q, Yuan Y Z, Zhang H B, et al. Dehydro-aromatization of CH4 over W-Mn ( or Zn, Ga, Mo, Co ) /HZSM-5 ( or MCM-22 ) catalysts. Studies in Surface Science and Catalysis,2004,147:565-570
    [31] Xu Yide, Bao Xinhe, Lin Liwu. Direct conversion of methane under nonoxidative conditions. Journal of Catalysis,2003,216:386-395
    [32] Liu S T, Dong Q. Unique promotion effect of CO and CO2 on the catalytic stability for benzene and naphthalene production from methane on Mo/HZSM-5 catalysts. Chemical Communications,1998,1217-1218
    [33] Li Y G, Liu H M, Xu Y D, et al. Combined single-pass conversion of methane via oxidative coupling and dehydroaromatization: A combination of La2O3/BaO and Mo/HZSM-5 catalysts. Studies in Surface Science and Catalysis,2004,147:583-588
    [34] Chen J G, Sun Y H. The structure and reactivity of coprecipitated Co-ZrO2 catalysts for Fischer-Tropsch synthesis. Studies in Surface Science and Catalysis,2004,147:277-282
    [35] Wang T, Ding Y J, Xiong J M, et al. Fischer-Tropsch reaction over cobalt catalysts supported on zirconia-modified activated carbon. Studies in Surface Science and Catalysis,2004,147:349-354
    [36] 沈师孔,余长春,代小平等. 天然气制液态烃新工艺. 石油与天然气化工,2002,31(增刊):1-9
    [37] Yin Hongmei, Ding Yunjie, Luo Hongyuan, et al. The performance of C2 oxygenates synthesis from syngas over Rh-Mn-Li-Fe/SiO2 catalysts with various Rh loadings. Energy & Fuels,2003,17(6):1401-1406
    [38] Yin Hongmei, Ding Yunjie, Lin Liwu, et al. Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation. Applied Catalysis A: General,2003,243(1):155-164
    [39] 尹红梅. 铑基催化剂上 CO 加氢制备 C2 含氧化合物的研究:[学位论文]. 大连:大连化学物理研究所,2003
    [40] 齐会杰,李德宝,钟炳等. Mn 改性 Ni/K/MoS2 合成低碳醇催化剂反应性能研究. 燃料化学学报,2003,31(2):119-123
    [41] 张侃,李文怀,孙予罕等. 合成气制低碳醇公斤级模试. 石油与天然气化工,2004,33(增刊):29-34
    [42] 王宗义. 国外甲醇制汽油的发展概括. 天然气化工,1988,(6):1-6
    [43] Marchi A J, Forment G F. Catalytic conversion of methanol into light alkenes on mordenite-like zeolites. Applied Catalysis A: General,1993,94(1):91-106
    [44] 房鼎业,应为勇,骆光亮. 甲醇系列产品及应用. 北京:化学工业出版社,1993,148-158
    [45] 陈冠荣. 化工百科全书. 北京:化学工业出版社,1993,3:78
    [46] 廖健. 天然气转化为液体燃料技术的发展现状及应用前景. 石油化工动态,2000,8(5):51-56
    [47] Olah G A, Gupta B, Farina M, et al. Selective monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ -alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. Journal of the American Chemical Society,1985,107:7097
    [48] Xia X R, Bi Y L, Wu T H, et al. An infrared spectroscopic study of the mechanism of chloromethane conversion to higher hydrocarbons on HZSM-5 catalyst. Catalysis Letters,1995,33:75-90
    [49] Noronha L A, Souza-Aguiar E F, Mota C J A. Conversion of chloromethane to light olefins catalyzed by ZSM-5 zeolites. Catalysis Today,2005,101(1):9-13
    [50] Zhou X P, Yilmaz A, Ford P C, et al. An integrated process for partial oxidation of alkanes. Chemical Communications,2003,2294-2295
    [51] Zhou X P, Lorkovic I M, Grosso P, et al. Integrated process for synthesizing alcohols and ethers from alkanes. US Patent.6462243,2002-10-08
    [52] Zhou X P, Lorkovic I M, Sherman J H. Integrated process for synthesizing alcohols, ethers and olefins from alkanes. US Patent.6486368,2002-11-26
    [53] Lorkovic I M, Noy M, Ford P C, et al. C1 coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites. Chemical Communications,2004,566-567
    [54] Yilmaz A, Zhou X P, Lorkovic I M, et al. Bromine mediated partial oxidation of ethane over nanostructured zirconia supported metal oxide/bromide. Microporous and Mesoporous Materials,2005,79:205-214
    [55] Xu H F, Wang K X, Zhou X P, et al. Dimethyl ether synthesis from methane by non syngas process. Catalysis Letters,2005,100(1-2):53-57
    [56] Wang K X, Xu H F, Zhou X P, et al. Acetic acid synthesis from methane bynon-synthesis gas process. Journal of Molecular Catalysis A: Chemical,2005,225(1):65-69
    [57] Wang K X, Xu H F, Zhou X P, et al. The synthesis of acetic acid from methane via oxidative bromination, carbonylation and hydrolysis. Applied Catalysis A: General, 2006,304:168-177
    [58] Liu Z, Huang L, Zhou X P, et al. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis A: Chemical,2007,273:14-20
    [59] 代小平,余长春,沈师孔. 费-托合成制液态烃研究进展. 化学进展,2000,12(3):268-281
    [60] 黄莉. 甲烷溴氧化制高碳烃新工艺研究:[湖南大学硕士学位论文]. 湖南:湖南大学化学化工学院,2005
    [61] 尹双凤,林洁,于中伟. 锌含量对 Zn/HZSM-5 催化剂性能的影响. 催化学报,2000,22(1):57-61
    [62] Zhang Dazhi, Wei Yingxu, Liu Zhongmin, et al. Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs. Catalysis Letters,2006,109(1-2):97-101
    [63] Wei Yingxu, Zhang Dazhi, Liu Zhongmin, et al. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis,2006,238:46-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700