钯/铈复合金属氧化物催化氧化苯酚合成碳酸二苯酯工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二苯酯(Diphenyl Carbonate, DPC)是一种重要的化工原料中间体,主要用于塑料工业制造聚碳酸酯(PC)。聚碳酸酯具有优异的电绝缘性、尺寸稳定性、耐化学腐蚀性和高抗冲击强度及透明性,广泛应用于汽车制造、电子电气、光学存储、建筑建材、航空航天、办公设备等领域,是近年来市场增长速度最快的通用工程塑料。
     碳酸二苯酯的合成方法主要有三种,即光气法、酯交换法和氧化羰基化法。其中,光气法环境污染严重,酯交换法的工艺路线较长,而氧化羰基化法因其流程短、环境友好成为国内外合成碳酸二苯酯的研究热点。氧化羰基化法包括均相催化和非均相催化,但均相催化存在以下缺点:(1)因卤素离子的加入而加剧设备腐蚀;(2)催化剂不能回收;(3)产品后续分离困难。因此非均相催化法是目前国内外合成DPC的主要研究方向。
     本文采用铈复合金属氧化物作为载体,Pd化合物作为主要活性组分来制备负载型催化剂,非均相催化氧化苯酚一步合成DPC。实验考察了载体金属离子的组成和配比、载体和催化剂的制备方法等因素对催化活性的影响,以苯酚氧化羰基化反应合成DPC的实验结果对催化活性进行了评价。通过XRD、SEM、XPS、BET等表征手段对载体和催化剂的主要晶相和物理结构进行了测试分析,在此基础上对催化氧化机理进行了探讨。同时,本工作对非均相催化氧化合成DPC反应的工艺条件及催化剂稳定性进行了考察。
     经过实验及测试研究,得出的主要结论以下:
     (1)通过载体复合金属组分的筛选,发现以Ce-Mn复合金属氧化物为载体得到的催化剂催化活性较好。
     (2)最佳的载体制备方法是溶胶-凝胶法。
     (3)载体Ce-Mn复合金属氧化物的焙烧温度以600℃为宜,相应制备的催化剂催化活性较好。
     (4)载体Ce与Mn金属离子的摩尔比为1: 1时,相应制备的催化剂催化活性较好,DPC收率为9.33%。
     (5)载体中CuO的添加量及添加方法对催化剂的性能有较大影响。直接将铜盐添加至溶胶中、添加量为9wt%(以CuO计)时,相应制得的催化剂催化活性最好,DPC收率可达10.28%。
     (6)采用溶胶-凝胶法制备复合金属氧化物载体,相应得到的催化剂稳定性较好。
     (7)反应机理探讨分析表明:铈复合金属氧化物载体对主活性组分Pd具有较好的氧化还原协同作用。
     (8)通过合成DPC工艺条件的研究,发现反应温度、反应压力、反应时间等因素对DPC的收率有较大影响。优化的合成工艺条件为:Pd负载量为0.5%,反应温度75℃,总压5 MPa,氧气含量7%,反应时间12h,DPC收率可达17.06%。
Diphenyl carbonate (DPC) is an important chemical intermediate, mainly used for polycarbonate (PC) in plastics industry. PC has many excellent properties such as insulation, dimensional stability, anti-corrosion, high resistance to impact and transparency, thus it becomes the fastest growing general engineering plastic, which is widely used in the field of automobile manufacture, electronic and electric industry, optical storage, building materials, aerospace and office supplies.
     There are three methods mainly to synthesize diphenyl carbonate: phosgene method, transesterification and oxidative carbonylation. Due to the disadvantage of the pollution with phosgene method and relatively long process with transesterification methods, the oxidative carbonylation method attracted much attention because of its environmental benign and one-step synthesis features. The method of oxidative carbonylation includes two ways of homogeneous and heterogeneous catalysis. The homogeneous catalysis method has the following drawbacks: (1) the addition of halogen ions, exacerbated the corrosion of equipment, (2) catalyst can not be recycled, (3) the products are difficult to be separated. Therefore, the heterogeneous method becomes the main research direction currently.
     In this paper, diphenyl carbonate (DPC) was synthesized by heterogeneous catalysis of phenol in presence of the cerium complex oxides support. The molar ratio of different metal ions within support, the preparation methods of supports and catalysts, and other factors had been studied. The activity of catalyst was evaluated by the synthesis experiments of diphenyl carbonate. The phase and physical structures of supports and catalysts were characterized by XRD, SEM, XPS and BET techniques, and the catalytic mechanism was discussed on the result of testing. The reaction conditions and stability of catalyst were also investigated subsequently.
     From those works, the conclusions were as follows:
     (1) Among different assembly of metals, cerium and manganese complex oxides had better catalytic activity.
     (2) The appropriate preparing method of catalyst was sol-gel method.
     (3) The optimal calcination temperature of support was at 600℃. At this temperature, the corresponding catalyst achieved a higher activity.
     (4) While the molar ratio of Ce and Mn was 1:1, the catalyst had better activity with a DPC yield of 9.33%.
     (5) The amount and doping methods of CuO had evident influence on the activity of catalyst. When the 9wt% Cu(NO3)2·3H2O was added to the sol directly, the catalyst had better activity with a DPC yield of 10.28%.
     (6) The catalysts prepared by sol-gel method had better stability.
     (7) Its proved by the analysis of reactive mechanism that the support of cerium complex metal oxide had favorable redox synergistic effect between the metals and the active component Pd.
     (8) The reaction temperature, pressure and reaction time had important influence on the yield of DPC. The optimum reaction conditions were loading amount of Pd 0.5%, reaction temperature 75℃, total pressure 5 MPa(7% O2 ) and reaction time 12 h. The yield of DPC could reach 17.06%.
引文
[1]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社, 1998, 381.
    [2]王越,魏晓魏,梅花,等.聚碳酸酯及其中间体的清洁生产工艺[J].合成化学, 2001, 9(6): 483-489.
    [3] Gong Jinlong, Ma Xinbin, Wang Shengping. Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates[J]. Applied Catalysis A: General, 2007, 316(1): 1-21.
    [4]吴广文,吴元欣,马沛生,等. Pd-Cu/La0.5Pb0.5MnO3催化合成碳酸二苯酯的宏观动力学研究[J].燃料化学学报, 2007,35(4): 509-512.
    [5] Yoshio Ono. Dimethyl carbonate for environmentally benign reactions[J]. Catalysis Today, 1997, 35(1-2): 15-25.
    [6]贾艳秋,明素荣.羰基化法合成碳酸二苯酯技术进展[J].化学工业与工程技术, 2003, 24(3): 11-14.
    [7]童东绅,刘良明,王公应.合成碳酸二苯酯的多相催化剂研究进展[J].现代化工, 2006, 26(3): 28-34.
    [8] Mitsubishi Chemicals Corp. Production of diaryl carbonate[P]. JP 2001058974, 2001-03-06.
    [9]高俊杰,姚洁,王公应,等.钛酸酯催化碳酸二甲酯与苯酚酯交换反应的研究[J].分子催化, 2001, 15(1): 21-24.
    [10] Celanese Corporation. Production of carbonate disasters from oxalate disasters[P]. US 4544507, 1998-10-01.
    [11]张光旭,马沛生,吴元欣.氧化羰基化法一步合成碳酸二苯酯的研究进展[J].天然气化工, 2002, 27(2): 23-27.
    [12]陈志明,姜日元,牛俊,等.非光气法合成碳酸二苯酯研究进展[J].化工科技, 2004, 12(1): 53-56.
    [13] Ilya I M, Micheal N V, Tatiana V C, et al. Catalysis with a Palladium Giant Cluster: Phenol Oxidative Carbonylation to Diphenyl CarbonateConjugated with Reductive Nitrobenzene Conversion[J]. Journal of Molecular Catalysis A: Chemical, 1996, 108(1): 77-85.
    [14] Ho Youngsong, Eun Duck Park, Jae Sung Lee. Oxidative Carbonylation of Phenol to Diphenyl Carbonate over Supported Palladium Catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2000, 154(2): 243-250.
    [15] Teijin Ltd., Yoshisato H, Eishin T. Catalyst and Process for the Preparation of Aromatic Carbonates[P]. WO: 9906142, 1999.
    [16] Hirotoshi I,Kazuhiko T, Michihiko A, et al. Oxidative Cabonylation of Phenol to Diphenylacarbonate Catalyzed by Pd-Pyidyl Complexes Tethered on Polymer Support. Catal Commun, 2001, 2(3-4): 145-150.
    [17] Chalk A J, Magennis S A. Process for the preparation of aryl substituted aldehydes, ketones and alcohols[P]. US: 4070374, 1978-01-24.
    [18] Buysch H-J, Hesse C, Jentsch J-D, et al. Supported catalysts containing a platinum metal and process for preparing diaryl carbonates[P]. US: 6001768, 1999-12-14.
    [19] Hallgren J E. Catalytic aromatic carbonate process[P]. US: 4201721, 1980-05-06.
    [20] Chin-The C T. Preparation of organic carbonates by oxidative carbonylation using palladium-manganese catalyst[P]. EP: 0350697, 1990-01-17.
    [21] Kezuka H, Okuda F. Process for producing an organic carbonate[P]. EP: 0508340, 1992-10-14.
    [22] Iwane H, Miyagi H, Imada S, et al. Method of producing aromatic carbonate[P]. EP: 0614876, 1994-09-14.
    [23] Goyal M, Nagahata R, Sugiyama, J-I, et al. Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd-Cu based redox catalyst system[J]. Journal of Molecular Catalysis A: Chemical, 1999, 137(1-3): 147-154.
    [24] Vavasori A, Toniolo L. The promoting effect of chelating ligands in theoxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-Co-benzoquinone system[J]. Journal of Molecular Catalysis A: Chemical, 2000, 151(1-2): 37-45.
    [25] Ishii H, Ueda M, Takeuchi K, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by bis(benzonitrile)dichloropalladium in the presence of polyvinylpyrrolidone[J]. Catalysis Communication, 2001, 2(1): 17-22.
    [26] Ishii H, Takeuchi K, Asai M, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-pyridyl complexes tethered on polymer support[J]. Catalysis Communication, 2001, 2(3-4): 145-150.
    [27] Yasuda H, Choi J-C, Lee S-C, et al. Reactivity of Diaryloxy Palladium Complex with TMEDA (N,N,N',N'-Tetramethylethylenediamine) Ligand toward Carbon Monoxide and Carbon Dioxide[J]. Organometallics, 2002, 21(6): 1216-1220.
    [28] Yasuda H, Maki N, Choi J-C, et al. Synthesis and reactivity of phenoxycarbonyl palladium complex: relevant to the mechanism of oxidative carbonylation of phenol[J]. Journal of Organometallic Chemistry, 2003, 682(1-2): 66-72.
    [29] Yasuda H, Watarai K, Choi J-C, et al. Effects of bulky ligands and water in Pd-catalyzed oxidative carbonylation of phenol[J]. Journal of Molecular Catalysis A: Chemical, 2005, 236(1-2): 149-155.
    [30]张光旭.非均相氧化羰基化法一步合成碳酸二苯酯的基础研究[D].天津:天津大学, 2004, 106-119.
    [31] Vavasori A, Toniolo L. Multistep electron transfer catalytic system for the oxidative carbonylation of phenol to diphenyl carbonate[J]. Journal of Molecular Catalysis A: Chemical, 1999, 139(2-3): 109-119.
    [32] Yin G Ch, Jia Ch G, Kitamura T, et al. A new efficient Pd-catalyzed synthesis of diphenyl carbonate with heteropolyacid as a cocatalyst[J]. Journal of Organometallic Chemistry, 2001, 630(1): 11-16.
    [33] Baldi M, Finochhio E, Pistarino C, et al. Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide[J]. Applied Catalysis A: General, 1998, 173(1): 61-74.
    [34] Hatanaka I, Mitsuyasu N, Yin G Ch, et al. The mechanic study of the Pd-catalyzed synthesis of diphenylcarbonate with heteropolyacid as a cocatalyst[J]. Journal of Organometallic Chemistry, 2003, 674(1-2): 96-100.
    [35]张光旭,吴元欣,马沛生,等.非均相催化一步合成碳酸二苯酯的研究Ⅷ. Ce和Sn的添加量对Pd/La0.62Pb0.38MnO3催化剂性能的影响[J].天然气化工: C1化学与化工, 2004, 29(4): 33-37.
    [36]吴广文,吴元欣,马沛生,等.掺杂钙钛矿载体制备及合成碳酸二苯酯活性评价[J].天津大学学报, 2006, 39(4): 385-390.
    [37]姜亚昌,王巧梅.纳米CeO2的制备技术及其在催化领域的应用[J].材料导报, 2004, 18(1): 131-133.
    [38]张继军,刘英骏,张婉静等.锰掺入对CeO2催化氧化CO性能的影响[J].分子催化, 1999, 13(3): 219-222.
    [39] Colussi S, de Leitenburg C, Dolcetti G, et al. The Role of Rare Earth Oxides as Promoters and Stabilizers in Combustion Catalysts. Journal of Alloys and Compounds, 2004, 374(1-2): 387-392.
    [40] Imamura S, Shono M, Okamoto N, et al. Effect of Cerium on the Mobility of Oxygen on Manganese Oxides. Applied Catalysis A, 1996, 142(2): 279-288.
    [41]李豪杰,董新法,邹汉波,等. CuO/CeO2催化剂上富氢气体中CO的选择性催化氧化[J].石油化工, 2005, 34(6): 532-535.
    [42] Trovarelli A. Catalytic Properties of Ceria and CeO2-Containing Materials[J]. Catalytic Reviews-Science Engineering, 1996, 38(4): 439-520.
    [43]屠兢,伏义路,林培琰. Pd/γ-Al2O3三效催化剂中CeO2助剂的作用[J].催化学报, 2001, 22(4): 390-396.
    [44]赫崇衡,朱明,金国林,等.氧化铈对Pd催化剂氧化活性和热稳定性的影响[J].应用化学, 2004, 21(2): 154-158.
    [45]范煜,王立秋,张守臣,等.萤石结构铜-铈-氧催化剂组成与催化活性[J].大连理工大学学报, 2001, 41(4): 421-425.
    [46]毕玉水,吕功煊.铈改性NaZSM-5分子筛担载Pd催化剂上CO氧化性能的研究[J].化学学报, 2003, 61(4): 635-640.
    [47]黄仲涛.工业催化剂手册[M].北京:化学工业出版社, 2004: 136-140.
    [48]李孔斋,王华,魏永刚,等.铈基复合氧化物中晶格氧用于甲烷部分氧化制合成气[J].燃料化学学报, 2008, 36(1): 83-88.
    [49]李占双,左宁,杨治.低温氧化CO的铜锌铈体系催化剂的制备研究[J].应用科技, 2007, 34(6): 53-57, 64.
    [50]杨汉培,范以宁,许波连,等.丙烷选择氧化用BiCeVMoO复合氧化物催化剂中Ce组分的作用[J].催化学报, 2003, 24(4): 265-269.
    [51]张业新,张昭良,于鹏飞,等.铈锆固溶体的合成及对SOF的催化氧化[J].中国稀土学报, 2005, 23卷: 55-58.
    [52]朱华青,秦张峰,王建国. CeO2-TiO2混合氧化物及Pd/CeO2-TiO2催化剂的氧化还原性能[J].催化学报, 2005, 26(5): 377-382.
    [53]纵秋云,刘博男,周春丽,等. Zr-Ce复合物助剂改性的QDB-04催化剂性能研究及应用[J].煤化工, 2008,第2期: 27-30.
    [54]胡玉才.铈锆氧化物固溶体的制备、表征及三效催化性能[J].材料科学与工艺, 2005, 13(1): 34-37.
    [55]杨成,董庆年,张静,等.铈和镧改性γ-Al2O3担载Pd催化剂的结构效应[J].物理化学学报, 2002, 18(2): 170-174.
    [56]张光旭,吴元欣,马沛生,等.非均相催化一步合成碳酸二苯酯的研究Ⅰ.载体制备方法对催化剂性能的影响[J].催化学报, 2002, 23(2): 130-132.
    [57]闫志国,胡勇,吴元欣,等.微波烧结技术及其在制备催化剂中的应用[J].应用化工, 2006, 35(6): 455-457.
    [58] Tang Xingfu, Li Yonggang, Huang Xiumin, et al. MnOx-CeO2 Mixed Oxide Catalysts for Complete Oxidation of Formaldehyde: Effect of Preparation Method and Calcination Temperature. Applied Catalysis B, 2006, 62(3-4): 265-273.
    [59]韩伟,林仁存,谢兆雄,等. CeO2乙苯脱氢催化剂的XRD、XPS研究[J].厦门大学学报(自然科学版), 2008, 47(5): 701-704.
    [60] Zhang Guangxu, Wu Yuanxin, Ma Peisheng, et al. Study on Direct Synthesis of Diphenyl Carbonate with Heterogeneous Catalytic Reaction(Ⅴ): Screening Catalysts and Optimizing of Synthesis Conditions. Chinese Journal of Chemical Engineering, 2003, 11(15): 526.
    [61]王幸宜,卢冠忠,任建德,等. Cu对Cu-Mn-Ce-O和Cu-Mn-Ce-Pd-O催化剂三效性能的影响[J].燃料化学学报, 1995, 23(2): 156-161.
    [62]卢冠忠,王幸宜,吴善良,等.氧化铈对Cu-Mn-O燃烧催化剂氧化还原性能的影响[J].华东理工大学学报, 1995, 21(3): 363-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700