金属离子改性HZSM-5催化乙醇脱水制乙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球性石油资源供求关系的日益紧张,油价不断上扬,同时石化工业所造成的环境污染日益严重,传统石油乙烯工业将面临新挑战。如何突破资源短缺的瓶颈,利用可再生生物质资源生产乙醇,再进一步脱水成乙烯,从而逐步替代传统的石油乙烯成为当前研究的热点。本论文主要以低温脱水催化剂为研究对象,重点研究了金属离子改性HZSM-5催化乙醇脱水制乙烯,得到一些有意义的结果。
     本文分别采用离子交换法和浸渍法制备了一系列金属离子改性的HZSM-5催化剂,比较了不同金属、不同改性方法对HZSM-5催化剂反应活性的影响,并从各方面考察了分子筛催化剂对乙醇脱水制乙烯的催化性能,及其重要的影响因素。其中,离子交换法中的金属主要为Fe、Mn和Co。结果表明Co-HZSM-5具有较好的催化活性,在温度493K、质量空速2.5h~(-1)、乙醇体积分数为60%的反应条件下,乙醇的转化率和乙烯的选择性分别达到99.67%和99.32%。
     对浸渍法改性,则主要考察了Mg、Ca、Sr、Ba、Mn、Fe、Co、Zn、Zr、Cd、La和Ce等金属中的单组分或多组分复合改性后的催化脱水效果。结果表明不同的金属离子、在不同负载量的条件下制备的催化剂的脱水性能差别很大,其中0.5%Sr/HZSM-5、1.0%Mn/HZSM-5、1.0%~2.0%Zr/HZSM-5、1.0%La/HZSM-5、0.5%Sr-0.25%La/HZSM-5、0.5%Sr-0.5%La/HZSM-5、0.5%Sr-1.0%La/HZSM-5和0.25%Sr-1.0%La/HZSM-5均具有较好的催化活性,在温度493K、质量空速2.5h~(-1)、乙醇质量分数为50%的反应条件下,乙醇的转化率和乙烯的选择性均大于98.00%。
Due to the petroleum emergence of rising demand and decreasing supply,the price of petroleum was unavoidably increasing.Besides,the petroleum-based industry has already caused serious contamination to the global environment.As a result,a new route to substitute for the traditional chemical industry is cried for,especially in the production of ethylene,one of the most important platform compounds in the world.Nowadays much work has been done in this field.The focus is using renewable biomass as a raw material to produce ethanol,which is then converted to ethylene by chemical means.This paper concerned the dehydration of ethanol to ethylene over metal ions modified HZSM-5.
     In order to compare the dehydrating activity of HZSM-5 modified by different metals,a series of catalysts were prepared by both normal ion-exchange method and impregnation method.The metals for ion-exchange were Fe,Mn and Co.The results showed that Co-HZSM-5 had better performances in dehydration of ethanol.Under 493K, the best ethanol conversion of 99.67%and ethylene selectivity of 99.32%were obtained when WHSV and ethanol volume fraction were 2.5h~(-1) and 60%respectively.
     Also,the influences of modified HZSM-5 using impregnation method with Mg,Ca, Sr,Ba,Mn,Fe,Co,Zn,Zr,Cd,La and Ce,were investigated in details.The results indicated that 0.5%Sr/HZSM-5,1.0%Mn/HZSM-5,1.0%~2.0%Zr/HZSM-5, 1.0%La/HZSM-5,0.5%Sr-0.25%La/HZSM-5,0.5%Sr-0.5%La/HZSM-5, 0.5%Sr-1.0%La/HZSM-5 and 0.25%Sr-1.0%La/HZSM-5 all had better performances in dehydration of ethanol.Under 493K,the best ethanol conversion of more than 98.00%and ethylene selectivity of more than 98.00%were obtained when WHSV and ethanol quality fraction were 2.5h~(-1) and 50%respectively.
引文
[1]莫炳荣,黄科林.广西发展生物酒精乙烯工业的可行性分析[J].化工技术与开发,2002,31(3):20-23.
    [2]陈滨.乙烯工学[M].北京:化学工业出版社,1997.
    [3]王松汉,何细藕.乙烯工艺与技术[M].北京:中国石化出版社,2000.
    [4]高滋,何明元,戴逸云.沸石催化与分离技术[M].中国石化出版社,1999.
    [5]顾志华.乙醇制乙烯技术现状及展望[J].化工进展,2006,25(8):847-851.
    [6]于云霞,刘必武.NC1301型乙醇脱水制乙烯催化剂的研制[J].化学工业与工程技术,1995,16(2):8-10.
    [7]Breen J P,Burch R,Coleman H M.Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J].Applied Catalysis B:Environmental,2002,39:65-74.
    [8]Zaki T.Catalytic dehydration of ethanol using transition metal oxide catalysts[J].Journal of colloid and interface science.2005,284:606-613.
    [9]El-Katatny E A,Halawy S A,Mohamed M A,et al.Recovery of ethene -selective FeOx/Al2O3 ethanol dehydration catalyst from industrial chemical wastes[J].Applied Catalysis A:General,2000,199:83-92.
    [10]Batista M S,Santos R K S,Assaf E M.Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol[J].Journal of Power Sources,2003,24:99-103.
    [11]Abu-Zied B M.Structural and catalytic activity studies of silver/chromia catalysts[J].Applied Catalysis'A:General,2000,198:139-153.
    [12]Halawy S A,Mohamed M A.The effect of different ZnO precursors on the catalytic decomposition of ethanol[J].Journal of Molecular Catalysis A:Chemical,2005,98:L63-L68.
    [13]赵本良,赵宝中.以杂多酸催化法乙醇脱水制乙烯[J].东北师大学报自然科学版,1995,1:70-72.
    [14]赵本良,王静波,王春梅等.杂多酸催化剂催化乙醇脱水制乙烯[J].东北师大学报自然科学版,1997,3:41-43.
    [15]KN(O|¨)ZINGER H,K(O|¨)HNE R.The dehydration of alcohols over alumina[J].Journal of Catalysis,1966,5:264-270.
    [16]Haber J,Pamin K,Matachowski K,et al.Potassium and silver salts of tungstophosphoric acid as catalysts in dehydration of ethanol and hydration of ethylene[J].Journal of Catalysis,2002,207:296-306.
    [17]王定一,陈家雄,李景林等.乙醇制乙烯新催化剂SAPO-34特性研究[J].广西化工,1991,4:1-3.
    [18]DahN1 I M,Wendelbo R,Andersen A,et al.The effect of crystallite size on the activity and selectivity of the reaction of ethanol and 2-propanol over SAPO-34[J].Microporous and Mesoporous Materials,1999,29:159-171.
    [19]Takahara I,Saito M,Inaba M,et al.Dehydration of ethanol into ethylene over solid acid catalysts[J].Catalysis Letters,2005,3-4(105):249-252.
    [20]Argauer R J,Landolt G R.Synthesis of zeolite ZSM-5[P]:US-3702866,1972.
    [21]Kokotailo G T,Lawton S L,Olson D H,et al.Structure of synthetic zeolite ZSM-5[J].Nature,1978,272:437-438.
    [22]Mao R L V,Nguyen T,Mclaughlin G P.The Bioethanol-to-Ethylene(B.E.T.E.)Process[J].Applied Catalysis,1989,48:265-277.
    [23]Mao R L V.Superacidic catalysts for low temperature conversion of aqueous ethanol to ethylene[P]:US-4847223,1989.
    [24]Mao R L V,Levesque P,Mclaughlin G,et al.Ethylene from ethanol over zeolite catalysts[J].Applied Catalysis,1987,34:163-179.
    [25]Mao R L V.Zeolite catalysts[P]:US-4615995,1986.
    [26]Moser W R,Thompson R W,Chinag C C,et al.Silicon-rich H-ZSM-5 catalyzed conversion of aqueous ethanol to ethylene[J].Journal of catalysis,1989,117:19-32.
    [27]Chang C D,Silvestri A J.The Conversion of methanol and other o-Compounds to hydrocarbons over zeolite catalysts[J].Journal of catalysis,1977,47:249-259.
    [28]Derouane E G,Nagy J B,Dejaifve P,et al.Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite[J].Journal of catalysis,1978,53:40-55.
    [29]Phillips C B,Datta R.Production of ethylene from hydrous ethanol on HZSM-5 under mild conditions[J].Ind.Eng.Chem.Res.,1997,36:4466-4475.
    [30]潘履让,李赫晅.乙醇脱水制乙烯新型催化剂的研制(Ⅰ)[J].石油化工,1985,14(3):154-157.
    [31]潘履让,蒋德林,李赫晅.乙醇脱水制乙烯新型催化剂的研制(Ⅱ)[J].石油化工,1986,15(3):155-160.
    [32]潘履让,贾春娟,李赫晅.NKC-03A乙醇脱水制乙烯催化剂的活性位和失活规律的研究[J].催化学报,1989,10(4):372-377.
    [33]潘履让,李赫晅.乙醇脱水制乙烯新型催化剂的研制(Ⅲ、催化剂的失活与再生)[J].石油化工,1986,14(9):523-528.
    [34]关逎佳,潘履让,项寿鹤,李赫晅.ZSM-5分子筛的酸性和裂化活性[J].石油学报(石油加工),1986,2(4):41-47.
    [35]潘履让,蒋瑞芸,李赫晅.HZSM-5分子筛上CO_2和NH_3吸附及乙醇脱水反应选择性的研究[J].催化学报,1985,6(4):353-357.
    [36]周忠清.低浓度乙醇制乙烯的研究[J].精细石油化工,1993,(1):35-37.
    [37]Kannan S,Sen T,Sivasanker S.Catalytic transformation of ethanol over microporous vanadium silicate molecular sieves with MEL structure(VS-2)[J].Journal of Catalysis,1997,170:304-310.
    [38]Caillerie J B E,Gruver V,Fripiat J J.Modification of the surface properties of natural phyllosilicate sepiolite by secondary isomorphic substitution[J].Journal of Catalysis,1995,151:420-430.
    [39]王绪绪,陈旬,徐海兵等.沸石分子筛的表面改性技术进展[J].无机化学学报,2002,18(6):541-549.
    [40]宣东.金属负载的HZSM-5上甲烷和丙烷无氧芳构化反应研究[D].杭州:浙江大学,2006.
    [41]泰云.乙醇脱水产物的讨论[J].保山师专学报,1998,2(17):53-56.
    [42]Oudejans J C,Oosterkamp P F,Bekkum H V.Conversion of ethanol over zeolite HZSM-5 in the presence of water[J].Applied Catalysis,1982,3:109-115.
    [43]Mao R L V,Dao L H.Ethylene light olefins from ethanol[P].US-4698452,1987.
    [44]Nguyen T M,Mao R L V.Conversion of ethanol in aqueous solution over ZSM-5Zeolites[J].Applied Catalysis,1990,58:119-129.
    [45]顾志华,王艳丹,金照生等.乙醇脱水反应的热力学分析与实验研究[J].化学研究,2006,17(1):68-71.
    [46]Uytterhoeven J B,Jacobs J M,Tastemhoye P J,et al.Process for obtaining ethylene from ethanol[P]:US-4727214,1988.
    [47]Jingfa D,Guirong Z.Acidic properties of ZSM-5 zeolite and conversion of ethanol to diethyl ether[J].Applied Catalysis,1988,41:13-22.
    [48]Mao R L V,Nguyen T M,Yao J.Conversion of ethanol in aqueous solution over ZSM-5 zeolites[J].Applied Catalysis,1990,61:161-173.
    [49]潘锋,吴玉龙,张建安等.生物发酵乙醇催化脱水制乙烯发展状况[J].现代化工,2006,26(2):27-29.
    [50]Machado N R,Calsavara V,Astrath N G,et al.Hydrocarbons from ethanol using [Fe,Al]ZSM-5 zeolites obtained by direct synthesis[J].Applied Catalysis A:General,2006,311:193-198.
    [51]Talukdar A K,Bhattacharyya K G,Sivasanker S.HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons[J].Applied Catalysis A:General,1997,148:357-371.
    [52]Aguayo A T,Gayubo A G,Tarrio A M,et al.Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite[J].Journal of Chemical Technology and Biotechnology,2002,77:211-216.
    [53]Bun S,Nishiyama S,Tsuruya S,et al.Ethanol conversion over Ion-Exchanged ZSM-5zeolites[J].Applied Catalysis,1990,59:13-29.
    [54]Jacobs J M,Jacobs P A,Uytterhoeven J B,et al.Process for obtaining ethylene from ethanol.[P].US-4670620,1987.
    [55]Mao R L V.Composite zeolite-asbestos catalysts[P].US-4511667,1985.
    [56]Choudhary V R,Nayak V S.Conversion of alcohols to aromatics on HZSM-5:influence of Si/Al ratio and degree of cation exchange on product distribution[J].Zeolites,1985,5:325-328.
    [57]Choudhary V R,Sansare S D.Conversion of ethanol to aromatics on HZSM-5 in a pulse microreactor[J].Applied Catalysis,1984,10:147-153.
    [58]Anunziata O A,Orio O A,Herrero E R,et al.Conversion of fermentation products to aromatic hydrocarbons over zeolite-type HZSM-5 in one step[J].Applied Catalysis,1985,15:235-245.
    [59]王亚男.ZSM-5型分子筛催化联苯甲基化研究[D].大连:大连理工大学,2006.
    [60]孙长勇,宋一兵,叶飞等.Fe-ZSM-5杂原子分子筛的合成与表征[J].光谱实验室,2003,3(20):448-451.
    [61]Szostak R.Molecular Sieves[M].Second Edition Blackie Academic & Professional,1998.
    [62]El-salaam K M,Hassan E A.Active surface centres in heterogeneous cdo catalyst for ethanol decomposition[J].Surface Technology,1982,16:121-128.
    [63]Gang Yang,Jianqin Zhuang,Yan Wang,et al.Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperation effect of exchanged lanthanum and phosphoric species[J].Journal of Molecular Structure,2005,737:271-276.
    [64]陈晓珍,崔波,石文平等.催化剂的失活原因分析[J].工业催化,2001,9(5):9-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700