Ⅰ类新药艾普拉唑的临床药物代谢动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅰ类新药艾普拉唑是丽珠制药公司研发的新一代强效质子泵抑制剂,它是治疗胃肠道相关疾病的抑酸剂。本文是研究艾普拉唑的测定方法、艾普拉唑代谢产物、艾普拉唑的药代动力学以及抗幽门螺杆菌三联用药方案对艾普拉唑和克拉红霉素药物代谢动力学的影响等四个方面。
     一、液相色谱-串联质谱法测定血浆中艾普拉唑及其代谢产物及在药代动力学上的应用
     目的:建立快速、灵敏的液相色谱-串联质谱法测定人血浆中的艾普拉唑及其代谢产物,用于受试者口服艾普拉唑后的药代动力学研究。
     方法:选用Thermo HyPURITYC18柱,流动相为10mM甲酸胺水溶液:乙腈(50:50),柱温30度,三重四极杆质谱以多反应监测方式进行检测,检测的离子:艾普拉唑m/z367.2→184.0;艾普拉唑砜:m/z:383.3→184.1;艾普拉唑硫醚:m/z:351.2→168.1;内标奥美拉唑:m/z:346.2→198.0。12名健康受试者分别口服5mg的艾普拉唑肠溶片在0-48h采血,用建立的LC-MS/MS方法检测其体内艾普拉唑及其两个代谢产物的血药浓度。
     结果:其线性范围艾普拉唑为0.23-2400.00 ng/mL;艾普拉唑砜为0.05-105.00 ng/mL;艾普拉唑硫醚为0.06-45.00ng/mL。LLOQ分别为0.23、0.05和0.06ng/mL。结论:该方法灵敏度高,实用性强,适用于临床药物动力学研究。
     二、人尿中艾普拉唑代谢物的结构鉴定
     目的:利用LC-MS/MS和LC-NMR鉴定口服艾普拉唑在人尿中的四种代谢产物
     方法:尿样在被Na2CO3溶液(1 mol/L)碱化后,加入适量二氯甲烷以及0.05 mol/L的醋酸铵缓冲溶液进行萃取。选用伊利特C18柱,流动相为甲醇:0.05MNH4AC水溶液,Agilent 1200色谱系统进行检测。
     结果:通过HPLC-MS/MS以及HPLC-NMR实验鉴定了健康受试者服用艾普拉唑后尿液中的代谢产物M1-M4。4个代谢产物均为艾普拉唑的醚化产物,艾普拉唑硫醚,12-羟基艾普拉唑硫醚,11,12-二羟基硫醚和艾普拉唑硫醚A。由此,我们推断4个代谢产物的代谢途径为:艾普拉唑首先被代谢酶还原成艾普拉唑硫醚(M1),艾普拉唑硫醚(M1)接着被还原成艾普拉唑硫醚A(M4)以及发生羟基化反应生成12-羟基艾普拉唑硫醚(M2),12-羟基艾普拉唑硫醚(M2)再次发生羟基化反应生成11,12-二羟基艾普拉唑硫醚(M3)。此外,在尿液中未检测到原料药、砜化产物以及去甲基化和羟基化的产物。
     三、在中国健康人中研究新型质子泵抑制剂艾普拉唑与CYP3A5和CYP2C19基因型相关的药代动力学
     目的:本试验是研究新型质子泵抑制剂艾普拉唑在健康中国受试者中的药代动力学以及和代谢酶CYP3A5和CYP2C19的基因多态性。
     方法:在202名健康中国受试者中筛选CYP3A5*3基因型,根据他们的CYP3A5和CYP2C19基因型有21名成年男子入选参加本实验。
     在服用单剂量艾普拉唑后利用LC-MS/MS检测艾普拉唑和代谢产物在血浆中的血药浓度。
     结果:在CYP2C19野生纯合子及突变杂合子中即所有的受试者中,艾普拉唑和艾普拉唑砜的主要代谢参数在3组CYP3A5基因型中显著变化。虽然CYP3A5高表达(CYP3A5*1/*1)显示比低表达(CYP3A5*1/*3)较高的清除率,但是无表达(CYP3A5*3/*3)在3组不同基因型中有最高的清除率。根据这一结果,可以认为CYP3A5*1/*1、CYP3A5*1/*3、CYP3A5*3/*3,代谢艾普拉唑的能力分别为中、低、高。这一结果提示我们CYP3A5酶活性与艾普拉唑的代谢无关。假如在3组基因型中,CYP3A5基因型-表型与总CYP3A酶活性没有我们预期的相关性,我们就不能用CYP3A5基因型代表总的CYP3A活性。从而得出结论本试验没有发现CYP3A5于艾普拉唑的代谢有相关性。
     四、抗幽门螺杆菌三联用药方案对艾普拉唑药物代谢动力学的影响
     目的:三联用药方案中多剂量艾普拉唑和非联用方案中多剂量艾普拉唑药代动力学参数差异的研究
     方法:本研究为自身前后对照、双周期、双交叉实验。第一阶段连续服用艾普拉唑5 mg Bid×6天。第一天和第七天抽取服药后0,0.5,1,1.5,2,3,4,6,8,12,24,48和72小时的5 ml血样(采用静脉留滞针)和收集服药后0-24小时分段尿。一周洗脱期后开始第二阶段连续服用克拉霉素500 mg Bid+阿莫西林1 g Bid+消旋艾普拉唑5 mg Bid三联用药×6天。抽取相同时间点8 ml血样(采用静脉留滞针)。两组受试者经洗脱期后交换服药方式,采集相应时间点的血药浓度。采用HPLC-MS/MS法测定给药后不同时间艾普拉唑血药浓度,利用DAS Ver2.0计算药动学参数和进行统计分析。
     结果:三联用药组艾普拉唑在吸收速度和吸收量上均较单剂量艾普拉唑组降低,代谢产物之一艾普拉唑砜在吸收速度和吸收量上均较单剂量艾普拉唑组降低,而代谢产物艾普拉唑硫醚在吸收速度和吸收量上均较单剂量艾普拉唑组增高。
Ilaprazole is a new proton pump inhibitor designed for the treatment of gastric ulcers. Our study consists of four parts, determination of ilapraozle and its two metabolites in human plasma by LC-MS/MS, Identification of ilaprazole urinary metabolites in human by high-performance liquid chromatography -tandem mass spectrometry and stopped-flow high-performance liquid chromatography-nuclear magnetic resonance experiments, pharmacokinetics of the new proton pump inhibitor ilaprazole in Chinese healthy subjects in relation to CYP3A5 and CYP2C19 genotypes and the effect of standard Triple-Drug therapy for helicobacter pylori eradication on the pharmacokinetcs of Ilaprazole.
     Part 1. Determination of ilapraozle and its two metabolites in human plasma by LC-MS/MS
     An analytical method based on liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been improved and validated for the quantitative measurement of ilaprazole and it's two metablites in human plasma. Separation of analytes and the internal standard (IS) omeprazole was performed on a Thermo HyPURITY C18 column (150x2. 1mm,5μm) with a mobile phase consisting of 10mM ammonium formate water solution- acetonitrile (50:50,v/v) at a flow rate of 0.25 mL/min. The API4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring mode via positive electrospray ionization interface using the transition m/z 367.2→m/z184.0 for ilaprazole, m/z 383.3→m/z 184.1 for ilaprazole sulfone, m/z 351.2→m/z168.1 for ilaprazole thiol ether and m/z 346.2→m/z 198.0 for omeprazole. The method was linear over the concentration range of 0.23 - 2400.00 ng/mL for ilaprzole,0.05-105.00 ng/mL for ilaprazole thiol ether and 0.06 - 45.00 ng/mL for ilaprazole sulfone, respectively. The intra- and inter- day prcisions were all less than 15% in terms of relative standard deviation (R.S.D), and the accuracy was within 15% in terms of relative error (R.E) for ilaprazole, ilaprazole sulfone and ilaprazole thiol ether. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.23,0.05 and 0.06 ng/mL with acceptable precision and accuracy for ilaprazole, ilaprazole sulfone and ilaprazole thiol ether, respectively. The validated method offered sensitivity and wide linear concentration range. This method was successfully applied for the evaluation of pharmacokinetics of ilaprazole and it's two metablites after single oral doses of 5 mg ilaprazole to 12 Chinese healthy volunteers.
     Part 2. Identification of ilaprazole urinary metabolites in human by high-performance liquid chromatography -tandem mass spectrometry and stopped-flow high-performance liquid chromatography-nuclear magnetic resonance experiments
     The structural elucidation of ilaprazole metabolites in human urine was described by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and stopped-flow liquid chromatography-nuclear magnetic resonance (HPLC-NMR) experiments. Urinary samples were precipitated by sodium carbonate solution, and then extracted by liquid-liquid extraction with methyl chloride after adding ammonium acetate buffer. The enriched sample was separated using a C18 reversed-phase column with the mobile phase composed of acetonitrile and 0.05 mol/l ammonium acetate buffer in a gradient solution, and then directly coupled MS/MS detection in an on-line mode or 1H-NMR (500 MHz) spectroscopic detection in a stopped-flow mode. Four sulfide metabolites, ilaprazole sulfide,12-hydroxy-ilaprazole sulfide,11,12-dihydroxy-ilaprazole sulfide and ilaprazole sulfide A were identified from the combined MS/MS and NMR data with those of the parent drug and available standard without actually isolating them. The result testified that the described method could be widely applied in rapid detection and identification of novel metabolites.
     Part 3. Pharmacokinetics of the new proton pump inhibitor ilaprazole in Chinese healthy subjects in relation to CYP3A5 and CYP2C19 genotypes
     This study is to investigate the kinetic characteristics of a new PPI ilaprazole in Chinese healthy subjects and the association with CYP3A5 and CYP2C19 polymorphisms.21 subjects were selected and treated with 10mg ilaprazole according to their CYP3A5*3 genotypes. The plasma concentrations of ilaprazole and its metabolites were monitored by LC-MS/MS method.The Cmax, AUC(0-6), AUC(0-48) and AUC(0-∞) of ilaprazole were all significantly different across the 3 CYP3A5 genotypes (including 4 of CYP3A5*1/*1,4 of*1/*3,3 of*3/*3; Pb0.05) in CYP2C19 wild-type subjects (CYP2C19 wt/wts), similar variety of Cmax and AUC(0-6) among CYP3A5 genotypes (including 3 of CYP3A5*1/*1,3 of *1/*3,4 of*3/*3; Pb0.05) were also observed in CYP2C19 heterozygous subjects (CYP2C19 wt/mts). The sulfoxidation metabolic index indicates that the CYP3A5*1/*1,*1/*3 (low-expressers), and*3/*3 (no-expressers) groups have medium, lowest and highest activities on ilaprazole metabolism, inconsistent with genotype-based CYP3A5 enzymatic activity. Further analysis showed no correlation between ilaprazole metabolism and CYP2C19 genotypes, evidenced by that the AUC(0-∞) of ilaprazole from either CYP3A5*1/*1 or CYP3A5*1/*3 groups was much higher in CYP2C19 wt/wts (n=4) than that in CYP2C19 wt/mts (n=3) (Pb0.001), but the Cmax and AUC(0-6) of ilaprazole from CYP3A5*3/*3 groups, were significantly lower in CYP2C19 wt/wts (n=3) compared to CYP2C19 wt/mts (n=4) (Pb0.01). There was no demonstrated relationship between ilaprazole metabolism and CYP3A5 polymorphisms.
     Part 4. The effect of standard Triple-Drug therapy for helicobacter pylori eradication on the pharmacokinetcs of Ilaprazole
     This is a controled, two-period, cross over study. During the first stage all the subjects were orally administrated ilaprazole(5mg) or standard Triple-Drug therapy for helicobacter pylori eradication bid for six continuous days. On the first and seventh day after the morning administation of ilaprazole 5ml of blood samples were drawn from subjects at0,0.5,1,1.5,2,3,4,6,8,12,24,48 and 72 hours, and urine were collected for 24 hours. After one week's wash out period on the second stage of study the subjects were drawn 8 ml of blood sample on the same time points. Plasma concentrations of ilaprazole were determined by a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method, all of the pharmacokinetic parameters were calculated by use of DAS Ver 2.0. The results were ilaprazole of standard Triple-Drug therapy for helicobacter pylori eradication absorbtion rate and absorbtion amount is significantly decreased than single dose of ilaprazole, the absorbtion rate and absorbtion amount of the major metabolite ilaprazole sulfone is significantly decreased than single dose group as well. The absorbtion rate and absorbtion amount of metabolite ilaprazole sulfide is higher the single dose group.
引文
[1]Taylor PJ, Matrix effects:the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry, Clin. Biochem, 2005,38(4):328-34
    [2]H.T. Karnes, C. March, Precision, accuracy, and data acceptance criteria in biopharmaceutical analysis, (1993)Pharm. Res.10(10):1420-6.
    [3]C. Rudolphi, G. Blaschke, Determination of the stereoselective spects in in-vitro and in-vivo metabolism of the analgesic meptazinol by highperformance liquid chromatography, Journal of Chromatography B,663 (1995) 315-326
    [4]Periclou AP, Goldwater R,Lee SM, Park DW, Kim DY, Cho KD, Boileau F and Jung WT.. A comparative pharmacodynamic study of IY-81149 versus omeprazole in patients with gastroesophageal reflux disease, Clin Pharmacol Ther. 68(3)(2000)304-11
    [5]Myung SW, Min HK, Jin C, Kim M, Lee SM, Chung GJ, Park SJ, Kim DY and Cho HW. Identification of IY81149 and its metabolites in the rat plasma using the on-line HPLC/ESI mass spectrometry, Arch Pharm Res.22(2)(1999)189.
    [6]Li Y, Zhang W, Guo D, Zhou G, Zhou H, Xiao Z., Pharmacokinetics of the new proton pump inhibitor ilaprazole in Chinese healthy subjects in relation to CYP3A5 and CYP2C19 genotypes,Clin Chim Acta.39(1-2) (2008) 60.
    [7]P.J. Taylor, Matrix effects:the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry, Clin. Biochem. 38(4) (2005) 328.
    [8]H.T. Karnes, C. March, Precision, Accuracy, and Data Acceptance Criteria in Biopharmaceutical Analysis Pharm. Res.10(10) (1993) 1420.
    [9]B.J. Kil, I.W. Kim, C.Y. Shin, J.H. Jeong, C.H. Jun, S.M. Lee, D.Y. Kim, I.H. Huh, U.D. Sohn. J. Auton. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Pharmacol.20 (2000) 291.
    [10]D. Kwon, J.B. Chae, C.W. Park, Y.S. Kim, S.M. Lee, E.J. Kim, I.H. Huh, D.Y. Kim, K.D. Cho, Pharmacokinetics of the new proton pump inhibitor ilaprazole in Chinese healthy subjects in relation to CYP3A5 and CYP2C19 genotypes. Arzneimittelforschung 51 (2001) 204.
    [11]E.J. Kim, R.K. Lee, S.M. Lee, D.Y. Kim, Efficacy of Echinacea purpurea in patients with a common cold. A placebo-controlled, randomised, double-blind clinical trial. Arzneimittelforschung 51 (2001) 51.
    [12]A.P. Periclou, R. Goldwater, S.M. Lee, D.W. Park, D.Y. Kim, K.D. Cho, F. Boileau, W.T. Jung, A comparative pharmacodynamic study of IY-81149 versus omeprazole in patients with gastroesophageal reflux disease Clin. Pharmacol. Ther.68 (2000) 304.
    [13]S.W. Myung, H.K. Min, C. Jin, M. Kim, S.M. Lee, G.J. Chung, S.J. Park, D.Y. Kim, H.W. Cho, Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. Arch. Pharm. Res.22 (1999) 189.
    [14]Y.L. Li, W. Zhang, D. Guo, G. Zhou, H.H. Zhou, Z.S. Xiao, Characterization of clinical assays for leukocyte and fibroblast alpha-N-acetylgalactosaminidase activities for the diagnosis of alpha-N-acetylgalactosaminidase deficiency. Clin. Chim.Acta 391(2008)60.
    [15]B. Suchanova, R. Kostiainen, R.A. Ketola, the differences between UGT1A4 and UGT2B10 account for the complex kinetics of human liver microsomes. Eur. J. Pharm. Sci.33 (2008)91.
    [16]Y. Liu, M.M. Wang, M. Xue, Y.H. Li, X.R. Li, J.X. Ruan, K.L. Liu, A molecular chromatographic approach to analyze the cell diffusion of arginase inhibitors. J. Chromatogr. B 873 (2008) 41.
    [17]X. Ye, Y.G. Wang, M.H. Yang, Q.Q. Wang, Q.D. Liang, Z.C. Ma, B.L. Zhang, Y. Gao, Practical and theoretical descriptions of the many techniques used for the analysis of lipids, both chromatographic and spectroscopic. For practical reasons, this part of the site is subdivided into six sections. J. Chromatogr. B 877 (2009) 141.
    [18]L. Ren, K.S. Bi, P. Gong, W.M. Cheng, Z. Song, L. Fang, X.H. Chen, Isolation and structure elucidation of degradation products in the potential anticancer drug PAC-1. J. Chromatogr. B 876 (2008) 47.
    [19]Z.Z. Zhao, L.F. Zhang, F.Q. Xue, X.Y. Wang, W.L. Zheng, T. Zhang, C.Z. Fei, K.Y. Zhang, M.Q. Qiu, R.X. Xin, F.K. Yang, Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects. J. Chromatogr. B 875 (2008) 427.
    [20]C. Seger, M. Godejohann, L. Tseng, M. Spraul, A. Girtler, S. Sturm, H. Stuppner, Anal. Chem.77 (2005) 878.
    [21]A. Pukalskas, T.A. Van Beek, P. de Waard, Analysis of urinary caffeine metabolites to assess biotransformation enzyme activities by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1074 (2005) 81.
    [22]W.S. Zhang, A.L. Li, Medicinal Chemistry, Higher Education Press, China,1999, P.42.
    [23]K.J. Hoffmann, Assessment of caffeine exposure:Caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Drug Metab. Dispos.14(1986)341.
    [24]Welage LS, Berardi RR. Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases. J Am Pharm Assoc (Wash) 2000;40(1):52-62; quiz 121-3.
    [25]Welage LS. Pharmacologic properties of proton pump inhibitors. Pharmacotherapy 2003;23(10 Pt 2):74S-80S.
    [26]Dekel R, Morse C, Fass R. The role of proton pump inhibitors in gastro-oesophageal reflux disease. Drugs.2004;64(3):277-95.
    [27]Kil BJ, Kim IW, Shin CY, Jeong JH, Jun CH, Lee SM, et al. Comparison of IY81149 with omeprazole in rat reflux oesophagitis. J Auton Pharmacol 2000;20(5-6):291-6.
    [28]Kwon D, Chae JB, Park CW, Kim YS, Lee SM, Kim EJ, et al. Effects of IY-81149, a newly developed proton pump inhibitor, on gastric acid secretion in vitro and in vivo. Arzneimittelforschung 2001;51(3):204-13.
    [29]Kim EJ, Lee RK, Lee SM, Kim DY. General pharmacology of IY-81149, a new proton pump inhibitor. Arzneimittelforschung 2001;51(1):51-9.
    [30]Periclou AP, Goldwater R, Lee SM, Park DW, Kim DY, Cho KD, et al. A comparative pharmacodynamic study of IY-81149 versus omeprazole in patients with gastroesophageal reflux disease. Clin Pharmacol Ther 2000;68(3):304-11.
    [31]Sugimoto M, Furuta T, Shirai N, Kajimura M, Hishida A, Sakurai M, et al. Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status. Clin Pharmacol Ther 2004;76(4):290-301.
    [32]Miura M, Kagaya H, Tada H, Uno T, Yasui-Furukori N, Tateishi T, et al. Enantioselective disposition of rabeprazole in relation to CYP2C19 genotypes. Br
    J Clin Pharmacol 2006;61(3):315-20.
    [33]Ulrich K, Matthias S, Gerhard T. CYP2C19 Polymorphism and Proton Pump Inhibitors. Pharmacology & Toxicology 2004; 95:2-8.
    [34]Klotz U. Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors:a review of a special problem. Int J Clin Pharmacol Ther 2006;44(7):297-302.
    [35]Pichard L, Curi-Pedrosa R, Bonfils C, Jacqz-Aigrain E, Domergue J, Joyeux H, et al. Oxidative metabolism of lansoprazole by human liver cytochromes P450. Mol Pharmacol 1995;47(2):410-8.
    [36]Katsuki H, Hamada A, Nakamura C, Arimori K, Nakano M. Role of CYP3A4 and CYP2C19 in the stereoselective metabolism of lansoprazole by human liver microsomes. Eur J Clin Pharmacol 2001; 57:709-15.
    [37]Kim KA, Kim MJ, Park JY, Shon JH, Yoon YR, Lee SS, et al. Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos 2003;31:1227-34.
    [38]Saito M, Yasui-Furukori N, Uno T, Takahata T, Sugawara K, Munakata A, et al. Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes. Br J Clin Pharmacol 2005;59(3):302-9.
    [39]Furuta T, Shirai N, Sugimoto M, Nakamura A, Hishida A. Hydroxylation of lansoprazole in poor metabolizers of CYP2C19. Br J Clin Pharmacol 2006;61(3):361; author reply 361-2.
    [40]Schwab M, Klotz U, Hofmann U, Schaeffeler E, Leodolter A, Malfertheiner P, et al. Esomeprazole-induced healing of gastroesophageal reflux disease is unrelated to the genotype of CYP2C19:evidence from clinical and pharmacokinetic data. Clin Pharmacol Ther 2005;78(6):;627-34.
    [41]Myung SW, Min HK, Jin C, Kim M, Lee SM, Chung GJ, et al. Identification of IY81149 and its metabolites in the rat plasma using the on-line HPLC/ESI mass spectrometry. Arch Pharm Res.1999;22(2):189-93.
    [42]Wojnowski L. Genetics of the variable expression of CYP3A in humans. Ther Drug Monit.2004;26(2):192-9.
    [43]Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol.2006;2(2):171-82.
    [44]Martinez-Jimenez CP, Jover R, Donato MT, Castell JV, Gomez-Lechon MJ. Transcriptional regulation and expression of CYP3A4 in hepatocytes. Curr Drug Metab.2007 Feb;8(2):185-94.
    [45]Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos.2002;30(10):1108-14.
    [46]Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004;5(3):243-72.
    [47]Lee SJ, Goldstein JA. Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics 2005;6(4):357-71.
    [48]Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006;45(1):13-31.
    [49]Chou FC, Tzeng SJ, Huang JD. Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab Dispos 2001;29(9):1205-9.
    [50]Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773-9.
    [51]Huang W, Lin YS, McConn DJ 2nd, Calamia JC, Totah RA, Isoherranen N, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos.2004;32(12):1434-45.
    [52]Liu CH, Peck K, Huang JD, Lin MS, Wang CH, Hsu WP, et al. Screening CYP3A single nucleotide polymorphisms in a Han Chinese population with a genotyping chip. Pharmacogenomics 2005;6(7):731-47.
    [53]Hu YF, He J, Chen GL, Wang D, Liu ZQ, Zhang C, et al. CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta.2005;353(1-2):187-92.
    [54]de Morais SM, Goldstein JA, Xie HG, Huang SL, Lu YQ, Xia H, et al. Genetic analysis of the S-mephenytoin polymorphism in a Chinese population. Clin Pharmacol Ther 1995;58(4):404-11.
    [55]Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Jiang CH, et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther.1997;281(1):604-9.
    [56]He N, Edeki T. The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am J Ther. 2004;11(3):206-12.
    [57]Scarpignato C, Pelosini I, Di Mario F. Acid suppression therapy: where do we go from here? Dig Dis.2006;24(1-2):11-46.
    [58]Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet.2002;41(12):913-58.
    [59]Chong E, Ensom MH. Pharmacogenetics of the proton pump inhibitors:a systematic review. Pharmacotherapy.2003 Apr;23(4):460-71.
    [1]Richardson P, Hawkey CJ, Stack WA. Proton pump inhibitors. Pharmacology and rational for use in gastrointestinal disorders. Drug,1998,56(3):307-335.
    [2]Welage LS. Pharmacologic features of proton pump inhibitors and theirpotential relevance to clinical practice. Gastroenterol Clin North Am,2003,32(suppl 3):s25-35.
    [3]张林.CYP2C19与质子泵抑制剂,国外医学,消化系疾病分册,2004,24(3):166-169.
    [4]Wang H,Li YY, Nie YQ,et al. Survey of genotype for S-mephenytoin hydroxylase in theChinese Han population. Chin J. Gastroenterol,2003,4(3):118-121.
    [5]Shi S, Klotz U. Proton pump inhibitors:an update of their clinical use and pharmacokinetics. Eur J Clin Pharmacol.2008 Oct;64(10):935-51.
    [6]Croom KF, Scott LJ. Lansoprazole:in the treatment of gastro-oesophageal reflux disease in children and adolescents. Drugs.2005;65(15):2129-35.
    [7]Devault KR. Pantoprazole:a proton pump inhibitor with oral and intravenous formulations. Expert Rev Gastroenterol Hepatol.2007 Dec;1(2):197-205.
    [8]Pace F, Pallotta S, Casalini S, Porro GB. A review of rabeprazole in the treatment of acid-related diseases. Ther Clin Risk Manag.2007 Jun;3(3):363-79.
    [9]McKeage K, Blick SK, Croxtall JD, Lyseng-Williamson KA, Keating GM. Esomeprazole:a review of its use in the management of gastric acid-related diseases in adults. Drugs. 2008;68(11):1571-607.
    [10]Kim EJ, Lee RK, Lee SM, Kim DY. General pharmacology of IY-81149, a new proton pump inhibitor. Arzneimittelforschung.2001 Jan;51(1):51-9.
    [11]李骢.夜间酸突破现象分析,国外医学消化系疾病分册,2003,23(5):288-290.
    [12]Andersson K, Carlsson E. Potassium-competitive acid blockade:a new therapeutic strategy in acid related diseases. Pharmacol Ther,2005,108(3):294-307.
    [13]Hunt RH, Armstrong D, James C, et al. Effect on intragastric PH of a PPI with a prolonged plasma half life:comparison between tenatoprazole and esomeprazole on the duration of acid suppression in healthy male volunteers. Am. J. Gastroenterol,2005,100(9):1949-1956.
    [14]Sakai T,Aoyama N, Kita T, et al. CYP2C19 geno type and pharmacok inetics of th ree p ro ton pump inh ibito rs in healthy subjects. Pharm res,2001,18:721-727.
    [15]Lind T, Rydberg L, Kyleback A, et al. Esomep razo le p rovides imp roved acid contro 1 vs. omep razo le In patients w ith symp torm s of gastro2oesophageal reflux disease. A liment Pharmaco 1 Ther,2000,14 (7):861-867.
    [16]Kanazawa H, Okada A, Higake M, et al. Stereo specific analysis of omeprazo le in human plasma as a p robe fo r CYP2C19 phenotype. Pharm Anal,2003,30 (6):1817-1827.
    [17]W elage L S,Berardi RR. Evaluation of Omerp razo le,L ansoprazole, Pantop razo le, in the trement of acid2related disease. Jan Pharm Assoc,2000,40 (1):56-62.
    [18]Inaba T,M izuno M, KawaiK, et al. Random ized open trial for comparison of p ro ton pump inh ibito rs in trip le therapy fo r Helicobacter pylo ri infection in relation to CYP2C19 geno
    type. Gastroentero Hepato,2002,17 (7):748-753.
    [19]Rich ter JE, Kah rilas FJ. Johanson J, et al. Efficacy and safety of esomep razo le compared w ith omep razo le in GERD patients with erosive esophagitis:a randomized controlled trial. Gastroentero,2001,96 (3):656-665.
    [20]Abelo A, Andersson TB, AntonssonM, et al. Stereo selective metabolism of omeprazole by human cytoch rome P450 enzymes. Drug Metab Dispos,2000,28 (8):966-972.
    [21]Shih H, Pickwell GV, Guenette DK, et al. Species differences in hepatocye induction of CYP1A1 and CYP1A2 by omeprazole. Hum Exp Toxicol,1999,18 (2):952105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700