连续波内腔近红外PPLN光学参量振荡器及黄橙光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.4μm~1.6μm近红外波在医疗、远距离遥感、空间通信、多普勒雷达以及工业、农业和食品行业的光谱分析与检测等方面有着广泛的应用。近年来,随着非线性晶体PPLN等的成熟及泵浦源的改进,利用光学参量振荡器(OPO)中的非线性频率变换技术获得1.4μm~1.6μm近红外光源引起了专家们的极大兴趣。另外,光谱范围在580nm~620nm波段的黄橙光光源在光谱研究、生命科学、医药科学、材料科学、分子动力学、天文学等方面具有重要应用。目前,该波段的全固态激光光源主要是利用频率变换技术,通过倍频、和频、受激拉曼频移的方法来获得。
     本论文主要设计并研制了连续运转的1.4μm~1.5μm可调谐近红外光源和连续运转的604nm~624nm可调谐黄橙光光源。主要内容和创新点归纳如下:
     1.在分析了多模泵浦的内腔单谐振光学参量振荡器(ICSRO)的动力学模型的基础上,对信号光输出功率特性提出了优化方案,为实现高功率、高效率连续波输出的近红外内腔OPO奠定了动力学理论基础。
     2.为实现高效率、高光束质量、稳定的近红外内腔OPO连续运转,利用光学谐振腔的图解分析与设计方法对整个ICSRO进行了详细的热稳腔设计;同时为获得调谐输出,详细计算了PPLN晶体的调谐曲线。
     3.对连续运转的近红外ICSRO进行了实验研究,以LD端面泵浦的Nd:YVO4激光器作为泵浦源,多周期的PPLN置于腔内,国内首次实现高效率连续波ICSRO信号光输出,调谐范围为1402nm~1513nm,其中在波长1500nm处获得最大功率为820mW,最大的光光转换效率为7.51%。
     4.在和频理论的基础上,运用角度相位匹配原理,通过详细的计算,选出满足和频实验需求的最佳非线性晶体及其具体参数。
     5.以ICSRO为基础设计了两种不同实验方案,对利用其泵浦光与信号光腔内和频,产生连续波、可调谐黄橙光输出进行实验研究,并已经利用第一种方案获得604nm~624nm连续波、可调谐黄橙光输出,其中在624nm处获得了最大输出功率为120mW的黄橙光输出,光光转换效率为1.1%。
There are many applications of 1.4μm~1.6μm near-infrared laser including medical treatment, instance remote sensing, optical spacial communication, Doppler lidar systems and spectral analysis or detection in industry, agriculture and foodstuff. Recently, achieving 1.4μm~1.6μm laser source by using the technology of nonlinear frequency conversion in optical parameter oscillator (OPO) has attracted many experts’attention, with the development of the nonlinear crystal, such as PPLN crystal, and the pumping source. In addition, the yellow-orange laser in the spectral range of 580nm~620nm has many important applications in spectral analysis, life science, medicine, material science, molecular dynamics and astronomy. Presently, an all-solid-state laser in this spectral range was obtained by frequency conversion, such as frequency-doubling, sum frequency, stimulated or Raman frequency-shifted.
     This dissertation is based on the experimental research of continuous-wave(CW), tunable 1.4μm~1.6μm near-infrared laser source and CW tunable 604nm~624nm yellow-orange laser. The main contents and key creation points are as follows:
     1. Based on the analysis of the dynamics model of multi-modes pumped intracavity singly resonant optical parametric oscillator (ICSRO), the power characteristic of signal output was optimized by numerically analyzing, which offered the theoretical basis for high power, high efficiency CW output of near infrared intracavity OPO.
     2. For high efficiency, high beam quality, stable operation of near infrared intracavity OPO, the whole ICSRO was designed in detail as a thermal-insensitive resonator by graphic anglicizing and designing of optical resonator; to obtain tunable output, the turning curve of PPLN crystal was carefully calculated.
     3. The CW near infrared ICSRO was experimental researched. Pumped by a LD pumping Nd:YVO4 laser, with a multi-periodic PPLN in the cavity, a high efficient CW ICSRO operation with tunable signal output in the range of 1402nm~1513nm was first achieved in the nation, including the maximum output power of 820mW and the maximum optical-to optical conversion efficiency of 7.51% at 1500nm.
     4. Based on the theory of angle phase matching and frequency mixing, through carefully calculation, the optimum nonlinear crystal including its parameters was chose, which satisfied the needs of sum-frequency experiment.
     5. Based on the ICSRO, by using the intracavity sum-frequency mixing of the pump laser and the signal laser, two different experimental schemes were designed for the experimental research of CW tunable yellow-orange output. 604nm~624nm CW tunable yellow-orange laser was obtained in the first scheme, including the maximum output power of 120mW and the maximum optical-to optical conversion efficiency of 1.1% at 624nm.
引文
[1]徐广通,袁洪福,陆婉珍,现代近红外光谱技术及应用进展,光谱学与光谱分析,2000,20(2):134~142
    [2]修连存,郑志忠,俞正奎等,近红外光谱分析技术在蚀变矿物鉴定中的应用,地质学报,2007,81(11):1584~1590
    [3]李桂峰,近红外光谱技术及其在农业和食品检测中的应用,农业与技术,2007,27(5):91~94
    [4]高庆伟,刘春艳,常青山等,近红外信息辐照技术辅助治疗e抗原阳性乙型肝炎的临床应用研究,透析与人工器官,2007,18(2):1~3
    [5]王松德,姚丽萍,朱小龙等,近红外传感器在无线遥控计数系统中的应用,光谱学与光谱分析,2007,27(9):1743~1746
    [6] S. Bank, W. Ha, V. Gambin et. al, 1.5μm GaInNAs(Sb) lasers grown on GaAs by MBE, Journal of Crystal Growth, 2003, 251: 367~371
    [7] L. L. Goddard, S. R. Bank, M. A. Wistey et. al, Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers, J. Appl. Phys., 2005, 97: 0831011~08310114
    [8] J. K. Sahu, Y. Jeong, D.J. Richardson et. al, A 103 W erbium–ytterbium co-doped large-core fiber laser, Opt. Communications, 2003, 227: 159~163
    [9] D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power, Opt. Express, 2005, 13(13): 4916~4921
    [10] J. J. Mei, D. M. Liu, Y. Wang et. al, 1400~1500 nm, Different Material-doped Raman Fiber Lasers Pumped by Nd:YVO4 Laser, Semiconductor Photonics and Technology, 2003, 9(4): 201~204
    [11] R. F. Wu, K. S. Lai, H. F. Wong et. al, Multiwatt mid-IR output from a Nd: YALO laser pumped intracavity KTA OPO, Opt. Express, 2001, 8(13): 694~698
    [12] F. Ji, B. G. Zhang, E. B. Li et. al, A Low-Pump-Thresold High-Repetition-Rate Intracavity Optical Parametric Generator Based on Periodically Poled Lithium Niobate, CHIN. PHYS. LETT., 2006, 23(8): 2113~2116
    [13] B. Lin, H. S. Lee, C. R. Prasad, Temporal behavior of the laser pulse for intracavity optical parametric oscillator, Opt. Express, 2007 15(8): 4902~4908
    [14] A. Henderson, R. Stafford, Spectral broadening and stimulated Raman conversionin a continuous-wave optical parametric oscillator, Opt. Lett., 2007, 32(10): 1281~1283
    [15] L. D. Lindsay, D. J. M. Stothard, C. F. Rae et. al, Continuous-wave, pump-enhanced optical parametric oscillator based on periodically-poled RbTiOAsO4, Opt. Express, 2003, 11(2): 134~140
    [16] Y. F. Chen, S. W. Chen, S. W. Tsai et. al, Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57μm, Appl. Phys. B, 2003,77: 505~508
    [17] W. Zendzian, J. K. Jabczynski, P. Wachulak et. al, High-repetition-rate, intracavity-pumped KTP OPO at 1572 nm, Appl. Phys. B, 2005, 80: 329~332
    [18] L. Y. Tsai, Y. F. Chen, S. T. Lin et. al, Compact efficient passively Q-switched Nd:GdVO4/PPLN/Cr4+:YAG tunable intracavity optical parametric oscillator, Opt. Express, 2005,13(23): 9543~9547
    [19] G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, Continuous-wave, intracavity optical parametric oscillators:an analysis of power characteristics, Appl. Phys. B, 1998, 66: 701~710
    [20] H. M. Pask, J. A. Piper, Efficient all-solid-state yellow laser source producing 1.2-W average power, Optics Letters, 1999, 24(21): 1490~1492
    [21] A. Sennaroglu, Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+:forsterite laser, Applied Optics, 2002, 41(21): 4356~4359
    [22] Y. Feng, S. Huang, A. Shirakawa et al, 589nm Light Source Based on Raman Faber Laser, Japanese Journal of Applied Physics, 200, 43(6A): 722~724
    [23] R. P. Mildren, M. Convery, H. M. Pask et al, Efficient all solid state, Raman laser in the yellow, orange and red, Optics Express, 2004, 12(5): 85~790
    [24] J. Simons, H. M. Pask, P. Dekker et al, Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm, Optics Communications, 2004, 229: 305~310
    [25] P. Dekker, H. M. Pask, D. J. Spence et al, Continuous-wave self-Raman and intracavity doubled laser operation in Nd:GdVO4 at 586.5 nm, In:Lasers and Electro-Optics and the International Quantum Electronics Conference, 2007, Munich, Germany: 1~1
    [26] Y. F. Chen, S. W. Tsai, Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing, Optics Letters, 2002, 27(6): 397~399
    [27] Y. F. Chen, Y. S. Chen, S. W. Tsai, Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically plied KTP, Applied Physics B, 2004, 79(2): 207~210
    [28] M. L. Rico, J. Capmany, J. L. Valdes et al, Generation of continuous-wave yellowlaser radiation at 592nm in a Nd3+:YAl3(BO3)4 self-sum-frequency-mixing laser, IEEE, 2004, 8(04): 941~942
    [29] JiríJanousek, Sandra Johansson, Peter Tidemand-Lichtenberg et al, Efficient all solid-state continuous-wave yellow-orange light source, Optics Express, 2005, 13(4): 1188~1192
    [30]吕彦飞,檀慧明,夏菁等,LDA抽运Nd:YAG/ LBO单通道腔内和频589nm激光器,激光与红外,2006,36(2):104~106
    [31]吕彦飞,檀慧明,任旭升等,LD抽运Nd:YVO4 / LBO腔内和频橙黄光连续激光器,激光技术,2005,29(5):488~490
    [32]吕彦飞,张喜和,姚治海,全固态复合腔和频613nm连续波程光激光器,激光与红外,2007,37(7):614~616
    [33]毕勇,孙志培,张瑛等,全固态和频589nmNd:YAG激光器,中国激光,30:440
    [34]耿爱丛,薄勇,毕勇等,V型腔腔内和频产生3W连续波589nm黄光激光器,物理学报,55(10):5227~5231
    [35]石靖波,张凯,马毅等,LBO晶体和频产生589nm激光的数值模拟及实验研究,强激光与粒子束,18(9):1447~1450
    [1] N. M. Kroll, Phys. Rev. 127, 1207(1962)
    [2] J. A. Giordmaine, R, C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett., 1965, 14(24-14): 973~976
    [3] R. C. Miller, G. D. Boyd, A. Savage, Nonlinear optical interactions in LiNbO3 without double refraction, IEEE J. Quantum Electron., 1965, 6(4): 77~79
    [4] R. G. Smith, J. E. Geusic, H. J. Levinstein et al, Continuous optical parametric oscillation in Ba2NaNb5O15, Appl. Phys. Lett., 1968, 12(9): 308~310
    [5] G. D. Boyd, D. A. Kleinman, Parametric interaction of focused Gaussian light beams, J. Appl. Phys., 1968, 39: 3598
    [6] R. L. Byer, M. K. Oshman, J. F. Young et al, Visible cw parametric oscillator, 1968, 13(3): 109~111
    [7] R. L. Byer, A. Kovrigin, J. F. Young, A cw ring-cavity parametric oscillator, Appl. Phys. Lett., 1969, 15(5): 136~137
    [8] M. K. Oshman, S.E. Harris, Theory of optical parametric oscillation interna1 to the laser cavity, IEEE J. Quantum Electron., 1968, 4(8): 491~502
    [9] E.O. Ammann, J. M. Yarborough, M. K. Oshman et al., Efficient internal optical parametric oscillator, Appl. Phys. Lett., 1970, 16(8): 309~312
    [10] R. G. Smith, J. V. Parker, Experimental observation of and comments on optical parametric oscillation internal to the laser cavity, J. Appl. Phys., 1970, 41: 3401~3408.
    [11] J. Falk, J. M. Yarborough, E. O. Ammann, Internal optical parametric oscillator,IEEE J. Quantum Electron., 1971, 7(7): 359~368
    [12] J. I. Davis, W. F. Krupke, Theory of pulsed internal optical parametric oscillators, J. Appl. Phys., 1972, 43(10): 4171~4183
    [13] T. Debuisschert, J. Raffy, J. Pocholle et al, Intracavity optical parametric oscillator: Study of dynamics in pulsed regime, J. Opt. Soc. Am. B, 1996, 13(7): 1569~1587
    [14] G. A. Turnbull, M. H. Dunn, M.Ebrahimzadeh, Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics, Appl. Phys. B, 1998, 66: 701–710
    [15] W. E. Lamb, Jr., Theory of an optical maser, Phys. Rev. A, 1964, 134(6): 1429~1450
    [16] M. Sargent III, M. O. Scully, W. E. Lamb et al, Laser Physics, 5th ed.(Addision-Wesley, Reading, Mass., 1987)
    [17] R. L. Byer, in Treatise in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, N.Y., 1975), 587
    [18] A. E. Siegmann, Lasers (University Science, Mill Valley, Calif., 1986)
    [19] S. E. Harris Threshold of Multimode Parametric Oscillators IEEE J. Quantum Electron QE-2: 701
    [1]张少敏,高亮度全固态激光器设计及连续波内腔中红外PPLN光学参量振荡器研究:硕士学位论文,天津;天津大学精密仪器与光电子工程学院,2007
    [2]彭倩倩,杨峰,刘杰等,LD抽运Nd:YVO4 1.34μm激光器及其热效应研究,量子电子学报,2006,23(1):42~45
    [3]李隆,张伟,田来科等,端面泵浦双Nd:YVO4激光器中热效应对腔稳定性的影响,光子学报,2004,23(1):4~7
    [4]张光寅,郭曙光,光学谐振腔的图解分析与设计方法,北京:国防工业出版社,2003
    [5]张光寅,光学谐振腔的图解设计方法(三),激光,1977,4(5):41~46
    [6]张光寅,球面镜折叠腔中光模系数的调整与消除,物理学报,1978,27:413~420
    [7] J. Steffen, J. P. Lorscher, G. Herziger, Fundamental mode radiation with solid-state lasers, IEEE J Quantum Electron, 1972, QE-8: 239~245
    [8] R. B. Chesler, D. Maydan, Convex-concave resonators for operation of solid state ion laser, J. Appl. Phys., 1972, 43: 2254~2257
    [9] J. P. Lorscher, J. Steffen, G. Herziger, Dynamic stable resonators: a design procedure, Opt. Quantum Electron, 1975, 7: 505~514
    [10] V. Magni, Resonators for solid state lasers with large volume fundamental mode and high alignment stability, Appl. Opt., 1986, 25: 107~117
    [11]张光寅,基模热稳腔的简单设计计算方法,激光,1981,8(8):5~11
    [12]王效敬,内热厚透镜平行平面谐振腔的热稳定性,中国激光,1985,12:266~270
    [13] G. Y. Zhang, A solution of the optimum dynamic themo-stable resonator, J. Modern Optics, 1990, 37: 1903~1906
    [1] T. R. Gurski, High-quantum-efficiency infrared up-conversion, Appl. Phys. Lett., 1973, 23: 273~275
    [2] G. A. Turnbull, D. J. M. Stothard, M. Ebrahimzadeh et. al, Transient Dynamics of CW Intracavity Singly Resonant Optical Parametric Oscillators, J. Quantum Electronics, 1999, 35: 1666~1672
    [3]姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995, 1~67
    [4] M. V. Hobden, Phase-matched second-harmonic generation in biaxial crystals, J. Appl. Phys., 1967, 38(11): 4365~4372
    [5]石顺祥,陈国夫,赵卫等,非线性光学,西安:西安电子科技大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700