晶粒细化对Fe-Ni-Cr和Fe-Cr-Al合金高温化学稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温合金的化学稳定性得益于其表面能否形成连续致密、附着性良好的氧化膜。用传统的电弧熔炼法制备的常规尺寸三元复相合金由于受到组元间固溶度的限制,无法避免其显微组织的不均匀,这使得合金表面形成活泼组元选择性外氧化膜所需的临界浓度较高。为降低活泼组元的临界浓度,采用机械合金化并通过热压使合金显微组织细化是较好的办法之一。本文采用机械合金化方法,通过热压制备了纳米晶Fe-Ni-Cr和Fe-Cr-Al合金,研究了它们在700-900℃、0.1MPa纯氧中的氧化行为,比较了纳米晶合金与相同组分的常规尺寸合金氧化行为的差异,探讨了晶粒细化对其氧化行为的影响。
     PMFe-40Ni-20/15Cr和MAFe-40Ni-20/15Cr合金的氧化动力学曲线均偏离抛物线规律。在高温氧化过程中,相同的温度下,MAFe-40Ni-20/15Cr合金的氧化速率明显小于PMFe-40Ni-20/15Cr合金。PMFe-40Ni-20/15Cr合金表面没有形成保护性的Cr2O3膜,而MAFe-40Ni-20/15Cr合金表面则形成了保护性的Cr2O3膜。在相同温度下,PMFe-40Ni-20Cr合金的氧化速率大于PMFe-40Ni-15Cr合金,MAFe-40Ni-20Cr合金的氧化速率小于MAFe-40Ni-15Cr合金。
     PMFe-60Ni-15Cr和MAFe-60Ni-15Cr合金的氧化动力学曲线均偏离抛物线规律。相同温度下,MAFe-60Ni-15Cr合金的氧化速率明显小于PMFe-60Ni-15Cr合金。在高温氧化过程中,PMFe-60Ni-15Cr合金表面没有形成保护性的Cr2O3膜,而MAFe-60Ni-15Cr合金表面则形成了保护性的Cr203膜。
     PMFe-10Cr-2.5Al和MAFe-10Cr-2.5Al合金的氧化动力学曲线均偏离抛物线规律。相同的温度下,MAFe-10Cr-2.5Al合金的氧化速率明显小于PMFe-10Cr-2.5Al合金。在高温氧化过程中,PMFe-10Cr-2.5Al合金表面没有形成保护性的Cr2O3膜,而MAFe-10Cr-2.5Al合金表面则形成了保护性的Cr2O3膜。
     机械合金化使合金晶粒尺寸降低,产生大量晶界,同时增大了组元的有效扩散系数,导致合金中的活泼组元以更快的速度向外扩散,降低了合金表面形成活泼组元选择性外氧化膜所需的临界浓度,有助于在高温氧化过程中形成保护性的外氧化物膜。
Chemical stabilities of high-temperature alloys depend on the continuous, good adhesion and slow growth oxide scales formed on the alloy surface in high temperature oxidation processes. Ternary multiphase alloys of coarse-grained prepared by conventional arc-melting can not avoid from the microstructure with bigger grain size and the non-uniformity of phase distribution, which requires a higher critical concentration of the reactive component to form selective external oxidation. To decrease the critical concentration needed to form selective external oxide scales, microstructure refinement by mechanical alloying and hot pressing is one of the better ways. In this paper, the nanocrystalline Fe-Ni-Cr and Fe-Cr-Al alloys were prepared by mechanical alloying and afterwards hot pressing, while corresponding coarse-grained alloys were prepared by powders metallurgy. Moreover, the oxidation behavior of these alloys at 700-900℃under 0.1MPa oxygen pressures and the effect of grain size on their oxidation behavior were also studied as compared with the corresponding coarse-grained alloys.
     The oxidation kinetics of PMFe-40Ni-20/15Cr, and MAFe-40Ni-20/15Cr alloys all deviate from the parabolic law. At the same temperature, the oxidation rates of PMFe-40Ni-20/15Cr are higher than those of MAFe-40Ni-20/15Cr alloy. In the high temperature oxidation process, protective Cr2O3 scales are unable to form on the surface of PMFe-40Ni-20/15Cr alloy but form on the surface of MAFe-40Ni-20/15Cr alloy. At the same temperature, the oxidation rate of PMFe-40Ni-20Cr alloy is higher than that of PMFe-40Ni-15Cr alloy,and the oxidation rate of MAFe-40Ni-20Cr alloy is lower than that of MAFe-40Ni-15Cr alloy.
     The oxidation kinetics of PMFe-60Ni-15Cr and MAFe-60Ni-15Cr alloys all deviate from the parabolic law. The oxidation rates of MAFe-60Ni-15Cr alloy is lower than those of PMFe-60Ni-15Cr alloy at the same temperature. In the high temperature oxidation process, protective Cr2O3 scales are unable to form on the surface of PMFe-60Ni-15Cr alloy but formed on the surface of MAFe-60Ni-15Cr alloy.
     The oxidation kinetics of PMFe-10Cr-2.5Al alloy and MAFe-10Cr-2.5Al alloys all deviate from the parabolic law. The oxidation rates of MA Fe-10Cr-2.5Al alloy are significantly smaller than those of PMFe-10Cr-2.5Al alloy at the same temperature. In high temperature oxidation process, protective Cr2O3 scales are unable to form on the surface of PMFe-10Cr-2.5Al alloy but formed on the surface of MA Fe-10Cr-2.5Al alloy.
     Mechanical alloying decreases the grain size and produces a large number of grain boundaries, and increases effective diffusion coefficients of components. Thus, the reactive components in the alloy are able to diffuse outward faster, which are benefit to decrease the critical concentrations needed to form Cr oxide Cr2O3 scales and form the continuous scales of Cr2O3 scales as compared with the corresponding coarse-grained alloys alloy under the same conditions.
引文
[1]黄乾尧,李汉康等.高温合金[M].北京:冶金工业出版社,2000.1-401
    [2]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1996.1-314。
    [3]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003.1-292.
    [4]N. Cabrera, N. F. Mott. Theory of the oxidation of metals [J]. Reports on progress inphysics, 1948-1949,12:163-184
    [5]F. P. Fehlner, N. F. Mott. Low-temperature oxidation [J]. Oxid. Met.,1970,2(1):59-99.
    [6]K. R. Lawless. The oxidation of metals. Reports on progress in physics,1974,37:231-316.
    [7]N. Birks, G. H. Meier, F. S. Pettit. Introduction to the high-temperature oxidation of metals[M]. Cambridge university press,2006,101-176
    [8]P. Kofstad. High temperature oxidation of metals [M]. New York:John Wiely&Sons, Inc.1966, 301-345.
    [9]Cao Zhongqiu, Yu Long, Li Yang, Sun Yue. Effect of Si Addition on High Temperature Oxidation of Cu-20Ni-20Cr Alloy[J]. High Temperature Materials and Processes,2010, 26(4/4):295
    [10]于龙.Cu-Ni-Cr-SiAl合金的高温化学稳定性研究:[硕士学位论文].沈阳:沈阳师范大学,2010
    [11]C. Wagner. Reactions of metals and alloys with oxygen, Sulphur, Halogens at high temperatures Pittsburgh internat. Conf. on Surface reactions [Proe.].1948:77-96
    [12]李凤春.几种含钻合金的高温化学稳定性研究:[硕士学位论文].沈阳:沈阳师范大学,2007
    [13]赵金山,姚志国,侯菊侠等.稀士含氮奥氏体耐热钢在冷却机扬料板上的应用[J].铸造技术,2001,笫5期:11-12
    [14]余式昌.稀土微合金化5Cr21Mn9Ni4N钢高温氧化行为[J].中国稀土学报,2006, 24(3):333-337
    [15]孙仙奇,劳远侠,梁玮.Ce对Fe 2Cr 2A1合金抗高温氧化性能的影响[J].广西大学学报(自然科学版),2007,32(增刊):61-81
    [16]陈颖,聂祚仁,周美玲等.La对FeCrAl合金箔材抗高温氧化性能的影响[J].材料保护,2002,35(8):34-36
    [17]王执福,潘正伟,侯绪荣等.钛对Fe-Cr-Al耐热合金组织及性能的影响[J].铸造,1994,11:27-29
    []8]辛丽,李美栓,周龙江等.钇对Fe-Cr-Al合金氧化膜粘附性的影响[J].中国稀土学报,2000,18(4):329-332
    [19]J. Kloewer. Factors affecting the oxidation behaviour of thin Fe-Cr-Al foils[J]. Materials and Corrosion,2000,51:373-385
    [20]曹中秋,曹丽杰,牛焱.晶粒细化对Cu-45Ni-30Cr合金抗高温氧化性能的影响[J].材料保护,2005,38(6):14-17
    [21]付广艳,刘群,龙媛媛等.晶粒细化对Fe-Cr、Ni-Cr合金氧化行为的影响[J].腐蚀科学与防护技术,2005,17(6):384-386
    [22]郭平义,邵勇,李垒.高能微弧合金化制备Fe3Al微晶涂层及其高温氧化性能[J].中国腐蚀与防护学报,2009,29 (6):431-436
    [23]苏勇,付广艳,刘群等.晶粒细化对Cu-Si合金高温氧化行为的影响[J].稀有金属材料与工程,2009,38(增刊1):139-143
    [24]王正品,张路,要玉宏.金属功能材料[M].北京:化学工业出版社,2004.1-288
    [25]赵玉岭.纳米材料性质及应用[J].煤炭技术,2009,28(8):149-151
    [26]朱俊杰.纳米技术在制冷及低温领域的应用与展望[J].流体机械,2007,35(4):64-67
    [27]张代东.金属纳米材料的发展动态研究[J].科技情报开发与经济,2002,12(50):89-92
    [28]李湘洲.超微颗粒材料的应用与展望[J].中国建材科技,1996,5(1):6-11
    [29]谈淑咏,朱义和,江静华等.金属材料概述(2)[J].江苏机械制造与自动化,2000,2:4648
    [30]王震平,杨文,刘媛媛.简述纳米材料制备方法[J].内蒙古石油化工,2009,24:72-73
    [31]严红革,陈振华,胡项等.纳米级金属复合粉末研究的进展[J].粉末冶金技术,2000,18(1):42-45
    [32]梁起,于丽.纳米粒子综述[J].河南大学学报(自然科学版),1997,27(2):56-58
    [33]田春霞.金属纳米块体材料制备加工技术和应用[J].材料科学与工程,2001,19(4):127-131
    [34]蒲健,肖建中.大块纳米晶材料的制备、性能及应用前景[J].金属功能材料,2000,7(1):11-15
    [35]张坚,曹晓国,黄惠平.纳米金属粉末的制备方法及应用[J].材料导报,2006,20(专辑Ⅶ):149-151
    [36]刘海飞,王梦雨,贾坚赏等.纳米金属粉末的应用[J].矿冶,2004,13(3):65-67
    [37]庾晋.纳米磁记录材料及技术[J].装备机械,2005,第1期:45-47
    [38]江建军,袁林,邓联文等.磁性纳米颗粒膜的微磁学模拟[J].物理学报,2006,55(6):3043-3048
    [39]姬海宁,兰中文,王豪才.纳米技术在磁性中的应用[J].磁性材料及器件,2002,33(2):25-28
    [40]张桂芳.纳米材料应用与发展前景概述[J].黑龙江科技信息,2009,第16期:3
    [41]J. S. Benjamin. Dispersion Strengthened Superalloys by Mechanical Alloying[J]. Metallurgical Transactions,1970,8(1):65-73.
    [42]崔建民,卢静,袁勇等.预合金粉对粉末冶金NiFe18.5Al25合金性能的影响[J].中国有色金属学报,2009,19(7):1224-1229
    [43]S. Abe, S. Saji, S. Hori. Mechanical alloying of Al-20 mass % Ti mixed powders [J]. J Japan Inst Metals,1990,54:895-902.
    [44]李良锋,邱泰,杨建等.(Ag—Cu28) 80-Inx—Sn20-x合金焊粉的制备及熔化特性研究[J].有色金属:冶炼部分,2008,第4期:30-33
    [45]杨君友,张同俊,李星国等.机械合金化研究的新进展[J].功能材料,1995, 26(5)477-480
    [46]曹中秋,牛焱,王崇琳等.不同晶粒尺寸的三元Cu40Ni40Cr20合金的制备及其显微组织研究[J].材料工程,2004,11期:18-21
    [47]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006.1-529
    [48]许利剑,龚竹青,杜晶晶等.电镀Fe-Ni-Cr合金的现状和发展[J].电镀与环保,2006,26(3):1-4
    [49]蔡大勇,张伟红,刘文昌等.固溶温度对Fe-Ni-Cr合金力学性能的影响[J].材料热处理学报,2003,24(1):55-58
    [50]张志刚,张学军,潘太军等.Fe-Al和Fe-Cr-Al合金在高温下的初期氧化[J].钢铁研究,2007,35(3):83
    [51]李凤春,边静,曹中秋.三元Cu-20Ni-25Co合金在800℃、0.1 MPa纯氧气中氧化行为研究[J].沈阳师范大学学报(自然科学版),2007,25(1):72-75
    [52]曹中秋,牛焱,吴维.不同方法制备的Cu-Ni合金氧化行为研究[J].稀有金属材料与工程,2005,34(4):643-647
    [53]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.1-443
    [54]C. Wagner. Types of reaction in the oxidation of alloys[J]. Z. Electrochem,1959,63:772-782
    [55]C. Wagner. Theoretical analysis of the diffusion process determining the oxidation rate of alloys[J]. J. Electrochem. Soc.,1952,99:369-380.
    [56]Z. Q. Cao, L. J. Cao, Y. Niu. Effect of grain size on high-temperature oxidation behavior of Cu-80Ni alloy[J]. Trans. Nonferrous Met. Soc. China,2003,13(4):907
    [57]J. P. Dennison, A. Preece. High-temperature oxidation characteristic of a group of oxidation-resistance copper-base alloys[J]. J. Inst. Metals,1952,81:229-234
    [58]J. C. Blade, A. Preece. The mechanism of protective scale formation on copper-base alloys[J]. Inst. Metals,1959,88:427-432
    [59]M. D. Sanderson, J. C. Scully. The high-temperature oxidation of some oxidation resistant copper-based alloys[J]. Oxid. Met,1971,3:59-90
    [60]R. Prescott, M. J. Graham. The oxidation of Iron-Aluminum alloys[J]. Oxid. Met.,1992,38: 73-87
    [61]居毅,李宗权.机械合金化的原理及在磁性材料研究中的应用[J].功能材料,2002,33(1):12-14
    [62]方止春.镍基合金及其铸造技术[J].材料与工艺,1994,9(1):24-32
    [63]万军.镍及镍基合金的焊接[J].锅炉制造,2004,(3):32-34
    [64]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995.1-351
    [65]S. N. Basu, G. J. Yurek. Effectof alloy grain size and silicon content on the oxidation of austenitic Fe-Cr-Ni-Mn-Si alloys in pure O2[J]. Oxid Met,1991,36(3-4):281-290
    [66]F. H. Wang. Oxidation resistance of sputtered Ni3(Al-Cr) nanocrystalline coating[J]. OxidMet, 1997,47(3-4):247-258
    [67]F. H. Wang, D. J. Young. Effectofnanocrystalline on the corrosion resistance of K38G superalloy in CO+CO2 atmospheres[J]. Oxid Met,1997,48(5-6):497-509
    [68]G. C. Hadjipanayis, R. W. Siegel. Nanophase Materials, Synthesis, Properties, Application[M]. London:Kluwer Academic Publishers,1994.73-76
    [69]E. Arzt, E. Schultz. New materials bymechanical alloying techniques [M]. Deutche Gesel:1 Fur Metallkunde,1989.1-201
    [70]J. Z. Jiang, C. Gente, R. Bormann. Mechanical alloying in the Fe-Cu system[J]. Mater Sci and Engin,1998(A242):268-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700