新型铝锂合金析出相析出规律及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借助硬度测试,透射电镜观察以及计算机模拟方法,初步研究了一种含微量Mg、Zn元素的Al-Cu-Li合金,在T6和T8工艺条件下,低温,中温,高温时效过程中该合金的析出过程。主要结论如下:
     (1)在Al-Cu-Li合金中,加入微量Mg和Zn,在T6工艺170℃时效条件下发现除了常规的强化相T_1和θ′相外,还存在大量的立方形态的相,这种独特的现象尚未见有相关报道;从合金相析出特征和晶格常数来看,其与铝合金中已报道的立方形态相有不同之处,所以本工作中发现的立方形态的相应是一种新相。
     (2)采用TEM,对合金在T6和T8状态不同温度下的时效组织进行分析后,发现合金仅在T6工艺170℃时效下存在大量立方形态的相,而在其它工艺条件下发现少量或未发现立方形态相的析出。
     (3)从立方形态相的析出规律来看,其与T_1相之间在时效动力学上应有竞争析出的特征,预变形和时效温度控制着两者的竞争析出关系:时效前的预变形明显提高T_1相的密度,这是由于预变形在晶内引入高密度位错,为T_1相提供了大量的异质形核点,促进T_1相弥散,均匀析出,从而抑制了立方形态相的析出;若时效温度低,主要析出相为δ′相和G.P.Zone,GP.Zone析出的速率很快,结果抑制了可能的立方形态相和T_1相的析出;在高温时效条件下,主要析出相为T_1相,T_1相有优先析出的条件,故立方形态相的析出则会受到抑制。
     (4)模拟结果显示:在Al-5.7Li-1.5Cu(at%,下同)中,Li与空位的强相互作用导致Li原子迅速团聚,从而阻碍了Cu原子的团聚:空位在Al-5.7Li-1.5Cu中易于团聚化而形成空位团簇;微量Mg的加入促进合金中Cu原子团簇的形成与粗化,而阻碍了Li原子团簇的形成与粗化,同时Mg的加入使空位更倾向于团聚化而形成空位团簇;微量Zn的加入对Cu原子团簇和Li原子团簇演化都无明显影响。
     (5)在Al-5.7Li-1.5Cu合金中同时加入Mg和Zn,Mg和Zn都出现了明显的团簇化和生成Mg-Zn复合团簇。Mg、Zn的团簇化和Mg-Zn复合团簇的大量存在形成了Zn对Mg的“抢夺、固定”机制,进而使Mg对Cu的“桥接机制”作用减弱,导致Cu原子团簇细小弥散。
     (6)在合金体系中,Mg-Zn团簇周围的Cu,Mg原子富集区成为立方形态相形成的理想的形核点。Mg团簇周围区域内较大的空位浓度也为溶质原子的快速扩散提供了条件。Mg-Zn原子团簇结构降低立方形相所需的界面能和剪切应变能,立方形态相形成所需能量起伏要小于其在基体中的能量起伏,我们推测:Mg-Zn原子团簇可能是立方相形核的关键因素。
The objective of this investigation were to study the effects of small additions of Mg、Zn alloying elements on the micro-structures and mechanical properties of Al-Cu-Li alloys aged in low temperature, middle temperature and high temperature. Various testing methods were used, including Micro Vickers hardness measuration, Transmission electron microscopy (TEM) observation, Computer Simulation. The main conclusions were as follows:
     (1) In Al-Cu-Li alloys, Mg and Zn, we find routine strengthen phase: T_1 phase andθ' phase including a mass of cubic phase at the T6 peak-aged condition (170℃), however it does not find a mass of cubic phase in other aging technology. For this unique phenomenon, we did not find relative report; From the chemical constitution, precipitatin feature and lattice parameter, it was different from the cubic phase which had been reported, therefore the cubic phase in this work should be a kind of new phase.
     (2) The microstructure was observed by TEM after T6 (solution treatment+artificial aging) and T8(solution treatment+cold-forming+artificial aging). The experiment results show that much precipitation phase as the alloy is aged at the T6 peak-aged condition (170℃) was cubic phase, but the existence of much cubic phase was not found at other conditions.
     (3) From the cubic precipitation rule, they have the competition precipitation character at aging kinetic between cubic phase and T_1 phase: pre-deformation before aging improve T_1 phase density in evidence, and it can precipitate a mass of distributing T_1 phase in equality, for pre-deformation bring high density dislocation, provide great heterogeneity nucleate site, accelerate T_1 phase dispersion precipitation, hence restrain the cubic precipitation; if in low temperature, main precipitated phase areδ' phase and G.P zone, G.P zone precipitated speed are very fast, so it restrain the cubic precipitation; if in high temperature, main precipitated phase are G.P zone and T_1 phase, T_1 phase have priority precipitated condition, so the cubic phase precipitation are restrained.
     (4) In Al-Cu-Li alloys, Li clusters are generated rapidly and Cu clusters are retarded due to strong interaction between Li atom and vacancy. The addition of Mg to Al-Cu-Li alloys is responsible for the accelerated formation and coarsening of Cu clusters and restrained formation and coarsening of Li clusters and maked strong tendency to form vacancy clusters; The addition of Zn to Al-Cu-Li alloys has no obvious effect on the evolution of Cu clusters and Li clusters from our simulationresults.
     (5) The addition of Zn and Mg to Al-Cu-Li alloys is responsible for the precipitationof small and disperse Cu cluster and has no effect on the formation of Li clusters.Moreover, Zn clusters, Mg clusters and Mg-Zn co-clusters are formed in Al-Cu-Lialloys due to the addition of Zn and Mg, which can be used to explained the formationof small and disperse Cu clusters.
     (6)From the computer simulation result during the initial aging time: Cu-Mg atomenrichment zone around Mg-Zn cluster become the perfect nucleate point for thecubic phase formation. Meanwhile much vacancy around the Mg cluster providecondition for solute atom celerity diffusion. Mg-Zn clusters can reduce the interfacialtension and shearing strain energy. A mass of Mg-Zn atom cluster may be the keyfactor for the cubic occurrence.
引文
[1]李成功,巫世杰,戴圣龙等.先进铝合金在航空航天工业中的应用[J].中国有色金属学报.2002,12(3):14-21。
    [2]杨守杰,陆政,苏彬等.铝锂合金研究进展[J]。材料工程,2001,5:44-47。
    [3]I J Polmear.Control of precipitation processes and properties in aged aluminium alloys by micro-alloying[J].Materials Forum,1999,23:117-135.
    [4]S P Ringer,K Raviprasad.Developments in age-hardenable aluminium alloys and rational design of micro-structure[J].Materials Forum,2000,24:59-94.
    [5]I J Polmear.Role of trace elements in aged aluminium alloys[J].Materials Science Forum,1987,13/14:195-214.
    [6]#12
    [7]魏修宇.Al-Li-Cu-Mg-Zr合金微合金化及腐蚀行为研究:[硕士学位论文].长沙:中南大学,2004.
    [8]夏德顺.铝锂合金的发展和应用[J].航天工艺.1998,1:50。
    [9]崔建忠.铝锂合金的昨天今天和明天[C].第三届全国铝锂合金研讨会论文集,1996:1.
    [10]中苏航空材料科研合作资料汇编[M].1991:52.
    [11]陆政,强俊.国外中强及损伤容限型铝—锂合金的发展和性能[J].轻合金加工技术,1996,24(6):2-7.
    [12]邱惠中.铝锂合金的发展概况及其应用[J].宇航材料工艺,1993,6:38
    [13]Fredlyander I N et al.in:Proc of 6th Inter Al-Li Conf[J],1992:1245.
    [14]J P Pickens,et al.US Patent[J].No.5032359,1991.
    [15]A.K.Hopkins,K.V.Jata,R.J.Rioja.The anisotropy and texture of Al-Li alloys[J].Materials Science Forum,1996(217-222):674.
    [16]A.A.Csontos,B.M.Gable et al.The effect of quench rate on the microstructure and properties of AF/C-458 and AF/C-489 Al-Li-Cu-X alloys[J].Mater Sci Forum,2000(331-337):1333.
    [17]黄兰萍,郑子樵,黄永平.2197铝—锂合金的组织和性能[J].中国有色金属学报,2004,14(12):2066-2072.
    [18]E.Acosta.,et al.Effect of Thermalmechanical Processing on the Mechanical Properties of 2297 Plates[J].Materials Science Forum.2002.396-402:1157-1162.
    [19]邱惠中.铝锂合金的发展概况及其应用[J].宇航材料工艺,1993,6:38.
    [20]A.K.Hopkins,K.V.Jata,R.J.Rioja.The anisotropy and texture of Al-Li alloys[J]. Materials Science Forum.1996(217-222):674
    [21]A.A.Csontos,B.M.Gable et al.The effect of quench rate on the microstructure and properties of AF/C-458 and AF/C-489 Al-Li-Cu-X alloys[J].Mater Sci Forum,2000(331-337):1333.
    [22]张豪,张捷等,喷射成形的发展现状及其对先进铝合金产业的影响[J],铝加工,2005,163(4):1-6.
    [23]K.K.Sankaran.J.E.O' Neal.Effect of second-phase dispersoids on deformation behavior of Al-Li alloys[J].Al-Li Ⅱ.Met Soc AIME.1983:393。
    [24]郑子樵.铝锂合金—第二届全国铝锂合金研讨会论文集[C].长沙:中南工业大学出版社,1993。
    [25]P.Sainfort,P.Guyot.Fundamental Aspects of Hardening in Al-Li and Al-Li-Cu Alloys[J].Inst of Metals,1986,420.
    [26]橫田 純一,廣澤 涉一,里 達雄等.輕金属[J],1999,49(2):51.
    [27]S P Ringer,K Hono,I J Polmear et al.Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ration.Acata Mater[J],1996.44(5):1883.
    [28]蒋晓军,邓文,桂全红等.Zn对Al-Li-Cu-Mg-Zr合金时效过程的影响[J].金属学报,1993,12:527-532.
    [29]谷亦杰,魏炳忱,张永刚等。Al-Zn-Li-Mg-Cu-合金在433K的时效行为[J].金属学报,2001,1:19-22.
    [30]尹登峰等.Zn对2195铝锂合金显微组织和拉伸性能的影响[J].航空材料学报,2003,23:41-44.
    [31]A.A.Csontos and E.A.Starke,Jr.Effect of processing and microstructure development on the slip and fracture behavior of the 2.1wt pet Li AF/C-489 and 1.8wt pct Li AF/C-458 Al-Li-Cu-X alloys.Metallurgical and Materials Transaction A[J],2000,31(8):1965-1976.
    [32]B.M.Gable and M.A.Panat.The role of trace additions on the T_1 coarsening behavior in Al-Li-Cu-X alloys[J].Materials Science Forum.2002.396-402:699-704.
    [33]J.A.Taylor,B.A.Parker,I.J.Polmear.Precipitation in Al-Cu-Mg-Ag Casting Alloy[J].Metals.Sci,1978,12:478-482.
    [34]M.S.Lim,J.E.Tibballs and P.L.Rositter.An assessment of thermodynamic equilibria in the Ag-Al-Cu-Mg quaternary system in relation to precipitation reactions,Z.Metallk[J],1997,88:236-245.
    [35]S.Mck.Cousland and G.R.Tate.Structural change associated with solid-state reactions in Al-Ag-Mg alloys[J].J.Appl.Cryst,1986,19:174-180.
    [36]B.C.Muddle and I.J.Polmear.The precipitate Ω phase in Al-Cu-Mg-Ag alloys[J].Acta Metal,1989,37(3):777-789.
    [37]A.Garg and J.M.Howe.Convergent-beam electorn diffraction analysis of the Ω phase in an Al-Cu-Mg-Ag alloy[J].Acta Metall.Mater,1991,39(8):1939-1946.
    [38]S.P.Ringer,K.Hono,I.J.Polmear and T.Sakurai.Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios[J].Acta Mater,1996,44(5):1883-1898.
    [39]L.Reich,M.Murayama and K.Hono.Evolution of Ω phase in an Al-Cu-Mg-Ag alloy—a 3DAP study[J].Acta Mater,1998,46(17):6053-6062.
    [40]Suh I S,Park J K.Influence of the elastic strain energy on the nucleation of Ωphase in Al-Cu-Mg-(Ag) alloys[J].Scripta Metall Mater,1995,33:205-211.
    [41]C.R.Hutchinson,X.Fan,S.J.Pennycook & G.J.Shiflet.On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag alloys[J].Acta Mater,49,(2001),p.2827-2841.
    [42]R.D.Schueller,A.K.Sachdev,and F.E.Wawner.Identification of a cubic precipitate observed in an Al-4.3Cu-2Mg/SiC cast composite[J].Scripta Met.Mat,1992,27,617-622
    [43]R.D.Schueller,A.K.Sachdev,and F.E.Wawner.Interfacial structure of the cubic σ phase[J].Scripta Met.Mat,1992,27,1289-1294.
    [44]G.C.Weatherly,Ph.D.thesis,Univ[J].Cambridge(1966)
    [45]R.N.Wilson,D.M.Moore,and P.J.E.Forsyth.Effects of 0.25 pet Si on Precipitation Processes in an Al-2.5Cu-1.2Mg Alloy[J].Inst.Metals,1967,95:177-183.
    [46]L.M.Wang,H.M.Flower and T.C.Lindley.Precipitation of the ω phase in 2024and 2124 aluminium alloys[J].Scripta Mat,1999,41,4,391-396.
    [47]A.K.Mukhopadhyay.Coprecipitation of Omega and sigma phases in Al-Cu-Mg-Mn alloys containing Ag and Si[J].Met.Mat.Trans.A,2002,33A,3635-3648.
    [48]A.K.Mukhopadhyay,G.Eggeler and B.Skrotzki.Nucleation of ω phase in an Al-Cu-Mg-Mn-Ag alloy aged at temperatures below 200℃[J].Scripta Mat,2001,44,545-551.
    [49]Qing Li and F.E.Wawner.Characterization of a cubic phase in an Al-Cu-Mg-Ag alloy[J].Journal of Materials Science,1997,32,5363-5370.
    [50]J.B.Cohen,R.F.Mehl Medalist.The Early Stages of Solute Distribution Below a Transition Temperature[J].Metallurgical Transactions A,1992,23A:2685-2697.
    [51]J.F.Nie,B.C.Muddle.On the Roles of Clusters during Intragranular Nucleation in the Absence of Static Defects[J].Metallurgical and Materials Transactions A,2002,33A:1649-1658.
    [52]P.V.Liddicoat,T.Honma,L.T.Stephenson,and S.P.Ringer.Evolution of Nanostructure During the Early Stages of Ageing in Al-Zn-Mg-Cu Alloys[J].Materials Science Forum,2006,519-521:555-560.
    [53]R.Ferragut,A.Dupasquier,M.M.Iglesias.Vacancy-Solute Aggregates in Al-Zn-Mg-(Cu,Ag)[J].Materials Science Forum,2006,519-521:309-314.
    [54]Tomo Ogura,Shoichi Hirosawa,Alfred Cerezo and Tatsuo Sato.Quantitative Correlation between Strength,Ductility and Precipitate Microstructures with PFZ in Al-Zn-Mg(-Ag,Cu) Alloys[J].Materials Science Forum,2006,519-521:431-436.
    [55]S.K.Maloney,K.Hono,I.J.Polmear,S.P.Ringer.The effects of a trace addition of silver upon elevated temperature ageing of an Al-Zn-Mg alloy[J].Micron,2001,32:741-747.
    [56]Terence Kratzer,Brian M.Gable,Kate M.Nairn.The Effect of Alloying Additions on Vacancy Behaviour in Aluminium-Copper Alloys[J].Materials Science Forum,2006,519-521:597-602.
    [57]R.K.W.Marceau,R.Ferragut,A.Dupasquier.Vacancy-Solute Interactions in Al-Cu-Mg[J].Materials Science Forum,2006,519-521:197-202.
    [58]Tomoyuki Honma,David W.Saxey and Simon P.Ringer.Effect of trace addition of Sn in Al-Cu alloy[J].Materials Science Forum,2006,519-521:203-208.
    [59]L.Bourgeois,T.Wong,X.Y.Xiong,J.F.Nie and B.C.Muddle.Interaction between Cu and Sn in the Early Stages of Ageing of Al-1.7at.%Cu-0.01at.%Sn[J].Materials Science Forum,2006,519-521:495-500.
    [60]Ai Serizawa,Shoichi Hirosawa and Tatsuo Sato.3DAP Characterization and Thermal Stability of Nano-Scale Clusters in Al-Mg-Si Alloys[J].Materials Science Forum,2006,519-521:245-250.
    [61]Yoshiki Komiya,Shoichi Hirosawa,and Tatsuo Sato.3DAP Analysis and Computer Simulation of Nanocluster Formation in the Initial Aging Stage of Al-Zn Alloys[J].Materials Science Forum,2006,519-521:437-442.
    [62]R.Ferragut,A.Somoza,I.Torriani.Pre-precipitation study in the 7012Al-Zn-Mg-Cu alloy by electrical resistivity[J].Materials Science and Engineering A,2002,334:1-5.
    [63]K.Hono.Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy[J].Progress in Materials Science,2002,47:621-729.
    [64]S.Hirosawa,T.Sato,A.Kamio and H.M.Flower.Classification of the role of micralloying elements in phase decomposition of Al based alloys[J].Acta Mater,2000,48:1797-1806.
    [65]G.Sha,A.Cerezo.Kinetic Monte Carlo simulation of clustering in an Al-Zn-Mg-Cu alloy(7050)[J].Acta Materialia,2005,53:907-917
    [66]K.Gotoa,Y.Saitoa,Y.Suwaa.Monte Carlo simulation of phase separation in iron-based ternary alloys[J].Intermetallics,2003,11:1267-1272.
    [67]A Gaber,K Matsuda,ZOU Yong,T Kawabata,A Alim,S Ikeno.DSC and HRTEM study precipitation in Al-Mg-Si-Cu alloys[J],Proceedings of the 9th International Conference on Aluminium Alloys,2004,402-405.
    [68]L M Wang,H M Flower,T C Lindley.Precipitation of the ω phase in 2024 and 2124 aluminium alloys[J].Scripta Mat.1999,41(4):391-396.
    [69]A K Mukhopadhyay.G Eggeler.B Skrotzki.Nucleation of ω phase in an Al-Cu-Mg-Mn-Ag alloy aged at temperatures below 200℃[J].Scripta Mat.2001,44(4):545-551.
    [70]A K Mukhopadhyay.Coprecipitation of Ω and σ phases in Al-Cu-Mg-Mn alloys containing Ag and Si[J].Met Mat Trans A,2002,33 A:3635-3648.
    [71]R D Schudller,A K Sachdev,F E Wawner.Interfacial structure of the cubic σphase[J].Scripta Metallurgica Materialia.1992.1289-1294.
    [72]Belov,A.Nikolay,Eskin,G.Dmitry,Aksenov,A.Andrey.Multicomponent phase diagrams[J].Elsevier Science Ltd.2005.
    [73]D.W Heerman,理论物理学中的计算机模拟方法[M],1996.
    [74]Masahiro Koiwa.Material Transactions[J],JIM,1998,39(12):1169.
    [75][瑞]典波特,金属和合金中的相变[M].冶金工业出版社,1988.
    [76]Y Suzuki,M Matsuo,M Saga,M Kikuchi.In:Proc.5~(th) Int Conf.On Al Alloys,Grenoble[C],Material Science Forum,Vol.217-222,1996:1789
    [77]Flower H M,Gregson P J.Solid state phase transformation in aluminum alloys containing lithium[J].Met Sci Tech,1987,3:81
    [78]卫英慧、贾连锁、胡兰青等.稀有金属材料与工程[J],2003,Vol.32,No.6:428.
    [79]郑子樵、黄碧萍、尹登峰.中南工业大学学报[J],1998,29(1):42.
    [80]易宏坤、郑子樵.中南工业大学学报[J],1999,30(3):292.
    [81]B.Noble,G.E.Thompson:J.Met.Sci[J],1972,vol.6,167
    [82]G W Lorimer,R B Nicholson.The mechanism of T_1 nucleation and growth[J].The Mechanism of Phase Transformation in Grystaline Solids,1969:36.
    [83]S.F.Baumann and D.B.Williams:Al-Li Alloys Ⅱ[J],TMS-AIME[J],Warrendale PA[J],1984,17-30.
    [84]S F Baumann,D B Williams.In:Sanders T H[J],Starke E A eds[J],Al-Li Alloys Ⅱ[J],Warrendate PA[J]:TMS-AIME,1983:17.
    [85]J.R.Pickens,L.S.Kramer,T.J.Langen,F.H.Heubaum,and F.W.Gayle:Aluminum-Lithium Alloys Ⅵ[M],DGM InformationsgesellschaftmbH,Garmisch-Partenkirchen,Germany,1992,357-362.
    [86]B.M.Gable,M.A.Pana,G.J.Shifler,E.A.Starke:Materials Science Forum[J],2002,vol.396-420,pp.699-704.
    [87]蒋晓军,邓文,桂全红等.金属学报[J],1993,vol.29,No.12,527。
    [88]T.Ogura,A.Hirosaw,A.Cerezo,T.Sato.Quantitative correlation between strength,ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag,Cu) alloys[J],Materials Science Forum,2006,519-521:431-436.
    [89]S.P.Ringer,K.Hono,I.J.Polmear,T.Sakurai.Nucleation of precipitates in aged Al-Cu-Mg-Ag alloys with high Cu-Mg ratios[J].Acta Mater,1996,44(5):1883-1898.
    [90]K.Hono.Nanoscale microstructural analysis of metallic materials by atom probe fieldion microscopy[J].Progress in Materials Science,2002,47:621-72.
    [91]Masahiro Koiwa.Material Transactions[J],JIM,1998,39(12):1169.
    [92]肖纪美.合金能量学[M].上海:上海科学技术出版社,1985,289-290.
    [93]李世晨,郑子樵.计算机模拟Al-Cu-(Mg)-(Ag)时效初期原子分布状态[J].中南工业大学学报,2000,5:441-444
    [94]J.B.Cohen,R.F.Mehl Medalist.The Early Stages of Solute Distribution Below a Transition Temperature[J].Metallurgical Transactions A,1992,23A:2685-2697.
    [95]J.F.Nie,B.C.Muddle.On the Roles of Clusters during Intragranular Nucleation in the Absence of Static Defects[J].Metallurgical and Materials Transactions A,2002,33A:1649-1658.
    [96]B.C.Muddle and J.F.Nie.Nucleation-mediated Structural Refinement and Aluminium Alloy Design[J].Materials Science Forum,2006,519-521:191-196.
    [97]S.P.Ringer and K.Raviprasad,Mater.For[J].24,(2000).101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700