CSP均热过程钢坯氧化烧损的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辊底式均热炉是紧凑式带钢生产工艺中关键热工设备,开展降低该工艺高碳钢坯氧化烧损的研究,对提高热轧板卷表面质量、降低吨钢成本有重要理论和实际意义。
     本文对国内外氧化烧损的研究和数值模拟技术在轧钢加热炉中的应用现状进行综述,根据CSP均热工艺对实验炉内氧化烧损量的定量计算,研究了合理组织辊底式均热炉内燃烧和高温烟气流动的工况调节方法以优化均热过程降低钢坯氧化烧损。主要研究内容包括:
     (1)通过介绍纯铁在空气中的氧化过程引入钢的氧化机理,对影响钢坯氧化烧损的主要因素、钢坯氧化烧损量经验计算模型进行综述,并分析了制定辊底式均热炉高碳钢坯均热工艺的策略。
     (2)对描述加热炉内流动、传热及燃烧过程的数学理论和钢坯氧化模型进行系统阐述,根据国内外研究成果和CSP均热工艺特点,确定了辊底式均热炉钢坯氧化烧损数学模型,并分别利用实验均热炉实验数据和文献数据对所建模型钢坯温度和钢坯烧损量计算准确性进行了验证。
     (3)在现有加热炉内钢坯氧化机理研究成果的基础上,基于FLUENT软件和氧化烧损子程序,研究加热速率、均热温度和加热气氛等热工因素对65Mn钢均热过程氧化烧损的影响,结果表明,提高加热速度可降低钢坯氧化烧损,增大均热温度和空气消耗系数则使钢坯氧化加剧。
     (4)根据CSP均热工艺特点,以实验均热炉为研究对象,研究空气消耗系数、中心风和二次助燃风量之比以及空气预热温度对实验炉内流体流动、燃烧及炉气与钢坯间耦合换热的影响,获得了炉内氧化性气体分布、钢坯温度特性等重要信息,为组织均热炉内高温烟气流动和燃烧提供了参考。
The roller hearth reheating furnace is the key thermotechical facility of compact strip production (CSP). The study of iron scale mechanism on high-carbon billet in the soaking process of this technology was carried out. It was propitious to ameliorate the quality of hot rolled steel sheet and reduce the cost.
     In this thesis, the latest research results on oxidation of steel and the application of numerical simulation on reheating furnace were analyzed. Based on the computation of loss of iron scale in an experimental furnace according to the soaking process of CSP line, the methods of organizing combustion and high temperature gas fluid flow in the roller hearth reheating furnace were studied to optimize the soaking process and reduce loss of iron scale. The principal contents of this thesis are summarized as following:
     (1) By introducing the oxidation process of pure iron in air, the oxidation mechanism of steel was described. Many important theories about iron scale were summarized, such as, the principal factors of influencing oxidation of billet in reheating furnaces, the empirical computational models of loss of iron scale, etc. What's more, the soaking strategies of high-carbon steel in the roller hearth reheating furnace were analyzed as well.
     (2) The mathematical theories about modeling fluid flow, heat transfer and combustion in reheating furnaces and the computational model of loss of iron scale were summarized. And the mathematical model of computing loss of iron scale in the roller hearth reheating furnace was established according to both the latest domestic and overseas research results and the characteristics of the soaking process of CSP line. The mathematical model was verified by experimental results of gas temperature and the literature data of loss of iron scale.
     (3) Based on the latest research results of iron scale mechanism in reheating furnaces, Computational Fluid Dynamics (CFD) software FLUENT 6.2 integrated with computational program of loss of iron scale was used to research the effects of rate of reheating, soaking temperature and soaking atmosphere on the soaking process of 65Mn steel. The numerical simulation results show that the loss of iron scale reduces while increasing the rate of reheating, and it increases with increasing the soaking temperature as well as increasing air consumption ratio.
     (4) According to the technological characteristics of the soaking process in CSP line, the effects of air consumption ratio, the ratio of the capacity of core air to the capacity of secondary air and air preheating temperature on fluid flow, combustion and the heat transfer between gas and billet were studied experimentally. Some key information, such as, the distribution of oxidizing gas on surface of billet, the temperature of billet, etc, were obtained. Those are important reference data for organizing high temperature gas fluid flow and combustion in the roller hearth reheating furnace.
引文
[1]袁志刚.2007年全球钢铁企业粗钢产量排名揭晓[J].冶金管理,2008,(3):24-26
    [2]戚向东.2007年我国钢铁行业情况及2008年供需形势分析[J].冶金管理,2008,(2):17-25
    [3]廖迎新.基于群体搜索策略的热轧加热炉多模型优化控制研究[D]:[博士论文].长沙:中南大学,2006:1-2
    [4]罗冰生.2007年我国进口铁矿石情况及2008年进口态势分[J].冶金管理,2008,(3):4-9
    [5]Li X.The analysis of pricing tendency of China's imported iron ore and consequent risk prevention[C].Proceedings of the 2007 International Conference on Management Science and Engineering,Finance Analysis Section,2007:758-763
    [6]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁,2007,42(6):1-7
    [7]陈连生,朱红一,任吉堂.热轧薄板坯生产技术[M].北京:冶金工业出版社,2006:81-82
    [8]仇圣桃,项利,岳尔斌,等.薄板坯连铸连轧流程生产取向硅钢技术分析[J].钢铁,2008,43(9):1-7
    [9]Siyasiya C W,Stumpf W E.The effects of hot rolling process and the nitrogen and sulphur content on the microstructural development of aluminium killed hot rolled low carbon atrip Sateel[J].Journal of the South African Institute of Mining and Metallurgy,2008,108(8):481-489
    [10]田乃媛.薄板坯连铸连轧[M].北京:冶金工业出版社,2004:40-42,166-170
    [11]张正言.宝钢热轧加热炉氧化烧损计算模型的建立和实施[J].宝钢技术,2003,(4):30-32
    [12]张绍贤.薄板坯连铸连轧工艺技术发展的概况[J].炼钢,2000,16(1):51-55
    [13]高秋艳.薄板坯连铸连轧生产线的技术现状[J].轧钢,2003,20(6):30-33
    [14]王天义.薄板坯连铸连轧工艺技术实践[M].北京:冶金工业出版社,2005:8-14
    [15]殷瑞钰.中国薄板坯连铸连轧的进展[J].钢铁,2008,43(2):1-9
    [16]张金柱,潘国平,杨兆林.薄板坯连铸装备及生产技术[M].北京:冶金工业出版社,2007:27-36
    [17]朱力夯,张占强.CSP薄板坯连铸连轧辊底式加热炉[J].工业加热,2001,(3):33-37
    [18]张晓莉.CSP辊底式加热炉温度控制分析[J].冶金动力,2006,(5):83-85
    [19]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:170-172
    [20]Tominaga J,Wakimoto K-y,Mori T,et al.Manufacture wire rods with good descaling property[J].Transactions ISIJ,1982,22:646-656
    [21]Sun W H,Tieu A K,Jiang Z Y,et al.High temperature oxide scale characteristics of low carbon steel in hot rolling[J].Journal of Materials Processing Technology,2004,155-156:1307-1312
    [22]Sun W H,Tieu A K,Jiang Z Y,et al.Surface characteristics of oxide scale in hot strip rolling[J].Journal of Materials Processing Technology,2003,140:76-83
    [23]Sun W H,Tieu A K,Jiang Z Y,et al.Oxide scales growth of low-carbon steel at high temperatures[J].Journal of Materials Processing Technology,2004,155-156:1300-1306
    [24]Burke D P,Higginson R L.Characterisation of multicomponent scales by electron back scattered diffraction(EBSD)[J].Scripta Materialia,2000,42(3):277-281
    [25]欧阳德刚,蒋扬虎,罗安智.钢氧化特性的研究动态[J].工业加热,2007,36(6):8-11
    [26]刘占增,郑兆平,丁翠娇,等.加热炉氧化烧损原因与对策分析[J].冶金能源,2004,23(2):30-32,42
    [27]蒋受宝,蒋绍坚,张灿,等.高温富氧空气燃烧加热时间和氧化烧损研究[J].工业炉,2007,29(2):1-3
    [28]邓伟,张宇,杨大正,等.钢坯氧化烧损影响因素试验研究[J].冶金能源,2006,25(6):39-40,50
    [29]E1-Meligi A A.Effect of heating rates on the formable oxide scale on a C-steel surface[J].Journal Materials Science Technology,2004,20(5):591-594
    [30]Basabe V V,Sszpnar J A.Growth rate and phase composition of oxide scales during hot rolling of low carbon Steel[J].ISIJ International,2004,44(9):1554-1559
    [31]Basabe V V,Szpunar J A.Phase composition of oxide scales during reheating in hot rolling of low carbon steel[J].Steel Research International,2006,77(11):818-824
    [32]蔡乔方.加热炉[M].北京:冶金工业出版社,1982:149-160
    [33]胡佐兴,刘波.连铸钢坯氧化烧损严重原因及对策[J].钢铁钒钛,1998,19(1):48-51
    [34]李玉华,陈少慧,朱希圣,等.热轧盘条表面氧化皮的研究与控制[J].金属制品,2008,34(1):28-30
    [35]韩任志,张羽,李先春.加热炉钢坯氧化烧损影响因素的分析研究[J].鞍钢科技,2005(2):37-38
    [36]Taniguchi S,Yamamoto K,Megumi D,et al.Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures[J].Materials Science and Engineering,2001,A308:250-257
    [37]Frolish M F,Krzyzanowski M,Rainforh WM,et al.Oxide scale behaviour on aluminium and steel under hot working conditons[J].Journal Materials Process Technology,2006,177:36-40
    [38]于洋,李庆亮,刘振宇.热轧带钢氧化铁皮生长过程数值模拟[J].钢铁,2008,43(1):55-57
    [39]Ginzburg V B.板带轧制工艺学,马东清译[M].北京:冶金工业出版社,1997:345-363
    [40]刘广穆,陈建新.国内CSP产品质量与控制[J].冶金标准化与质量,2003,41(6).23-28
    [41]Jiang Z Y,Sun W H,Tang J N,et al.Analysis of oxidation and surface characteristics in hot strip rolling[J].Journal Materials Science Technology,2005,21:91-94
    [42]Jiang Z Y,Tieu A K,Sun W H,et al.Characterisation of thin oxide scale and its surface roughness in hot metal rolling[J].Materials Science and Engineering a-Structural Materials Properties Microstmcture and Processing,2006,435:434-438
    [43]蒋扬虎,富仲龙,周有预,等.连铸坯热装加热工艺初步研究[J].工业加热,2001,4:43-47
    [44]黄灿,杭乃勤,张细菊,等.重轨钢脱碳的研究[J].武汉科技大学学报(自然科学版),2004,27(3):234-236
    [45]贾丽娣,刘常鹏,张宇,等.高碳钢加热过程脱碳特性分析[J].冶金能源,2004.23(2):11-13
    [46]Jaklic A,Vode F,Kolenko T,Online simulation model of the slab-reheating process in a pusher-type furnace[J].Applied Thermal Engineering,2007,27: 1105-1114
    [47]Kim M Y.A heat transfer model for the analysis of transient Heating of the slab in a direct-fired walking beam type reheating furnace[J].International Journal of Heat and Mass Transfer,2007,50:3740-3748
    [48]Wikstrom P,Blasiak W,Berntsson F.Estimation of the transient surface temperature and heat flux of a steel slab using an inverse method[J].Applied Thermal Engineering,2007,27:2463-2472
    [49]Carvalho S R,Ong T H,Guimaraes G.A nathematical and computational mode of furnaces for continuous steel strip processing[J].Journal of Materials Processing Technology,2006,178:379-387
    [50]朱辉,张欣欣,温治.薄板坯连铸连轧CSP工艺缓冲性能的研究——直通式辊底炉传热模型及其数值分析[J].工业加热,1999,(1):4-7
    [51]王红瑞.邯钢薄板坯连铸连轧衔接区板坯温度模型的研究[J].冶金能源,2001,20(01):13-17
    [52]杨占春,武文斐,刘浏,等.CSP辊底加热炉供煤气量随坯厚、坯温变化规律的模拟研究[J].钢铁,2006,41(3):81-84
    [53]Ou J P,Ma A C,Zhan S H,et al.Dynamic simulation on effect of flame arrangement on thermal process of regenerative reheating furnace[J].Journal of Central South University of Technology,2007,14(2):243-247
    [54]欧俭平.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D]:[博士学位论文].长沙:中南大学,2004:27-30
    [55]刘向军,赵燕,潘小兵.步进式加热炉内流动与传热过程的数值模拟[J].北京科技大学学报,2005,27(3):287-289
    [56]刘赵淼,郝海舟,叶红玲,等.蓄热式加热炉中温度场分析[J].安全与环境学报,2006,6(06):97-100
    [57]饶文涛.蓄热燃烧中NO_x生成规律研究[J].宝钢技术,2004,(3):61-64
    [58]陈其安.关注薄板坯连铸连轧技术的热点问题[J].轧钢,2004,21(6):20-22
    [59]周萍.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006:299-301
    [60]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992:14-35
    [61]肖泽强,朱苗勇.冶金过程数学数值模拟分析技术的应用[M].北京:冶金工业出版社,2006:25-28
    [62]魏利军.重气扩散过程的数值模拟[D]:[博士学位论文].北京:北京化工大学,2000:14-17
    [63]Zheng Y,Wan X T,Qian Z,et al.Numerical simulation of the gas-particle turbulent flow in riser reactor based on K-epsilon-K(p)-epsilon(p)-theta two-fluid model[J].Chemical Engineering Science,2001,56(24):6813-6822
    [64]刘林华,余其铮,阮立明,等.求解辐射传递方程的离散坐标法[J].计算物理,1998,15(3):337-343
    [65]屈成锐,李义科,武文斐.离散坐标法及其在加热炉中的应用[J].包头钢铁学院学报,2004,23(2):97-100
    [66]Fluent Inc.FLUENT User's Guide[M].Fluent Inc,2003
    [67]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002:113-118
    [68]李祥晟,丰镇平.贫油预混燃烧室燃烧稳定性的数值研究[J].西安交通大学学报,2006,40(5):502-505
    [69]Torres M,Col(?)s R.A model for heat conduction through the oxide layer of steel during hot rolling[J].Journal Materials Process Technology,2000,105(3):258-263
    [70]杨占春,武文斐,李义科,等.薄板坯连铸连轧辊底加热炉内传热过程的数学模型[J].钢铁研究学报,2006,18(3):6-9
    [71]吴晅,杨卫波.用离散坐标法求解矩形炉内三维辐射换热[J].能源技术,2004,25(4):139-142
    [72]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:86-87
    [73]曹杰,项长祥,陈冬,等.几种高速钢的氧化脱碳行为[J].北京科技大学学报,2000,22(1):16-30
    [74]吴光亮,郑柏平,焦国华,等.涟钢CSP连铸连轧流程的技术装备和生产实践[J].特殊钢,2006,27(2):46-48
    [75]傅杰.新一代低碳钢——HSLC钢[J].中国有色金属学报,2004,14(s1):82-90
    [76]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991:254
    [77]赵岩,陈海耿,张振伟,等.低热值煤气预热后直接用于加热炉燃烧的研究[J].工业加热,2006,35(1):36-38
    [78]朱彤,张毅勐,刘敏飞,等.低热值煤气高温空气燃烧数值模拟[J].同济大学学报(自然科学版),2002,30(8):932-937
    [79]王文戈.耐热滑轨在推钢式加热炉上的应用[J].轧钢,2001,18(4):65-66
    [80]冯霄红,安月明,温治,等.考虑冷却水管对钢坯传热影响的步进梁式连续加热炉数学模型[J].工业加热,2006,35(4):15-20
    [81]吕以清,孙玮,侯卫军.新型全热滑轨的研制与应用[J].工业加热,2002,(3):35-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700