35Mn2钢碱脆机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是一种不可再生的资源,为了最大限度地提高石油采收率,大庆地区开辟了三元复合驱实验区。三元复合驱是属于三次采油的一种方法,可以使原油采收率比水驱提高20%~25%。由于它采用碱(NaOH)/表面活性剂/聚合物作为驱油剂,同时井下温度随着井深而增加,一般会达到100℃左右,所以在这种环境中工作的油管、抽油杆(部分材料为35Mn2钢)出现了较多的断管、断杆现象。目前,国内外对三元复合驱技术的研究还仅限于驱油效果,而对管材在其中的碱脆行为的研究报道甚少。因而,研究在热强碱介质中35Mn2钢的腐蚀机理可以为油管、抽油杆的合理选材以及采取有效防腐措施提供理论依据,同时也可降低安全事故的发生,为油田带来一定的经济效益和社会效益。
     此外,套管作为油气井的重要组成部分,要尽可能提高其抗射孔开裂的能力。由于对套管射孔时,管体需承受应变率极大的冲击载荷,当达到一定的临界条件时会发生失稳开裂,所以研究高应变率下碱脆对35Mn2钢动态断裂韧性K Id的影响可以为石油套管的安全使用提供一定的参考依据。
     本文通过电化学实验和冲击实验相结合的方法,在不同极化电位下研究了35Mn2钢冲击功AK V的变化规律,验证了氢致开裂是35Mn2钢碱脆的主要机理。并通过Hopkinson压杆实验证明了高应变率ε=103/s下,碱脆对35Mn2钢动态断裂韧性K Id的影响不大。
The petroleum is one kind of non-renewable resources, in order to most effectively enhance the petroleum’s recovery ratio, Daqing area opens A-S-P experimental plot. A-S-P is a way of tertiary oil recovery technology. Compared to the water drive, A-S-P technique can make the petroleum’s recovery ratio be enhanced to 20%~25%. Because it uses alkali (NaOH) to drive the oil, and simultaneously along with the well depth, the subsurface temperature is increased up generally to 100℃. Therefore, working in this kind of environment, the oil tube, the oil extraction rod (part of materials are 35Mn2 steel) appear more broken phenomenon. At present, A-S-P technique is only studied to its effect of driving oil in domestic and foreign country. But research report is really few to the tube’s caustic brittlement’s behavior among ASP. Thus, studying 35Mn2 steel’s corrosion mechanism in the hot strong alkali medium may provide the basis for the reasonable material selected as well as the anticorrosion measure, simultaneously may reduce the security accident’s occurrence, also bring certain economic efficiency and the social efficiency for the oil industry.
     In addition, as the important part of oil and gas well, thimble’s anti-cracking should be improved in the process of perforation. Because of perforation, the body must withstand the impact load with an enormous strain rate. When certain critical condition can be achieved, thimble appears the cracking. Therefore under the high rate of strain, studying the caustic brittlement’s influence on 35Mn2 steel’s dynamic fracture may provide certain reference for the petroleum thimble’s safe handling.
     Through the electrochemistry experiment and the impact experiment, the article studies 35Mn2 steel’s impact ductility and proves that hydrogen-induced-cracking is 35Mn2 steel caustic brittlement’s main mechanism. Moreover, through the Hopkinson experiment, the caustic brittlement has little influence on the 35Mn2 steel’s dynamic fracture toughness under the high rate of strain.
引文
[1]姜民政,朱君,李金铃.三元复合驱油井结垢分析及防垢剂研制[J].石油化工腐蚀与防护,2003,20(3):25~27.
    [2]陈新平,陈红文.石油套管断裂韧性的分析[J].天津冶金,1995,4(2):21~24.
    [3] Sergei A.Shipilov.应力腐蚀破裂和腐蚀疲劳研究:历史回顾与趋势[C].中国国际腐蚀控制大会论文集,2002.
    [4]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,2002,69~84.
    [5]张九渊.碳钢的苛性碱破坏[J].浙江化工,1984,5(3):33~39.
    [6] Sriram R, Troman C. Stress Corro Handbook Of Residual Stress And Deformation Of Steel sion Cracking Of Carbon Steel In Caustic Aluminate Solutions Slow Strain Rate Studies [J]. Corrosion Science, 1985, 25(2):79-91.
    [7]黄鸿生,尚少军,彭祖铭.碳钢碱脆的研究[J].钢铁研究总院学报,1986,6(1):97~104.
    [8]浙江工学院碱脆科研组.低碳钢碱脆机理的研究[J].浙江工业大学学报,1983,3(1):64~72.
    [9]张九渊,许生来,姜西丽,等.低碳钢在NaOH溶液中的电化学行为及碱脆的临界电位[J].化工腐蚀与防护,1992,20(2):2~7.
    [10]刘素娥,朱自勇,柯伟.NaOH浓度和AlO2-离子对低合金钢热强碱脆的影响[J].金属学报,1997,33(2):143~149.
    [11]刘素娥,朱自勇,柯伟.氧化铝溶出过程压力容器用钢热强碱脆研究[J].腐蚀科学与防护技术,1991,4(4):283~288.
    [12]王来生.低合金高强钢在高温浓碱溶液中的断裂机理[J].兵器材料科学与工程,1991,113(2):15~20.
    [13] Mao SX, Li M. Mechanics And Thermodynamics On The Stress And Hydrogen Interaction In Crack Tip Stress Corrosion:Experiment And Theory [J]. Journal Of The Mechanics And Physics Of Solids, 1998, 46(6):1125-1137.
    [14]王来生.氢在钢的碱脆断裂中的作用[J].兵器材料科学与工程,1997,20(1):11~15.
    [15]褚武扬,谷飚,高克玮.应力腐蚀机理研究的新进展[J].腐蚀科学与防护技术,1995,7(2):97~101.
    [16] Galvele J R. A SCC Mechanism Based On Surface Mobility [J]. Corrosion Sci, 1987, 27(6):1-4.
    [17] Sieradzki K, Newman R C. Stress Corrosion Cracking [J]. J pHys Chem Solids, 1987, 48(2):1101-1107.
    [18] Jones D A. Localized Surface Plasticity During SCC [J]. Corrosion, 1996, 52(36):356-357.
    [19] Kaufman M J,Fink J L. Evidence For Localized Ductile Fracture In SCC Of Ductile Fcc Alloys [J]. Acta Metall, 1988, 12(36):2213-2214.
    [20] Magnin T, Chieragatti R, Bayle B. The Corrosion-Enhanced Plasticity Model For SCC In Fcc Alloys [J]. Acta Mater, 1996, 23(44):1457-1458.
    [21] Y.Monden, T.Murata, M.Nagumo. The Fourth Acoustic Emission Symposium [J]. TOKYO, 1978, 6(4):1-3.
    [22] H.H.Uhlig, Proc. Conf. Fundamental Aspects Of SCC [J]. The Ohio State Univ, 1969, 2(10):86-97.
    [23] R.A.Oriani, SCC And HE Of Iron-Base Alloys [J]. UNIEUX-Firminy, 1977, 5(3):351-358.
    [24]褚武扬.氢致开裂和应力腐蚀机理新进展[J].金属学报,1981,17(1):10~16.
    [25]刘洋.阴极极化和ZnAl合金涂层对海水中16Mn钢环境敏感断裂的影响[D].北京:中国科学院海洋研究所,2000.
    [26]何亚东,齐慧滨.材料腐蚀与防护概论[M].北京:机械工业出版社,2005,119~120.
    [27]陶琦,李芬芳,邢健敏.金属腐蚀及其防护措施的研究进展[J].湖南有色金属,2007,23(2):43~46.
    [28]陈合成.碱液腐蚀及防护技术[J].石油化工腐蚀与防护,2004,21(1):20~24.
    [29]宁崇克,陈亚春.碱脆及预防措施[J].化工设备与管道,2004,41(5):59~61.
    [30]褚武扬,乔利杰,肖纪美.应力腐蚀机理研究[J].北京科技大学学报,1992,14(2):212~219.
    [31]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005,104~116.
    [32]胡小丽,黄震中,乔利杰,等.氢和应力对阳极溶解的影响[J].中国腐蚀与防护学报,1996,16(3):187~191.
    [33]李锡臣.碳素钢的碱脆和防护措施[J].石油化工设备技术,1995,16(2):17~21.
    [34]卢绮敏.石油工业中的腐蚀与防护[M].北京:化学工业出版社,2001,122~123.
    [35]刘瑞堂.机械零件失效分析[M].哈尔滨:哈尔滨工业大学出版社,2003,86~92.
    [36]任学冲,褚武扬,李金许.原子氢和白点对车轮钢力学性能的影响[J].金属学报,2006,42(2):153~157.
    [37]任学冲,褚武扬,李金许.原子氢和白点对车轮钢力学性能影响的进一步研究[J].金属学报,2007,43(1):53~58.
    [38]杨灿生.氢氧化钠溶液储槽的开裂与对策[J].四川化工与腐蚀,1995,3(2):58~61.
    [39]李春娟,李晓青,吴迪,等.液碱贮罐腐蚀开裂原因分析及防护措施[J].腐蚀与防护,1997,18(6):271~272.
    [40]李卫,王海龙,涂小慧.热强碱介质中耐磨高锰钢冲击韧度的研究[J].铸造,2004, 53(5):369~371.
    [41] A. I. Kovalev, D. L. Wainstein, V. P. Mishina. Effect Of Residual Stress On HydrogenEmbrittlement And Stress Corrosion Cracking [M]. Handbook of Residual Stress And Deformation Of Steel, 2002, 70-86.
    [42]付学义,刘莉.残余应力的危害及对策[J].包钢科技,2006,32(增刊):82~84.
    [43]马秋荣.石油套管的动态断裂韧性[J].机械工程材料,1999,23(3):10~11.
    [44] G .Pluvinage, M .Lebienvenu. Dynamic Fracture Toughness:Specificity And Particular Aspects [J]. Journal Of NingBo University (NSEE), 2003, 16(4):325-335.
    [45]刘瑞堂,姜风春,刘殿魁.应力波载荷作用下材料断裂韧性测试技术研究进展[J].实验力学,2000,15(2):138~146.
    [46] Hai Qiu, Manabu Enoki, Yoshiaki Kawaguchi, et al. A Model For The Dynamic Fracture Toughness Of Ductile Strctural Steel[J].Engineering Fracture Mechanics, 2003, 10(70):589-598.
    [47] J.R.Klepaczko. Properties at high rates of strain [J]. Mech, 1979, 20(3):201-204.
    [48]郑坚,王泽平,段祝平.动态断裂的加载和测试技术[J].力学进展,1994,24(4):459~473.
    [49]刘瑞堂,姜风春,张晓欣,等.用于材料动态力学性能研究的测试装置[J].哈尔滨工程大学学报,1999,20(1):13~18.
    [50]姜风春,刘瑞堂,刘殿魁.动态弹塑性断裂韧性测试方法的比较研究[J].实验力学,1999,14(2):18~21.
    [51]张晓欣,刘瑞堂.加载速率对船用钢断裂韧性的影响[J].爆炸与冲击,2003,23(1):47~49.
    [52]张晓欣.低合金钢与焊接接头动态断裂韧度测试及温度效应研究[D].哈尔滨:哈尔滨工程大学,2002.
    [53]张永信,马德林.材料断裂韧性与冲击能之间关系的研究[J].兵器材料科学与工程,1987,15(2):42~46.
    [54] Barsom J. M. and Rolfe S. T. Correlations between K ICAnd Charpy V-Notch Test Result In The Transition-Temperature Range In Impact Testing Of Metals [J]. American Society For Testing And Materials, PhiladelpHia, 1970, 18(5):466-467.
    [55]袁根福,丁厚福,朱正色.金属断裂韧性与缺口试样冲击功间普遍关系与应用[J].理化检验—物理分册,1996,32(2):44~47.
    [56] Kewal K·Mehta,薛彩绵,白云林.关于断裂韧性( K IC)和冲击功之间的数量关系[J].兵器材料与科学,1981(Z1):86~90.
    [57]许昌淦,余刚.冲击功与断裂韧性间关系的探讨[J].航空学报,1990,11(4):182~187.
    [58]秦江阳,王印培,柳曾典,等. J IC和冲击功AK V之间的关系研究[J].材料工程,2001,18(2):15~18.
    [59]杨丽,张宝友,崔约贤,等.加载速率对30A钢断裂韧性的影响[J].兵器材料科学与工程,2003,26(5):52~55.
    [60]钟曼英,蔡敏.介质及应变速率对10钢的氢脆敏感性的影响[J].中国计量学院学报,2002,13(1):56~59.
    [61]周顺深.钢脆性和工程结构脆性断裂[M].上海:上海科学技术出版社,1983,224~225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700