ZnO掺杂Mg-PSZ的微观结构及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以MgO/ZrO_2为10/90(mol)为基材,添加不同含量的ZnO ,在1580℃烧结,并对部分样品进行热处理,制得(Zn,Mg)-ZrO_2陶瓷。用SEM、XRD等方法研究其微观结构及相组成。比较了不同ZnO含量对材料微观结构和力学性能的影响。本文还研究了线材拉制环境下不同PSZ体系的摩擦学性能,分析了不同摩擦介质、转速、载荷对其摩擦学性能的影响规律和作用机理。
     实验结果表明,ZnO可以与ZrO_2生成固溶化合物,引起晶格畸变,从而促进烧结,降低烧结温度,形成具有较小晶粒和更加致密的烧结体。另外,含有ZnO的样品在烧成冷却过程中会形成大量的四方相,并能稳定至室温,突破了传统Mg-PSZ必须经长时间热处理才能析出较多四方相的限制,简化了生产工艺,降低了成本。
     ZnO的含量对Mg-PSZ中析出体的形貌具有调控作用,随着ZnO加入量的增加,晶粒内析出体粒径增大,其形状也由球形逐渐转变为具有特定晶向的各向异性,这对于进一步控制和开发陶瓷性能提供了很好的依据。
     当ZnO含量为0.4mol%时,PSZ具有较高的抗弯强度,数值达到703.5±47.3MPa,但由于其中四方相形成机理的不同,其韧性比Mg-PSZ低很多,只能达到7.8±0.8MPam~(1/2)。因此实际应用中,只能用于对于韧性要求不是很高的环境。
     通过研究线材拉制环境下,0.4ZnO-10MgO-ZrO_2 ,10MgO-ZrO_2,Y-TZP三种材料与65Mn钢丝进行摩擦的情况,说明氧化锆基陶瓷材料在此条件下具有较好的摩擦磨损性能,在摩擦介质,转速,载荷等因素不断变化的情况下,磨损率均能在10小时后达到平稳,数量级在10~(-6)~10~(-7)范围,其中Y-TZP具有各种条件下最佳的摩擦磨损性能。由于水与氧化锆基陶瓷间会发生复杂反应,在水为摩擦介质条件下其磨损性能发生恶化,尤其是Mg-PSZ材料在水介质摩擦时中会发生磨损突变。通过实验还发现以下规律:转速的提高可以降低陶瓷的磨损率;载荷的增加使陶瓷材料的磨损率增加,但不会有数量级的变化。这些都为氧化锆基陶瓷材料作为线材拉制中的拉丝模提供了参考依据。
PSZ ceramics based on Mg-PSZ with a molar rate of 10:90 of MgO: ZrO_2 were prepared by adding different content of ZnO. Mechanical properties were measured by three point flexural test and hardness test. Tribology properties were also examined under a simulated circumstance of wire drawing. The microstructure characteristics and phases constitute were identified by SEM and XRD. The effects of different content of ZnO on microstructures and mechanical properties were investigated. The tribology properties of different PSZ systems under different frictional rings, rotation rate, and normal load were also analyzed.
     The experiment results show that a new compound were formed by the reaction of ZnO and ZrO_2 and induced the aberration of crystal lattice, which lead to a low sintering temperature and small grain size. Compared with the traditional Mg-PSZ, a amount of t-ZrO_2 phase precipitated directly from the (Zn,Mg)-ZrO_2 matrix during the cooling process without a long-time heat-annealing. It simplified the producing process and decreased the cost.
     The ZnO content had an effect on the shape of t-ZrO_2 precipitates. As the increasing of the ZnO content, the size of the grain became bigger, and its shape changed from sphere to multi-sides one which was anisotropism. The mechanism provided evidence for the controlling and exploitation of the properties of the ceramics.
     Among the samples doped with zinc oxide, the average bending strength of samples with 0.4mol% ZnO reached to 703.5±47.3MPa. but for the different forming mechanism of t-ZrO_2, it showed a lower toughness than that of Mg-PSZ, which was 7.8MPam~(1/2) . Considering the lower toughness, Mg-PSZ ceramics doped with ZnO can only be used in such an environment that does not require a high toughness.
     The friction behaviour between steel wire of 65Mn and different zirconia based ceramic rings, such as 0.4ZnO-10MgO-ZrO_2,10MgO-ZrO_2 and Y-TZP, is done respectively under a simulated circumstance of wire drawing. It showed that zirconia based ceramics had good properties of tribology that wear rate came to a stabilization after 10h with a value between 10~(-6)~10~(-7). And Y-TZP is the best one. Because of the complicated reactions between water and zirconia based ceramics, wear rate value is smaller in the oil than in the water. And Mg-PSZ had a break of wear rate when sliding in the water. Through the research, we also found the following rules: the increasing of rotational rate decreased the wear rate of ceramics; the bigger of the normal load, the higher of the wear rate. They can all provide reference when the ceramics with zirconia matrix are used as module of wire drawing. The results can be used to guide the application of zirconia based ceramic parts in different environments.
引文
[1]张琪,天津大学博士学位论文,1997
    [2] Czeppe T., Zieba P., Baliga W., et a1. Microstructure and phase composition of ZrO2-MgO structural ceramic after high-temperature deformation.Mater Chem and Phy, 2003, 81: 312~314
    [3]马亚鲁,谈家琪,张国亮,等,细晶(Y/Ce, Mg)-PSZ/MgAl 2 O4陶瓷制备工艺及性能的研究.无机材料学报,1998,13(4):575~581
    [4] Mangalaraja R. V.,Chandrasekhar B. K.,Manohar P. Effect of ceria on the physical mechanical and therm al properties of yttria stabilized zirconia toughened alumina.Mater Sci and Eng,2003(A343): 7l~75
    [5] Emad M.,Matthias W.,Wemer W..Phase stability and micro-structures Uaietural characteristics of 12 mol (Mg,Ca)-PSZ prepared via polymeric route.Ceramics International. 2003, 29: 189~194
    [6]蔡舒,申志平,董政等,CeO2对Mg-PSZ陶瓷显微结构和相组成的影响,兵器材料科学与工程,2006,29(1):21
    [7] Wolten G. M., Difusionless phase transformation in zirconia and hafnia, J. Am. Ceram. Soc., 1963, 46 (1): 418~422
    [8] Fehrenbacher L. L., Jacoson L. A., Metallographic observation of the monoclinic-tetragonal phase transformation in ZrO2, J. Am. Ceram. Soc,1965, 48 (1):157~161
    [9] Bansal G. H., Heuer A. H., On a martensitic phase transformation in zirconia, Metallographic evidence, Acta Metall., 1972, 20: 1281~1289
    [10]郭瑞松,蔡舒,季惠明,吴厚政等,工程结构陶瓷,2002
    [11] Heuer A. H., Hobbs L. W., et al. Advanced in ceramics, Science and technology ofzirconia, Am. Ceram. Soc, Columbus, OH, 1981,Vol.3
    [12] Lange F. F., Transformation toughening Part l. Size efects associated with theThermodynamics of constrained transformation, J. Mater. Sci, 1982, 17(1): 225~234
    [13] Garvie R. C., Swain M. V., Thermodynamics of the tetragonal to monoclinic phaseTransformation in constrained microcrystals Part 1, In the absence of an applied stress field, J. Mater. Sci, 1985, 20(4): 1193~1200
    [14] Garvie R. C., Swain M. V., Thermodynamic analysis of the tetragonal to monoclinic in constrained microcrystals Part 2, In the absence of an applied stress field, J. Mater. Sci., 1985, 20(4): 3479~3486
    [15]唐有祺,结晶化学,高等教育出版社,1957:142
    [16] Wills A. F., Structural Inorganic Chemistry, Oxford University Press, 1975: 255~285
    [17] Li P., Chen I. W., J. Am. Ceram. Soc., 1994, 77[1]: 118
    [18] Li P., Chen I. W., J. Am. Ceram. Soc., 1994, 77[5]: 1281
    [19] Green D. J., Hannink R. H. J., Swain, M. V., Transformation Toughening of Ceramics, CRC Press Inc., Boca, Raton, Florida, 1989.
    [20] Scott H. G., Phase Relationship in the Zirconia-Yttria System, J. Mater. Sci., 1975, 10, 1525~1527
    [21]李汶霞,天津大学博士学位论文,1996
    [22]吴厚政,陈玉如等,发动机用先进陶瓷,科学出版社,北京,1993:383
    [23] Grain J. Am. Ceram. Soc., 1967, 50: 288
    [24]吴厚政,张国亮,陈玉如,谈家琪,先进材料进展,北京,1993,2:343
    [25]张琪,天津大学硕士学位论文,1995
    [26]马亚鲁,孙小兵,袁启明,谈家琪,Y2 O3 , CeO2掺杂的Mg-PSZ陶瓷材料研究,中国稀土学报,1999,17[4]:347~351
    [27] Nasara R.S., Cerqueira M., Longo E., et al, The effect of ZnO on the sintering and stabilization of ZrO2 .MgO system, 1999, Ceramics International 25: 593~599
    [28]薛群基,党鸿辛,摩擦学研究的发展概况与趋势,摩擦学报,1993,13[1]:73~79
    [29]陈南平,刘家浚,材料科学进展,1987,1[2]:3
    [30] Hang H., Liu Y. C., Experimental investigations of machining characteristics and removal mechanism of advanced ceramics in high speed deep grinding, Intertional Journal of Machine Tools&Manufacture, 2003, 43: 811~823
    [31] Junguo Xu, Koji Kato, Formation of tribochemical layer of ceramics sliding in water and its role for low friction, Wear, 2000, 245: 61~75
    [32] Buckley D. H. and Miyoshi K., NASA Report, 1985, No. TN-87105
    [33]邓建新,艾兴,李兆前,Al 2 O3 /TiB2陶瓷材料的高温摩擦磨损特性研究,硅酸盐学报,1996,26[6]:648
    [34] Pange R. A., Advances in Engineering Tribology, Illinois, STLE Publication, 1991: 145
    [35]赵兴中,刘家浚,朱宝亮等,干摩擦及润滑条件下Si3N4/45号钢摩擦副的摩擦学性能,硅酸盐学报,1996,24[5]:515
    [36] Erickson L. C., Blomberg A., Hogmark S. and Bratthall J., Trib. Int., 1993, 26[2]: 83
    [37]孔勇发,天津大学博士学位论文,1997
    [38] Chih-Chung.T.Yang, Wen-Cheng, J.Wei, Effects of material properties and testing parameters on wear properties of fine-grained zirconia(TZP), Wear, 2000, 242: 7~104
    [39]刘惠文,薛群基,林立,氧化锆陶瓷的摩擦磨损行为与机理,摩擦学,1996,16:16~13
    [40] Tucci A. and Esposito L., Microstructure and tribological properties of ZrO2 ceramics.Wear, 1994, 172: 111 ~119
    [41] Mircea Terheci, Jim Nanos, Harry Giannakoudaris, Sylvester Abanteriba,Tribological behaviour of yttria-stabilised zirconia under dry sliding condition when tested against itself and grey automotive cast iron, Wear, 1996, 201: 26
    [42] Stoto T., Nauer M. and Carry C., Influence of residual impurities on phase partitioning and grain growth processes of Y-TZP materials, J. Am. Ceram. Soc, 1991, 74 (10): 2615~2621
    [43] Green J. D., Hannink H. R. and Swain V. M., Transfonnation Toughening of Ceramics, CRC Press, Florida, 1998
    [44] Scot H.G.,Friction and wear of zirconia at very low sliding speeds. Wear Mater. 1985: 8~12
    [45] Aronov V., Friction induced strengthening mechanisms of magnesia partially stabilized zirconia, J. Tribol., 1987, 109: 531~536
    [46] Stachowiak G. W., and Stachowiak G. B., Unlubricated friction and wear behaviour of toughened zirconia ceramics, Wear, 1989, 132: 151~171
    [47] Lee S. W., Hsu S. M., and Shen M. C., Ceramic wear maps zirconia. J. Am. Ceram. Soc., 1993, 76: 193~194
    [48] Medevielle A., Thevenm F. and Treheux D., Wear Resistance of Stabilizaed Zirconias, Journal of the European Ceramic Society, 1995, 15: 1193~1199
    [49]谭业发,天津大学博士学位论文,1995
    [50]梁小平,天津大学博士学位论文,2003
    [51] Tucci T. and Esposito L., Microstructure and tribological properties of ZrO2 ceramics, Wear, 1994, 172: 111
    [52] Jahanmir S., Dong X., Mechanism of mild to severe wear transition in alpha-alumina. J. of Tribology, 1992, 114: 403
    [53] Dong X., Jahanmir S., Hsu S. M., Tribological characteristics ofα-alumina at elevated temperatures. J. AM. Ceram. Soc, 1991, 74: 1036~104
    [54] Piconi C., Maccauro G., Zirconia as a ceramics biomaterial, Biomaterials, 1999, 20: 1~25
    [55]王东方,毛志远,四方氧化锆多晶瓷的磨料磨损,硅酸盐学报,1996,2 3(5):518~524
    [56] Seock-sam Kim, Sang-woo Kim, Stephen M Hsu. A new parameter for assessment of ceramic wear, Wear, 1994, 179: 69~73
    [57] Fischer T. E., Aderson M. P., Jahanmir S., J. Am. Ceram. Soc, 1989, 72(2): 252
    [58] Kerkwijk B., Winnubst A. J. A., Verweij H., et al, Tribological properties of Nanoscale alumina-zirconia composites, Wear, 1999, 225~229: 1293~1302
    [59] Ymgjie H., Louis W., Anthonie J. B., et al, Grain size dependence of sliding wear in tetragonal zirconia polycrystals, J. Am. Ceram. Soc., 1996, 79(12): 3090~3096
    [60] Chih-Chung, Yang T., Wen-Cheng, Wei J., Effects of material properties and testing parameters on wear properties of fine-grain zirconia (TZP), 2000, 242: 97~104
    [61] He Y., Winnubst L., urggraaf A. B, et al, Grain size dependence of sliding wear in tetragoual zirconia polycrystals, J. Am. Ceram. Soc., 1996, 79: 3090~3096
    [62] Chih-Chung, Yang T., Wen-Cheng, Wei J.. Effects of material properties and testing parameters on wear properties of fine-grain zirconia TZP, Wear, 2000, 242: 97~104
    [63] Jansen S. R., Winnubst A. J. A., He Y. J., et al, Effect of grain size and ceria Addition on ageing behaviour and tribological properties of Y-TZP ceramics, J. Eur. Ceram. Soc., 1998, 18: 557~563
    [64]薛景文,摩擦学及润滑技术,北京,兵器工业出版社,1986
    [65]邵荷生,摩擦与磨损,北京,煤炭工业出版社,1992
    [66] Esposito L., Tucci A., Microstructural of friction and wear behaviours in low purity alumina ceramics, Wear, 1997, 205: 889
    [67] Liang H., Fischer T. E., Nauer M. et al, Efect of grain boundry impurities on the mechnical and tribological properties of zirconia surfaces. J. Am. Ceram. Soc., 1993, 76: 325~332
    [68] Ajayi O., Ludema K. C., The effect of microstructure on wear of ceramic materials, Wear, 1992, 154: 371~378
    [69] Aronov V., Friction induced strengthening mechanisms of magnesia partially stabilized zirconia, J. Tribology, 1987, 109: 531~536
    [70] Wang D.F., Li J., Mao Z.Y., Study of abrasive wear resistance of transformation toughened ceramics. Wear, 1993, 165: 159~167
    [71] Rainforth W. M., Stevens R., A transmission electron microscopy study of wear of stabilized zirconia, Wear, 1993, 162~164: 322~331
    [72] Chen Y. M., Rigaut B., Pavy J. C., et al, Wear Particles Forming by Phase transformation in PSZ Ceramics during High Speed Sliding, Wear Particles, D. Dowson et al.(Ed.) 1992, 115: 12
    [73] Bundschuh W., Zum Gahr K.H., Influence of porosity on friction and sliding wear of TZP-zirconia, Wear of Materials, 1991: 319~326
    [74]申志平,天津大学硕士学位论文,2006
    [75]吴南春,黄校先,李包顺等,分步冷却制备Mg-PSZ材料的研究,硅酸盐学报,25(4):427
    [76]潘梅,,钟红梅,王少伟等,氧含量对VO2晶格特性和结构相变影响的研究,红外与毫米波学报,2005,24 (2):93
    [77]林一坚,吴杏芳,柯俊,C-218合金再结晶时的晶界迁移,钢铁研究学报,2002,14(2):44~48
    [78]王宏志,天津大学硕士学位论文,1995
    [79]孔勇发,天津大学硕士学位论文,1997
    [80] Schreck S., Zum K. H., Gahr, Laser-asissted structuring of ceramic and steel surfaces for improveing tribological properties, Applied Surface Science, 2005, 247: 616~622
    [81]杨卓娟,韩志武,任露泉,激光处理凹坑形仿生非光滑表面试件的高温摩擦磨损特性,摩擦学学报,2005,25(4):374~378
    [82] Yanchun Zhao, Miao Chen, Weimin Liu, Xiang Liu, Qunji Xue, Preparation and self-lubrication treatment of ordered porous anodic alumina film, Material Chemistry and Physics, 2003, 82: 370~374
    [83] Michael Urbakh, Joseph Klaffer, Delphine Gourdon, Jacob Israelachvili, The nonlinear nature of friction, nature, 2004, 430(29): 525~528
    [84] Novak S., Drazic G., Kalin M., Structural changes in ZrO2 ceramics during sliding under various environments, Wear, 2005, 259: 562~568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700