多巴胺受体DRD1 mRNA 3' UTR在DRD1转录后水平表达调控中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DRD1(dopamine receptor D1)是多巴胺受体的一种,是由七个跨膜区域(7-GM)组成的G蛋白偶联受体。DRD1广泛分布于神经系统,特别是尾壳核(Cpu),伏隔核(Act),视束(OT),脑皮层(Cx)和杏仁核。DRD1通过正调控cAMP,激活蛋白激酶A,从而激活下游信号通路和细胞膜离子通道。研究表明DRD1在神经前体细胞的增殖与分化中发挥重要作用,另外DRD1受体的表达异常与药物成瘾,帕金森综合症等多种神经系统疾病有密切关系。
     HuD是ELAVL(embryonic lethal abnormal visual like)/Hu家族中的一员,在神经系统中特异表达。HuD通过其蛋白含有的三个RRM结构域识别和结合靶mRNA 3'UTR中的ARE元件,增加靶mRNA稳定性,引导靶mRNA胞内运输和调控靶mRNA翻译。HuD在神经突起的生长与修复,神经干细胞和神经前体细胞的细胞周期调控等方面发挥重要作用。HuD表达异常与多种神经系统疾病相关。
     ARE元件是一种重要的顺式作用元件,富含A和U,参与介导mRNA的降解。Tala等人在ARED3.0数据库中汇集了所有NCBI收录的mRNA 3'UTR上含有ARE元件的基因。通过检索ARED3.0数据库,我们发现DRD1 mRNA的3'UTR上具有一个进化保守的ARE元件。通过Real-time PCR实验,我们发现RA诱导后向神经元方向分化的P19细胞中DRD1和HuD呈同时上升的趋势,这提示我们HuD有可能识别DRD1 mRNA 3'UTR的ARE元件,并由此调控DRD1基因的表达。
     我们首先应用RNA-chip方法进行了检测。利用HuD抗体在P19细胞全蛋白裂解液中捕获HuD蛋白-RNA复合体,然后通过链霉亲和素珠从细胞全蛋白裂解液中分离纯化出抗体-HuD蛋白-RNA复合体。经过酚氯仿抽提出其中的RNA后,通过逆转录得到相应的cDNA,最后利用特异性引物通过PCR扩增出特异条带。发现在P19细胞中HuD蛋白结合DRD1 mRNA。随后通过REMSA实验,证实HuD蛋白识别并结合DRD1 mRNA 3'UTR上的ARE元件。说明HuD通过识别和结合DRD1mRNA 3'UTR上的ARE元件来实现对DRD1 mRNA的调控。
     通过荧光素酶报告实验,我们发现HuD蛋白能够上调DRD1基因的表达。将野生型DRD1 3'UTR序列插入报告质粒荧光素酶基因编码区下游,用报告基因重组质粒和HuD真核瞬时表达载体共同转染293ET细胞,我们发现与转染空质粒的对照组相比,带有野生型DRD1 3'UTR序列的荧光报告素酶活性有明显的上升。Real-time PCR实验表明过表达HuD蛋白后,含有野生型DRD13'UTR的荧光报告素酶转录本数量明显高于对照组。在P19细胞中过表达HuD蛋白后,Real-time PCR实验表明DRD1 mRNA也出现了上升。这说明HuD蛋白识别和结合靶基因mRNA 3'UTR的ARE元件后增加DRD1 mRNA的稳定性,从而促使靶基因表达上调。
     最后我们还发现HuD蛋白影响miR-504对DRD1的上调作用。受到W.Huang等在HEK293细胞中观察到has-miR-504可以上调人源DRD1表达的报道的提示,我们在293ET细胞中观察到过表达mmu-miR-504可以上调小鼠源DRDl的表达。我们将miR-504瞬时表达载体和带有DRD1 3'UTR的荧光报告素酶表达质粒共同转染293E T细胞,24小时后荧光报告素酶表达出现显著上升;而如果将HuD瞬时表达载体与前二者同时转染293ET细胞,24小时后荧光报告素酶的上调程度会受到明显抑制。这是第一次发现HuD对靶基因的调控涉及miRNA。
     综上所述,我们发现DRD1 3'UTR上的ARE元件能够被HuD蛋白识别和结合,从而增加DRD1 mRNA的稳定性,提高DRD1在细胞中的表达。另外,miR-504可能影响HuD蛋白对于DRD1的表达调控。
DRD1 (dopamine receptor D1) is one of dopamine receptors, and is G-protein-coupled receptor constituted by 7 membrane spaning domain. DRD1 widely expresses in nerve sysytem, especially in dorsal caudate putamen, nucleus accumbens septi, optic lemniscus, cortex and amygdaloid nucleus. When DRD1 is actived , it upregulates cAMP ,which then actives protein kinase A, and downstream signal pathways and ion channels. DRD1 has been reported to be important for nerve system's functions, such as movement, study and memory. Abnormal expression of DRD1 has been reported to be associated with many never system diseases, such as drug addiction and Parkinson disease.
     HuD is a member of ELAVL(embryonic lethal abnormal visual like )/Hu family, which specially express in neuronal system. HuD protein recognises and bind to ARE element by its three RRM motifs, and increases target mRNA stability, involves in transport and translation of target mRNA. HuD plays important roles in outgrow and repair of neurite, regulation of cell cycles of neuron stem cell and neuron precursor cell.
     ARE elements are important cis-acting elements located in mRNA 3'UTR, which are rich of A and U, and are determinant of RNA instability. According to records of NCBI, Tala et al have assembled all genes which have ARE elements in their 3'UTR to ARED 3.0 database. And we found there was a typical ARE element in DRD1 mRNA's 3'UTR and this ARE is highly conservative in evolution. We found that DRD1 mRNA and HuD mRNA both increased during the differentation of RA induced P19 cell by Real-time PCR. It means HuD protein may recognize the ARE element of DRD1 mRNA 3'UTR and regulat the expression of DRD1.
     At first, we proved our hypothesis by RNA-chip experiment. We utilized antibody of HuD to capture 'HuD protein-RNA' complex in cytoplasm lysate, and utilized beads with streptavidin to pure this complex, then extracted RNA by guanidnium-Phenol Chloroform, finally we get cDNAs by RT-PCR. We used special PCR primer to amplify special band, and confirm HuD protein bind to DRD1 mRNA in P19 cell. Then we comfirm HuD protein recognize and bind ARE element of DRD1 mRNA 3'UTR by REMSA. This indicated HuD protein bind to DRD1 mRNA by recognize ARE element of DRD1 mRNA 3'UTR.
     In the dual-luciferase reporter gene experiment in 293ET cell, we found HuD can upregulate DRD1 expression. We inserted wild DRD1 3'UTR to the downstream of the CDS of luciferase. Overexpressed it with HuD protein in 293ET cell, we found the actitivation of luciferase increased. And Real-time PCR revealed the transcripts of wild DRD1 3'UTR increased in the same time. It indicated HuD increase the stability of DRD1 mRNA by recognizing and binding to the ARE element of DRD1 3'UTR, and increase its expression.
     Finally we found HuD affect the regulation of miR-504 to DRD1. As W.Huang observed in HEK293 cell that has-miR-504 can increase the DRD1, we observed mmu-miR-504 increase DRD1 in 293ET. When we overexpressed miR-504 or HuD alone, the activiation of luciferase increased, but when we overexpressed both HuD protein and miR-504 in 293ET cell, the upregulation of activiation of luciferase was depressed obviously. This is the firs report about the effect between HuD and microRNA.
     As described above, we found there is an ARE element located in DRD1 3'UTR. HuD protein recognizes and binds to the ARE element, increase the stability of DRD1 mRNA, and upregulate the expression of DRD1. Besids, we found HuD effects the regulation of miR-504 to the mRNA 3'UTR of DRD1.
引文
1 Keene JD. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome [ J] .Proc Natl Acad Sci USA. 2001,8:7018-7024.
    
    2 Burd CG, Dreyfuss G.. Conserved structures and diversity of functions of RNA-binding proteins [J] . Science. 1994, 265:615-621.
    
    3 Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors [ J] . Nucleic Acids Res. 1993,21:5803-5816.
    
    4 Perrone-Bizzozero N, ognani F. Role of HuD and other RNAbinding proteins in neural development and plasticity [J] .J Neurosci Res. 2002,68:121-126.
    
    5 Roegiers F , Jan YN. Asymmetric cell division [ J] . Curr Opin Cell Biol. 2004,16:195-205
    
    6 Schaeffer C, Beaulande M, Ehresmann C, Ehresmann B and Moine H. The RNA binding protein FMRP: new connections and missing links [J] .Biol Cell. 2003,5:221-228.
    
    7 McKee AE, Minet E, Stern C, Riahi S, Stiles CD, Silver PA. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain.[J] BMC Dev Biol. 2005 Jul 20;5:14.
    
    8 Bassell GJ, Oleynikov Y, Singer RH. The travels of mRNAs through all cells large and small [J] . FASEB J. 1999,13:447-454.
    
    9 Rehbein M, Wege K, Buck F, Schweizer M, Richter D, et al. Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs [J] . J Neurochem. 2002, 82:1039-1046.
    
    10 Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell [J] .2004,14:571-583.
    
    11 Farina KL, Singer RH. The nuclear connection in RNA transport and localization [ J] . Trends Cell Biol. 2002,12:466-472.
    
    12 Huang YS, Carson JH, Barbarese E, Richter JD. Facilitation of dendritic mRNA transport by CPEB [ J] . Genes Dev. 2003,17:638-653.
    
    13 Zhang HL, Eom T, Oleynikov Y, Shenoy SM, Liebelt DA, et al. Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility [J] .Neuron. 2001, 31:261-275.
    
    14 Kasashima K, Terashima K, Yamamoto K, Sakashita E, Sakamoto H. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation [J] . Genes Cells. 1999,4:667-683.
    
    15 Saito K, Fujiwara T, Katahira J, Inoue K, Sakamoto H. TAP/NXFl,the primary mRNA export receptor, specifically interacts with a neuronal RNA-binding protein HuD [J] . Biochem Biophys Res Commun. 2004, 321:291-297.
    
    16 Aronov S, Aranda G, Behar L, Ginzburg I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules [ J] . J Cell Sci. 2002,115:3817-3827.
    
    17 Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI,et al. GAP-43 mRNA in growth cones is associated with HuD and ribosomes [J] . J Neurobiol. 2004,61:222-235.
    
    18 Atlas R, Behar L, Elliott E, Ginzburg I. The insulin-like growth factor mRNA binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells [ J] . J Neurochem. 2004, 89:613-626.
    
    19 Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM,et al. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development [J] . Mol Cell Biol 1999,19:1262-1270.
    
    20Ule J. Ribonucleoprotein complexes in neurologic diseases. [J] Curr Opin Neurobiol. 2008 Oct;18(5):516-23. Epub 2008 Oct 27.
    
    21 Xu N, Chen CY, Shyu AB. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay [J] . Mol Cell Biol. 1997,17:4611-4621.
    
    22 Bakheet T, Williams BR, Khabar KS. ARED 2.0: an update of AUrich element mRNA database [ J] . Nucleic Acids Res. 2003, 31:421-423.
    
    23 Malter JA. Regulation of mRNA Stability in the Nervous System and Beyond [ J] . J Neurosci Res. 2001,66:311-316.
    
    24 Quattrone A, Pascale A, Nogues X, Zhao W, Gusev P, et al.Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins [J] . Proc Natl Acad Sci USA. 2001,98:11668-11673.
    
    25 Kasashima K, Sakashita E, Saito K, Sakamoto H. Complex formation of the neuron-specific ELAV-like Hu RNA-binding proteins [ J] .Nucleic Acids Res. 2002, 30:4519-4526.
    
    26 Campos, A.R., Grossman, D., and White, K. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis [J] . J. Neurogenet. 1985, 2,197-218.
    
    27 Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal [J] . Cell. 1991,67:325-333.
    
    28 Dalmau, J., Furneaux, H.M., Cordon-Carlo, C, Posner, J.B. The expression of Hu (paraneoplastic encephalomyelitis/sensory neuropathy) antigen in human normal and tumor tissues [J] .Am. J. Pathol. 1992,141,1-6.
    
    29 Aranda-Abreu GE, Behar L, Chung S, Furneaux H, Ginzburg I. Embryonic lethal abnormal vision-like RNA-binding proteins regulate neurite outgrowth and tau expression in PC 12 cells [J] .J Neurosci. 1999,19:6907-6917.
    
    30 Fujiwara T, Mori Y, Chu DL, Koyama Y, Miyata S, et al. CARM1 Regulates Proliferation of PC 12 Cells by Methylating HuD [J] . Mol Cell Biol. 2006, 26:2273-2285.
    
    31 Barami K, Iversen K, Furneaux H, Goldman SA. Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain [J] .J Neurobiol. 1995,28: 82-101.
    
    32 Wakamatsu Y, Weston JA. Sequential expression and role of Hu RNA-binding proteins during neurogenesis [J] . Development. 1997,124:3449-3460.
    33 Clayton GH, Perez GM, Smith RL, Owens GC. Expression of mRNA for the elav-like neural-specific RNA binding protein, HuD, during nervous system development [J] . Brain Res Dev Brain Res . 1998,109:271-280.
    
    34 Chagnovich D, Cohn SL. Binding of a 40-kDa protein to the Nmyc 3' untranslated region correlates with enhanced N-myc expression in human neuroblastoma [ J] . J Biol Chem . 1996,271:33580-33586.
    
    35 Cuadrado A, Navarro-Yubero C, Furneaux H, Kinter J, Sonderegger P,et al. HuD binds to three AU-rich sequences in the 30-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein [ J] . Nucleic Acids Res. 2002, 30:2202-2211.
    
    36 Joseph B, Orlian M, Furneaux H. p21(wafl) mRNA contains a conserved element in its 30-untranslated region that is bound by the Elav-like mRNA-stabilizing proteins [J] . J Biol Chem . 1998,273:20511-20516.
    
    37 Manohar CF, Short ML, Nguyen A, Nguyen NN, Chagnovich D, et al. HuD, a neuronal-specific RNA-binding protein, increases the in vivo stability of MYCN RNA [J] .J Biol Chem. 2002, 277:1967-1973.
    
    38 Wein G, Rossler M, Klug R, Herget T. The 30-UTR of the mRNA coding for the major protein kinase C substrate MARCKS contains a novel CU-rich element interacting with the mRNA stabilizing factors HuD and HuR. [ J] . Eur J Biochem. 2003, 270:350-365.
    
    39 Mobarak CD, Anderson KD, Morin M, Beckel-Mitchener A, Rogers SL, et al. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC 12 cells [J] . Mol Biol Cell 2000,11:3191-3203.
    
    40 Chung S, Eckrich M, Perrone-Bizzozero N, Kohn DT, Furneaux H. The Elav-like proteins bind to a conserved regulatory element in the 30-untranslated region of GAP-43 mRNA [J] . J Biol Chem. 1997, 272:6593-6598.
    
    41 Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ. Post-transcriptional regulation of Acetylcholinesterase mRNAs in nerve growth factor-treated PC 12 cells by the RNA-binding protein HuD [ J] . J Biol Chem. 2003, 278:5710-5717.
    
    42 Kasashima K, Terashima K, Yamamoto K, Sakashita E, Sakamoto H. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation [ J] . Genes Cells. 1999, 4:667-683.
    
    43 Wang X, Tanaka Hall TM. Structural basis for recognition of AUrich element RNA by the HuD protein [J] .Nat Struct Biol. 2001, 8:141-145.
    
    44 Park-Lee S, Kim S, Laird-Offringa IA. Characterization of the interaction between neuronal RNA-binding protein HuD and AU-rich RNA [ J] . J Biol Chem. 2003, 278:39801-39808.
    
    45 Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA. HuD RNA Recognition Motifs Play Distinct Roles in the Formation of a Stable Complex with AU-Rich RNA [ J] .Mol Cell Biol. 2000, 20:4765-4772
    
    46 Ma WJ, Chung S, Furneaux H. The Elav-like proteins bind to AUrich elements and to the poly(A) tail of mRNA [ J] . Nucleic Acids Res. 1997, 25:3564-3569.
    47 Kullmann M, Gopfert U, Siewe B, Hengst L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR.[J] Genes Dev. 2002 Dec 1;16(23):3087-99.
    
    48 Gingrieh JA. Ca~on MG. Rcecnt advances in the molecularbiology of dopamine receptor[J]. Annu Rev Neumsci, 1993, 16.- 299-321.
    
    49 Jackson DM, Westlind Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects[J].Pharnmcol Ther. 1994. 64(2): 291-37
    
    50 Smiley, JF, AI Levey. BJ Ciliax,et al. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and Isyna c localization in dendritic spines[J]. Proc Natl Acad Sci USA. 1994. 91(12): 5720-5724
    
    51 Margherita Popolo, Deirdre M. McCarthy, and Pradeep G. Bhide. Influence of Dopamine on Precursor Cell Proliferation and Differentiation in the Embryonic Mouse Telencephalon [J]. Dev Neurosci. 2004 ; 26(2-4): 229-244.
    
    52 Schmidt U, Beyer C, Oestreicher AB, Reisert I, Schilling K, Pilgrim C. Activation of dopaminergic Dl receptors promotes morphogenesis of developing striatal neurons. [J] Neuroscience. 1996 Sep;74(2):453-60.
    
    53 Le Foil B, Gallo A, Le Strat Y, Lu L, Gorwood P. Genetics of dopamine receptors and drug addiction: a comprehensive review. [J] Behav Pharmacol. 2009 Feb;20(1):1-17.
    
    54 Serretti A, Olgiati P, De Ronchi D.[J] J Alzheimers Dis. 2007 Aug;12(1):73-92.
    
    55 Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5): 843-54.
    
    56 Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. 2003. New microRNAs from mouse and human. Rna 9(2): 175-9.
    
    57 Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2006(5):376-85.
    
    58 Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. 2004. MicroRNA genes are transcribed by RNA polymerase II. Embo J 23(20):4051-60.
    
    59 Denli AM, Tops BB, Plasterk RH, Ketting RF, Harmon GJ. 2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014):231-5.
    
    60 Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD. 2007. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130(2):287-97.
    
    61 Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235-40.
    
    62 Tomari Y, Du T, Zamore PD. 2007. Sorting of Drosophila small silencing RNAs. Cell 130(2):299-308.Vasudevan S, Tong Y, Steitz JA. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858): 1931-4.
    
    63 Φrom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation.[J] Mol Cell. 2008 May 23;30(4):460-71.
    64Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z. 2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129(6): 1141-51.
    
    65 Petersen CP, Bordeleau ME, Pelletier J, Sharp PA. 2006. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533-42.
    
    66 Pillai RS. 2005. MicroRNA function: multiple mechanisms for a tiny RNA.RNA 11(12):1753-61.
    
    67 Stefani G, Slack FJ. 2008. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219-30.
    
    68 Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W.Relief of microRNA-mediated translational repression in human cells subjected to stress.[J] Cell. 2006 Jun 16;125(6):1111-24.
    
    69 Gecz J, Baker E, Donnelly A, Ming JE, et al. Fibroblast growth factor homologous factor 2 (FHF2): gene structure, expression and mapping to the Borjeson-Forssman-Lehmann syndrome region in Xq26 delineated by a duplication breakpoint in a BFLS-like patient.[J] Hum Genet. 1999 Jan;104(1):56-63.
    
    70 Goldfarb M. Fibroblast growth factor homologous factors: evolution, structure, and function.[J] Cytokine Growth Factor Rev. 2005 Apr; 16(2):215-20. Epub 2005 Mar 23.
    
    71 Huang W, Li MD. Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504.[J] Biol Psychiatry. 2009 Apr 15;65(8):702-5. Epub 2009 Jan 9.
    
    72 Bakheet T, Williams BR, Khabar KS. ARED 2.0: an update of AUrich element mRNA database [ J] . Nucleic Acids Res. 2003, 31:421-423.
    
    73 Wilson GM, Brewer G. .The search for trans-acting factors controlling messenger RNA decay. Prog Nucleic Acid Res Mol Biol [ J] . 1999, 62:257-291.
    
    74 Enric Espel. The role of the AU-rich elements of mRNAs in controlling translation.[J] Cell & Developmental Biology 16 (2005) 59-67
    
    75 Stefani G, Slack FJ. Small non-coding RNAs in animal development. [J] Nat Rev Mol Cell Biol. 2008 Mar;9(3):219-30.
    
    76 Hinman MN, Lou H. Diverse molecular functions of Hu proteins.Cell Mol Life Sci. 2008 Oct;65(20):3168-81.
    
    77 Katsanou V, Papadaki O, Milatos S, Blackshear PJ, Anderson P, Kollias G, Kontoyiannis DL. HuR as a negative posttranscriptional modulator in inflammation. [J]Mol Cell 2005;19:777-789.
    1.Keene JD.Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome[J].Proc Natl Acad Sci USA.2001,8:7018-7024.
    2.Perrone-Bizzozero N,ognani F.Role of HuD and other RNAbinding proteins in neural development and plasticity[J].J Neurosci Res.2002,68:121-126.
    3.Roegiers F,Jan YN.Asymmetric cell division[J].Curr Opin Cell Biol.2004,16:195-205.
    4.Schaeffer C,Beaulande M,Ehresmann C,Ehresmann B and Moine H.The RNA binding protein FMRP:new connections and missing links[J].Biol Cell.2003,5:221-228.
    5.Imai T,Tokunaga A,Yoshida T,Hashimoto M,Mikoshiba K,et al.The neural RNA-binding protein Musashil translationally regulates mammalian numb gene expression by interacting with its mRNA[J].Mol Cell Biol.2001,1:3888-3900.
    6.Jensen KB,Dredge BK,Stefani G,Zhong R,Buckanovich RJ,et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability [J] .Neuron. 2000,5:359-371.
    
    7. Okano H, Imai T, Okabe M. Musashi: a translational regulator of cell fate [ J]. J Cell Sci. 2002, 5:1355-1359.
    
    8. Roegiers F, Jan YN. Staufen: a common component of mRNA transport in oocytes and neurons? [J] .Trends Cell Biol. 2000, 10:220-224.
    
    9. Bassell GJ, Oleynikov Y, Singer RH. The travels of mRNAs through all cells large and small [J] . FASEB J. 1999,13:447-454.
    
    10. Rehbein M, Wege K, Buck F, Schweizer M, Richter D, et al. Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs [J] . J Neurochem. 2002, 82:1039-1046.
    
    11. Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell [J] .2004,14:571-583.
    
    12. Farina KL, Singer RH. The nuclear connection in RNA transport and localization [J] .Trends Cell Biol. 2002,12:466-472.
    
    13. Huang YS, Carson JH, Barbarese E, Richter JD. Facilitation of dendritic mRNA transport by CPEB [J] . Genes Dev. 2003,17:638-653.
    
    14. Zhang HL, Eom T, Oleynikov Y, Shenoy SM, Liebelt DA, et al. Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility [J] . Neuron. 2001, 31:261-275.
    
    15. Mendez R, Richter JD. Translational control by CPEB: a means to the end[J]. Nat Rev Mol Cell Biol. 2001,2:521-529.
    
    16. Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH. Characterization of a beta-actin mRNA zipcode-binding protein [J]. Mol Cell Biol. 1997,17:2158-2165.
    
    17. Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia [J] . 2003, Cell. 115:893-904.
    
    18. Wu L, Wells D, Tay J, Mendis D, Abbott MA, et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses [ J ] . Neuron. 1998, 21:1129-1139.
    
    19. Huttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1 [J]. Nature. 2005,438:512-515.
    
    20. Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells [J] .Gene. 2001, 265:11-23.
    
    22. J Deschenes-Furry, N Perrone-Bizzozero, and BJ Jasmin. The RNA-binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity [J] . Bioessays. 2006, 28(8): 822-33.
    
    21. Wilson GM, Brewer G. .The search for trans-acting factors controlling messenger RNA decay. Prog Nucleic Acid Res Mol Biol [J] . 1999,62:257-291.
    23.Campos, A.R., Grossman, D., and White, K. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis [J] . J. Neurogenet. 1985, 2,197-218.
    
    24.Robinow, S., Campos, A.R., Yao, K.M., and White, K. The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs [published erratum appears in Science 1989 Jan 6;243(4887):12] [J] . Science. 1988, 242, 1570-1572.
    
    25.Dalmau, J., Furneaux, H.M., Cordon-Carlo, C, Posner, J.B. The expression of Hu (paraneoplastic encephalomyelitis/sensory neuropathy) antigen in human normal and tumor tissues [J] .Am. J. Pathol. 1992,141, 1-6
    
    26. Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal [J] . Cell. 1991, 67:325-333.
    
    27. Liu J, Dalmau J, Szabo A, Rosenfeld M, Huber J, et al. Paraneoplastic encephalomyelitis antigens bind to the AU-rich elements of mRNA[ J]. Neurology. 1995,45:544-550.
    
    28. Okano HJ, Darnell RB. A hierarchy of Hu RNA binding proteins in developing and adult neurons [J] . JNeurosci. 1997, 17:3024-3037.
    
    29. Inman MV, Levy S, Mock BA, Owens GC. Gene organization and chromosome location of the neural-specific RNA binding protein Elavl4[J]. Gene. 1998,208:139-145.
    
    30. Steller U, Kohls S, Muller B, Soller R, Muller R, et al. The RNA binding protein HuD: rat cDNA and analysis of the alternative spliced mRNA in neuronal differentiating cell lines P19 and PC 12 [J] . Brain Res Mol Brain Res. 1996, 35:285-296.
    
    31. Tora M, Barbera VM, Real FX. Detection of HuD transcripts by means of reverse transcriptase and polymerase chain reaction: implications for the detection of minimal residual disease in patients with small cell lung cancer[ J].Cancer Lett. 2000,161:157-164.
    
    32. Kasashima K, Terashima K, Yamamoto K, Sakashita E, Sakamoto H. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation [J] . Genes Cells. 1999,4:667-683.
    
    33. Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins [J] . Science. 1994,265:615-621.
    
    34. Kenan DJ, Query CC, Keene JD. RNA recognition: towards identifying determinants of specificity [J] . Trends Biochem Sci. 1991,16:214-220.
    
    35. Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins [J] . Science. 1994,265:615-621.
    
    36. Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors [ J] . Nucleic Acids Res. 1993, 21:5803-5816.
    
    37. Wang X, Tanaka Hall TM. Structural basis for recognition of AUrich element RNA by the HuD protein [J] .Nat Struct Biol. 2001, 8:141-145.
    
    38. Bakheet T, Williams BR, Khabar KS. ARED 2.0: an update of AUrich element mRNA database [ J] . Nucleic Acids Res. 2003,31:421-423.
    
    39. Pascale A, Amadio M, Scapagnini G, Lanni C, Racchi M, et al. Neuronal ELAV proteins enhance mRNA stability by a PKCalphadependent pathway [J] . Proc Natl Acad Sci USA. 2005,102:12065-12070.
    
    40. Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA degradation [J] . Trends Biochem Sci. 1995,20:465-470.
    
    41. Xu N, Chen CY, Shyu AB. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay [J] . Mol Cell Biol. 1997,17:4611-4621.
    
    42. Park-Lee S, Kim S, Laird-Offringa IA. Characterization of the interaction between neuronal RNA-binding protein HuD and AU-rich RNA [ J]. J Biol Chem. 2003,278:39801-39808.
    
    43. Deschenes-Furry J, Belanger G, Mwanjewe J, Lunde JA, Parks RJ, et al. The RNA-binding protein HuR binds to acetylcholinesterase transcripts and regulates their expression in differentiating skeletal muscle cells [J] . J Biol Chem.2005, 280:25361-25368.
    
    44. Mobarak CD, Anderson KD, Morin M, Beckel-Mitchener A, Rogers SL, et al. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells [J] . Mol Biol Cell 2000,11:3191-3203.
    
    45. Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA. HuD RNA Recognition Motifs Play Distinct Roles in the Formation of a Stable Complex with AU-Rich RNA [J] . Mol Cell Biol. 2000,20:4765-4772.
    
    46. Beckel-Mitchener AC, Miera A, Keller R, Perrone-Bizzozero NI. Poly(A) Tail Length-dependent Stabilization of GAP-43 mRNA by the RNA-binding Protein HuD [ J] . J Biol Chem. 2002,277:27996-28002.
    
    47. Anderson KD, Morin MA, Beckel-Mitchener A, Mobarak CD, Neve RL,et al. Overexpression of HuD, but not of its truncated form HuD ItII, promotes GAP-43 gene expression and neurite outgrowth in PC 12 cells in the absence of nerve growth factor [J] . J Neurochem. 2000, 75:1103-1114.
    
    48. Abe R, Sakashita E, Yamamoto K, Sakamoto H. Two different RNA binding activities for the AU-rich element and the poly(A) sequence of the mouse neuronal proteinmHuC [J] .Nucleic Acids Res .1996,24:4895-4901.
    
    49. Ma WJ, Chung S, Furneaux H. The Elav-like proteins bind to AUrich elements and to the poly(A) tail of mRNA [ J] . Nucleic Acids Res. 1997,25:3564-3569.
    
    50. Katsumi Kasashima, Eiji Sakashita, Kuniaki Saito, and Hiroshi Sakamoto. Complex formation of the neuron-specific ELAV-like Hu RNA-binding proteins [J] . Nucleic Acids Res. 2002, 30: 4519 - 4526.
    
    51. Chagnovich D, Cohn SL. Binding of a 40-kDa protein to the Nmyc 30-untranslated region correlates with enhanced N-myc expression in human neuroblastoma [J] . J Biol Chem . 1996, 271:33580-33586.
    
    52. Cuadrado A, Navarro-Yubero C, Furneaux H, Kinter J, Sonderegger P,et al. HuD binds to three AU-rich sequences in the 30-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein [J] . Nucleic Acids Res. 2002, 30:2202-2211.
    
    53. Joseph B, Orlian M, Furneaux H. p21(wafl) mRNA contains a conserved element in its 30-untranslated region that is bound by the Elav-like mRNA-stabilizing proteins [J] . J Biol Chem . 1998, 273:20511-20516.
    
    54. Manohar CF, Short ML, Nguyen A, Nguyen NN, Chagnovich D, et al. HuD, a neuronal-specific RNA-binding protein, increases the in vivo stability of MYCN RNA [J] .J Biol Chem. 2002,277:1967-1973.
    
    55. Wein G, Rossler M, Klug R, Herget T. The 30-UTR of the mRNA coding for the major protein kinase C substrate MARCKS contains a CU-rich element interacting with the mRNA stabilizing factors HuD and HuR. [ J]. Eur J Biochem. 2003,270:350-365.
    
    56. Chung S, Eckrich M, Perrone-Bizzozero N, Kohn DT, Furneaux H. The Elav-like proteins bind to a conserved regulatory element in the 30-untranslated region of GAP-43 mRNA [J] . J Biol Chem. 1997,272:6593-6598.
    
    57. Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ. Post-transcriptional regulation of Acetylcholinesterase mRNAs in nerve growth factor-treated PC 12 cells by the RNA-binding protein HuD[ J]. J Biol Chem. 2003, 278:5710-5717.
    
    58. Layer PG, Willbold E. Novel functions of cholinesterases in development, physiology and disease [J] . Prog Histochem Cytochem. 1995,29:1-94.
    
    59. Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor[J]. Nat Rev Neurosci. 2001,2:294-302.
    
    60. Fan XC, Steitz JA. HNS, a nuclear-cytoplasmic shuttling sequence in HuR[J]. Proc Natl Acad Sci USA. 1998, 95:15293-15298.
    
    61. Saito K, Fujiwara T, Katahira J, Inoue K, Sakamoto H. TAP/NXFl,the primary mRNA export receptor, specifically interacts with a neuronal RNA-binding protein HuD [ J ] . Biochem Biophys Res Commun. 2004, 321:291-297.
    
    62. Aronov S, Aranda G, Behar L, Ginzburg I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules [J] .J Cell Sci. 2002,115:3817-3827.
    
    63. Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI,et al. GAP-43 mRNA in growth cones is associated with HuD and ribosomes [J] . J Neurobiol. 2004, 61:222-235.
    
    64. Atlas R, Behar L, Elliott E, Ginzburg I. The insulin-like growth factor mRNA binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells [J] . J Neurochem. 2004, 89:613-626.
    
    65. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM,et al. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development [J] . Mol Cell Biol 1999, 19:1262-1270.
    
    66. Bolognani F, Merhege MA, Twiss J, Perrone-Bizzozero NI. Dendritic localization of the RNA-binding protein HuD in hippocampal neurons: association with polysomes and upregulation during contextual learning [ J] . Neurosci Lett. 2004,371:152-157.
    
    67. Antic D, Lu N, Keene JD. ELAV tumor antigen, Hel-N1,increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells [J] . Genes Dev. 1999,13:449-461.
    
    68. Yano M, Okano HJ, Okano H. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation [J] . J Biol Chem. 2005, 280:12690-12699.
    
    69. Barami K, Iversen K, Furneaux H, Goldman SA. Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain [J] . JNeurobiol. 1995, 28: 82-101.
    
    70. Marusich MF, Furneaux HM, Henion PD, Weston JA. Hu neuronal proteins are expressed in proliferating neurogenic cells[ J]. J Neurobiol. 1994,25:143-155.
    
    71. Weickert CS, Webster MJ, Colvin SM, Herman MM, Hyde TM, et al. Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone [ J] . J Comp Neurol. 2000,423:359-372.
    
    72. Wakamatsu Y, Weston JA. Sequential expression and role of Hu RNA-binding proteins during neurogenesis [J] . Development. 1997,124:3449-3460.
    
    73. Clayton GH, Perez GM, Smith RL, Owens GC. Expression of mRNA for the elav-like neural-specific RNA binding protein, HuD, during nervous system development [J] . Brain Res Dev Brain Res . 1998, 109:271-280
    
    74. Akamatsu W, Okano HJ, Osumi N, Inoue T, Nakamura S, et al. Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems [ J] . Proc Natl Acad Sci USA. 1999, 96:9885-9890.
    
    75. Okano H, Akamatsu W, Yano M, Mitsuhashi T, Fujihara H, et al. RNA-Binding Protein Hu Family Regulates Neural Stem Cell Proliferation and Differentiation [J]. Abstract viewer/Itinerary Planner. Washington, DC: Society for Neuroscience Program. 2005.No. 598.13.
    
    76. Akamatsu W, Fujihara H, Mitsuhashi T, Yano M, Shibata S, et al. The RNA-binding protein HuD regulates neuronal cell identity and maturation [J] . Proc Natl Acad Sci USA. 2005,102:4625-4630.
    
    77. Aranda-Abreu GE, Behar L, Chung S, Furneaux H, Ginzburg I. Embryonic lethal abnormal vision-like RNA-binding proteins regulate neurite outgrowth and tau expression in PC12 cells [J] .J Neurosci. 1999,19:6907-6917.
    
    78. Malter JA. Regulation of mRNA Stability in the Nervous System and Beyond [J] .J Neurosci Res. 2001, 66:311-316.
    
    79. Bolognani F, Tanner DC, Merhege M, Deschenes-Furry J, Jasmin B,et al. In vivo post-transcriptional regulation of GAP-43 mRNA by overexpression of the RNA-binding protein HuD [J] .J Neurochem. 2006, 96:790-801.
    
    80. Jimenez F, Campos-Ortega JA. Genes in subdivision 1B of the rosophila melanogaster X-chromosome and their influence on neural development [J] . J Neurogenet. 1987,: 179-200.
    
    81. Dalmau J, Furneaux HM, Rosenblum MK, Graus F, Posner JB. Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuronopathy [ J ] . Neurology .1991,1:1757-1764.
    
    82. Pascale A, Gusev PA, Amadio M, Dottorini T, Govoni S, et al. Increase of the RNA-binding protein HuD and posttranscriptional upregulation of the GAP-43 gene during spatial memory [J] . Proc Natl Acad Sci USA. 2004,101:1217-1222.
    
    83. Quattrone A, Pascale A, Nogues X, Zhao W, Gusev P, et al.Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins [J] . Proc Natl Acad Sci USA. 2001,98:11668-11673.
    
    84. Deschenes-Furry JL, Mousavi K, Smith LE, Parks RJ, Perrone-Bizzonero N, et al. Post-transcriptional regulation of acetylcholinesterase mRNAs in akotomized neurons [J] . Abstract viewer/Itinerary Planner. Washington, DC: Society for Neuroscience . 2003, Program No. 471.15.
    
    85. Anderson KD, Merhege MA, Morin M, Bolognani F, Perrone-Bizzozero NI. Increased expression and localization of the RNA-binding protein HuD and GAP-43 mRNA to cytoplasmic granules in DRG neurons during nerve regeneration [J] . ExpNeurol 2003,183:100-108.
    
    86. Anderson KD, Steward O. In vivo Expression of the Neuronalspecific RNA-binding Protein HuD in Reference to a Potential Target mRNA (GAP-43) in the Mouse Facial Nucleus During Regeneration [J] .Abstract viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. 2003, Program No. 78.17.
    
    87. Nassar F, Wegnez M. Characterization of two promoters of the Xenopus laevis elrD gene [J] . Biochem Biophys Res Commun . 2001,283:392-398.
    
    88. King PH. Cloning the 50 flanking region of neuron-specific Hel-N1: evidence for positive regulatory elements governing cell-specific transcription [J] . Brain Res. 1996,723:141-147.
    
    89. Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons [J] . Dev Biol. 2000,227:279-293.
    
    90. Zhao C, He X, Tian C, Meng A. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos [J] . Biochem Biophys Res Commun. 2006, 342:214-220.
    
    91. Yao KM, White K. Neural specificity of elav expression: defining a Drosophila promoter for directing expression to the nervous system [J] J Neurochem. 1994,63:41-51.
    
    92. Cuadrado A, Navarro-Yubero C, Furneaux H, Munoz A. Neuronal HuD gene encoding a mRNA stability regulator is transcriptionally repressed by thyroid hormone [J] . J Neurochem. 2003, 86:763-773.
    
    93. Abe R, Uyeno Y, Yamamoto K, Sakamoto H. Tissue-specific expression of the gene encoding a mouse RNA binding protein homologous to human HuD antigen [J] .DNARes. 1994, 1:175-180.
    
    94. Good PJ. A conserved family of elav-like genes in vertebrates [ J] .Proc Natl Acad Sci USA. 1995,92:4557-4561.
    
    95. Samson ML. Evidence for 30 untranslated region-dependent autoregulation of the Drosophila gene encoding the neuronal nuclear RNA-binding protein ELAV [J] . Genetics 1998, 150:723-733.
    
    96. Yanowitz JL, Deshpande G, Calhoun G, Schedl PD. An N-terminal truncation uncouples the sex-transforming and dosage compensation functions of sex-lethal [J] . Mol Cell Biol. 1999,19:3018-3028.
    
    97. Abe R, Yamamoto K, Sakamoto H. Target specificity of neuronal RNA-binding protein, Mel-N1: direct binding to the 30 untranslated region of its own mRNA [ J] . Nucleic Acids Res. 1996, 24:2011-2016.
    98. Borgeson CD, Samson ML. Shared RNA-binding sites for interacting members of the Drosophila ELAV family of neuronal proteins [J] . Nucleic Acids Res2005, 33:6372-6383.
    
    99. Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARMl. Coactivator-associated arginine methyltransferase [J] J Biol Chem. 2002,277:44623-44630.
    
    100. Wang W, Fan J, Yang X, Furer-Galban S, Lopez dS I, et al. AMPactivated kinase regulates cytoplasmic HuR [ J] . Mol Cell Biol. 2002,22:3425-3436.
    
    101. Fujiwara T, Mori Y, Chu DL, Koyama Y, Miyata S, et al. CARMl Regulates Proliferation of PC12 Cells by Methylating HuD [J] . Mol Cell Biol. 2006, 26:2273-2285.
    
    102. Williamson JR. Induced fit in RNA-protein recognition [ J] . Nat Struct Biol. 2000, 7:834-837.
    
    103. Kasashima K, Sakashita E, Saito K, Sakamoto H. Complex formation of the neuron-specific ELAV-like Hu RNA-binding proteins [J].Nucleic Acids Res. 2002, 30:4519-4526.
    
    104. Irwin N, Chao S, Goritchenko L, Horiuchi A, Greengard P, et al. Nerve growth factor controls GAP-43 mRNA stability via the phosphoprotein ARPP-19 [J] . Proc Natl Acad Sci USA. 2002, 99:12427-12431.
    
    105. Antonia Ratti, Claudia Fallini, Lidia Cova, et al [ J] . Journal of Cell Science. 2005,119,1442-1452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700