microRNA表达谱与非小细胞肺癌临床特点和预后的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近30年来随着城市化和工业化的进步,肺癌已经成为全球范围内因癌症导致死亡的首要原因,约占总的恶性肿瘤死亡病例的30%。临床医师经常面临这样的困惑,即同一分期、同一组织学类型、采用同一治疗方案的肺癌患者,其治疗效果、远期生存情况有着明显不同。当前国际广泛采用的基于普通病理学的肺癌TNM分期系统存在许多缺陷,尤其是对于开展肺癌患者个体化的治疗及预后评估等发挥的作用极为有限。
     miRNA是真核生物中一类长度约为22个核苷酸的参与基因转录后水平调控的小分子非编码RNA。近几年越来越多的研究发现miRNA参与肿瘤发生发展、外侵转移和转归预后等多个环节,研究肺癌中1niRNA表达谱及其与肺癌不同病理类型和预后转归的相关性,为临床更加科学的进行肺癌肿瘤分型、分期及预后判断提供了新的途径,发掘与肺癌相关的特异miRNA表达谱用于肺癌的分型分期和预后判断具有重要的临床意义。
     本研究应用来自中国医学科学院肿瘤医院胸外科2000年到2002年间外科手术切除的原发性非小细胞肺癌标本116例,包括43例腺癌和60例鳞癌,以及13例小细胞肺癌共116例的癌与癌旁组织与包含677条人类已知序列的miRNA和小鼠的共924条miRNA成熟的序列杂交。结果第一次通过数学模型利用5个miRNA (hsa-miR-210, hsa-miR-30a, hsa-miR-140-3p, hsa-miR-182 hsa-miR-486-5p)将肺癌/癌旁分开,准确率98.2%,肺鳞癌/癌旁分开,准确率93.3%。第一次找到一个miRNA (hsa-miR-31)与肺鳞癌预后相关。hsa-miR-31预后K-M分析,其表达越高,预后越差(p=0.007),Cox回归分析,其是独立预后因素(p=0.015)并用realtime-PCR证实。多个miRNA与临床病理(年龄、性别、吸烟)相关。如hsa-miR-205与非小细胞肺癌患者吸烟指数(=400支/年)成正相关。hsa-miR-205, hsa-miR-31与鳞癌的分化相关。hsa-miR-205, hsa-miR-181a与鳞癌患者的性别相关。另外发现hsa-miR-126和hsa-miR-20a与小细胞肺癌预后相关。
     当今由于缺乏有效的指导临床诊断和治疗的肿瘤分子标记物,所以非小细胞肺癌患者的疗效不佳。肽基脯氨酰顺反异构酶Pinl在许多肿瘤中过表达,也包括非小细胞肺癌,其可能成为靶向治疗靶点。为探讨Pinl表达对肺癌发生,发展以及转移的影响。我们利用慢病毒包装干涉RNA载体感染肺腺癌细胞H1299,实验表明,稳定抑制肺腺癌细胞H1299 Pinl表达,可以抑制细胞的增殖,抑制软琼脂克隆形成和裸鼠成瘤。同时,可以在体外减弱细胞的迁移和侵袭能力。Pin1在肺癌发生,发展以及转移的过程中起重要作用,有望成为肺癌靶向治疗的有意义的靶点。
Lung cancer has the highest world-wide cancer mortality. Patients with apparently similar lung cancers may experience very different clinical outcomes, and it is often difficult to predict a patient's prognosis. Tumor-node-metastasis (TNM) classification allows diagnosis of the tumor, it provides little therapeutic biological information, such as the metastatic potential or the sensitivity or resistance of the tumor to radiotherapy and chemotherapy. MicroRNAs (miRNAs) are a species of small non-coding single-stranded RNA of about 21 nucleotides that, through partial sequence homology, may interact with the 3'-untranslated region of target mRNA molecules. Recent evidence has shown that miRNA may function as tumor supressors or oncogenes, and alterations in miRNA expression may play a critical role in the initiation and progression of a number of cancers. Therefore, miRNA expression profiles may also be useful for diagnosis of lung cancer, for sub-type classification, or for predicting patient prognosis and guiding personalized disease management. While microRNA expression profiling has recently been used to characterize the prognosis for patients with adenocarcinoma of lung cancer, description of the microRNA patterns in lung cancer, especially the prognosis for squamous cell carcinoma of lung cancer is lacking.To define the microRNA expression patterns associated with lung cancer and the microRNA associated with prognosis for squamous cell carcinoma of lung cancer. MicroRNA microarray expression profiling of tumors and paired adjacent normal tissues was performed on a cohort of 116 patients,60 squamous cell carcinomas,43 adenocarcinomas and 13 small cell lung cancers, recruited between 2000 and 2002. We evaluated microRNA associations with cancer versus adjacent normal tissue, clinicopathological status. Survival association was validated in an independent cohort of 20 squamous cell carcinomas, using quantitative reverse transcription polymerase chain reaction assays. Five microRNAs classifier could distinguish malignant lung cancer lesions from adjacent normal tissues. Some miRNAs showed correlations with several different clinicopathological parameters. High hsa-miR-31 expression was associated with poor survival in squamous cell carcinoma of lung cancer. High hsa-mir-20a and low hsa-mir-126 expression correlated with poor survival of SCLC. Lung cancer may have a distinct miRNA expression pattern that may differentiate it from normal tissue and clinicopathological status. High hsa-miR-31 expression is associated with poor survival outcome.
     Current therapies for NSCLC patients are inefficient due to the lack of diagnostic and therapeutic markers. The phospho-Ser/Thr-Pro specific prolyl-isomerase Pin1 is overexpressed in many different cancers, including NSCLC, and may possibly be used as a target for cancer therapy. To validate the oncogenic potential of Pinl in lung cells, we down-regulated Pinl by RNA interference in H1299 cells. Retrovirus-mediated siRNA targeting of Pinl resulted in the stable suppression of both cell growth, anchorage-independent growth in soft agar and tumorigenic including cell migration, invasion in H1299 cells. Pinl expression may be an unfavorable prognostic factor in patients of NSCLC patients, and these results indicate that Pinl may have a role in tumor development and metastasis and thus could serve as a novel target for treatment of NSCLC.
引文
Abbott, A.L., Alvarez-Saavedra, E., Miska, E.A., Lau, N.C., Bartel, D.P.,Horvitz, H.R., and Ambros, V. (2005). The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9,403-414.
    Abelson, J.F., Kwan, K.Y., O'Roak, B.J., Baek, D.Y., Stillman, A.A., Morgan,T.M., Mathews, C.A., Pauls, D.L., Rasin, M.R., Gunel, M, et al. (2005).Sequence variants in SLITRK1 are associated with Tourette's syndrome.Science 310,317-320.
    Abrahante, J.E., Daul, A.L., Li, M., Volk, M.L., Tennessen, J.M., Miller, E.A.,and Rougvie, A.E. (2003). The Caenorhabditis elegans hunchback-likegene lin-57/hbl-1 controls developmental time and is regulated by micro-RNAs. Dev. Cell 4,625-637.
    Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T., and Jewell, D. (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol.13,807-818.
    Ameres, S.L., Martinez, J., and Schroeder, R. (2007). Molecular basis fortarget RNA recognition and cleavage by human RISC. Cell 130,101-112
    Aravin, A.A., Hannon, G.J., and Brennecke, J. (2007). The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science318,761-764.
    Baek, D., Villen, J., Shin, C, Camargo, F.D., Gygi, S.P., and Bartel, D.P.(2008). The impact of microRNAs on protein output. Nature 455,64-71
    Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122,553-563.
    Bartel, D.P. (2004). MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116,281-297.
    Bartel, D.P., and Chen, C.Z. (2004). Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet.5, 396-400.
    Beitzinger, M., Peters, L., Zhu, J.Y., Kremmer, E., and Meister, G. (2007). Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol.4,76-84.
    Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C. (2008). The microRNA.org resource:targets and expression. Nucleic Acids Res.36, D149-D153.
    Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125,1111-1124.
    Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol.3, e85.
    Choi, W.Y., Giraldez, A.J., and Schier, A.F. (2007). Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271-274.
    Clop, A., Marcq, E, Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, R, Elsen, J.M., Eychenne, R, et al. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38,813-818.
    Cohen, S.M., Brennecke, J., and Stark, A. (2006). Denoising feedback loops by thresholding-a new role for microRNAs. Genes Dev.20,2769-2772.
    Davis, E., Caiment, R, Tordoir, X., Cavaille, J., Ferguson-Smith, A., Cockett, N., Georges, M., and Charlier, C. (2005). RNAi-mediated allelic transinteraction at the imprinted Rtll/Pegll locus. Curr. Biol.15,743-749.
    Didiano, D., and Hobert, O. (2008). Molecular architecture of a miRNAregulated 3' UTR. RNA14,1297-1317.
    Doench, J.G., and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev.18,504-511.
    Doench, J.G., Petersen, C.P., and Sharp, P.A. (2003). siRNAs can function as miRNAs. Genes Dev.17,438-442.
    Dorsett, Y, McBride, K.M., Jankovic, M, Gazumyan, A., Thai, T.H., Robbiani, D.R, Di Virgilio, M., San-Martin, B.R., Heidkamp, G, Schwickert, T.A., et al. (2008). MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28,630-638.
    Easow, G, Teleman, A.A., and Cohen, S.M. (2007). Isolation of microRNA targets by miRNP immunopurification. RNA 13,1198-1204.
    Enright, A.J., John, B., Gaul, U., Tuschl, T, Sander, C, and Marks, D.S. (2003). MicroRNA targets in Drosophila. Genome Biol.5, R1.
    Farh, K.K., Grimson, A., Jan, C, Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310,1817-1821.
    Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat. Rev. Genet.9,102-114.
    Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2008). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., in press. Published online October 27,2008.10.1101/gr.082701.108.
    Gaidatzis, D., van Nimwegen, E., Hausser, J., and Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8,69.
    Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312,75-79.
    Griffiths-Jones, S., Saini, H.K., Dongen, S.V., and Enright, A.J. (2008). miR Base: tools for microRNA genomics. Nucleic Acids Res.36, D154-D158.
    Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol. Cell 27,91-105.
    Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G, and Mello, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106,23-34.
    Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C., and Rajewsky, N.(2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol.1, e13.
    Haley, B., and Zamore, P.D. (2004). Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol.11,599-606.
    Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y, and Ambros, V. (2008). mirWIP:microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat. Methods 9, 813-819.
    He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D.,Goodson, S., Powers, S., Cordon-Cardo, C, Lowe, S.W., Hannon, G.J., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435,828-833.
    Hutvagner, G, and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297,2056-2060.
    John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C, and Marks, D.S. (2004). Human microRNA targets. PLoS Biol.2, e363.
    Johnston, R.J., and Hobert,O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426,845-849.
    Johnston, R.J., Jr., Chang, S., Etchberger, J.F., Ortiz, C.O., and Hobert, O. (2005). MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl. Acad. Sci. USA 102,12449-12454.
    Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol.57,19-53.
    Karginov, F.V., Conaco, C, Xuan, Z., Schmidt, B.H., Parker, J.S., Mandel, G, and Hannon, G. J. (2007). A biochemical approach to identifying micro-RNA targets. Proc. Natl. Acad. Sci. USA 104,19291-19296.
    Karolchik, D., Kuhn, R.M., Baertsch, R., Barber, G.P., Clawson, H., Diekhans, M., Giardine, B., Harte, R.A., Hinrichs, A.S., Hsu, R, et al. (2008).The UCSC Genome Browser Database:2008 update. Nucleic Acids Res.36, D773-D779.
    Karres, J.S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S.M. (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131,136-145.
    Kedde, M., Strasser, M.J., Boldajipour, B., Oude Vrielink, J.A., Slanchev, K., le Sage, C, Nagel, R., Voorhoeve, P.M., van Duijse, J., Orom, U.A., et al. (2007). RNA-binding protein Dndl inhibits microRNA access to target mRNA. Cell 131, 1273-1286.
    Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nat. Genet.39,1278-1284.
    Kheradpour, P., Stark, A., Roy, S., and Kellis, M. (2007). Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res.17,1919-1931.
    Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C, Mourelatos, Z., and Hatzigeorgiou, A. (2004). A combined computationalexperimental approach predicts human microRNA targets. Genes Dev.18,1165-1178.
    Kloosterman, W.P., Wienholds, E., Ketting, R.F., and Plasterk, R.H. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32,6284-6291.
    Kosman, D., Mizutani, C.M., Lemons, D., Cox, W.G., McGinnis, W., and Bier, E. (2004). Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846.
    Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., Mac-Menamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat. Genet.37,495-500.
    Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with'antagomirs'. Nature 438, 685-689.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294,853-858.
    Lai, E.C. (2002). Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet.30,363-364.
    Lai, E.C, and Posakony, J.W. (1997). The Bearded box, a novel 3'UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124,4847-4856.
    Lai, E.C, Burks, C, and Posakony, J.W. (1998). The K box, a conserved 3'UTR sequence motif, negatively regulates accumulation of Enhancer of split Complex transcripts. Development 125,4077-4088.
    Lai, E.C, Tam, B., and Rubin, G.M. (2005). Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class micro-RNAs. Genes Dev.19, 1067-1080.
    Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P., Colombo, T, Bray, N., Macmenamin, P., et al. (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol.16,460-471.
    Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129,1401-1414.
    Lau, N.C, Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862.
    Lee, R.C, and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294,862-864.
    Lee, R.C, Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
    Lee, Y., Ahn, C, Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O.,
    Kim, S., et al. (2003). The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature 425,415-419.
    Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115,787-798.
    Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,15-20.
    Li, X., and Carthew, R.W. (2005). A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123,1267-1277.
    Li, Y, Wang, R, Lee, J.A., and Gao, F.B. (2006). MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev.20,2793-2805.
    Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B., and Bartel, D.P. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev.17,991-1008.
    Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysisnshows that some microRNAs downregulate large numbers of target mRNAs. Nature 433,769-773.
    Long, D., Lee, R., Williams, P., Chan, C.Y., Ambros, V, and Ding, Y. (2007). Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol.14,287-294.
    Lytle, J.R., Yario, T.A., and Steitz, J.A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc. Natl. Acad. Sci. USA 104,9667-9672.
    Ma, J.B., Yuan, Y.R., Meister, G, Pei, Y, Tuschl, T, and Patel, D.J. (2005). Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434,666-670.
    Majoros, W.H., and Ohler, U. (2007). Spatial preferences of microRNA targets in 3' untranslated regions. BMC Genomics 8,152.
    Mallory, A.C., Reinhart, B.J., Jones-Rhoades, M.W., Tang, G, Zamore, P.D., Barton, M.K., and Bartel, D.P. (2004). MicroRNA control of PHABULOSA in leaf development:importance of pairing to the microRNA 5'region. EMBO J.23, 3356-3364.
    Mayr, C, Hemann, M.T., and Bartel, D.P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315,1576-1579.
    Miranda, K.C., Huynh, T, Tay, Y, Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I. (2006). A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126,1203-1217.
    Mishima, Y, Giraldez, A.J., Takeda, Y, Fujiwara, T., Sakamoto, H., Schier, A.F., and Inoue, K. (2006). Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol.16,2135-2142.
    Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A.B., McGonagle, S.M., Bartel, D.P., Ambros, V.R., and Horvitz, H.R. (2007). Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet.3, e215.
    Moss, E.G., Lee, R.C., and Ambros, V. (1997). The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88,637-646.
    Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. (2002). miRNPs:a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.16,720-728.
    Nielsen, C.B., Shomron, N., Sandberg, R., Hornstein, E., Kitzman, J., and Burge, C.B. (2007). Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13,1894-1910.
    Parker, J.S., Roe, S.M., and Barford, D. (2005). Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434,663-666.
    Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000).
    Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408,86-89.
    Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432,226-230.
    Reinhart, B.J., and Bartel, D.P. (2002). Small RNAs correspond to centromere heterochromatic repeats. Science 297,1831.
    Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403,901-906.
    Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110,513-520.
    Robins, H., Li, Y, and Padgett, R.W. (2005). Incorporating structure to predict microRNA targets. Proc. Natl. Acad. Sci. USA 102,4006-4009.
    Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., Miska, E.A., et al. (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316,608-611.
    Ruby, J.G., Jan, C, Player, C, Axtell, M.J., Lee, W., Nusbaum, C, Ge, H., and Bartel, D.P. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127,1193-1207.
    Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., and Lai, E.C. (2007). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res.17,1850-1864.
    Saetrom, P., Heale, B.S., Snove, O., Jr., Aagaard, L., Alluin, J., and Rossi, J.J. (2007). Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res.35,2333-2342.
    Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A., and Burge, C.B. (2008). Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science 320,1643-1647.
    Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455,58-63.
    Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305,1434-1437.
    Sood, P., Krek, A., Zavolan, M., Macino, G, and Rajewsky, N. (2006). Celltype-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA 103,2746-2751.
    Stark, A., Brennecke, J., Russell, R.B., and Cohen, S.M. (2003). Identification of Drosophila microRNA targets. PLoS Biol.1, E60.
    Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. (2005). Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123,1133-1146.
    Stark, A., Lin, M.F., Kheradpour, P., Pedersen, J.S., Parts, L., Carlson, J.W., Crosby, M.A., Rasmussen, M.D., Roy, S., Deoras, A.N., et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450, 219-232.
    Teng, G., Hakimpour, P., Landgraf, P., Rice, A., Tuschl, T., Casellas, R., and Papavasiliou, F.N. (2008). MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28,621-629.
    Vasudevan, S., Tong, Y., and Steitz, J.A. (2007). Switching from repression to activation:microRNAs can up-regulate translation. Science 318,1931-1934.
    Vasudevan, S., Tong, Y., and Steitz, J.A. (2008). Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7,1545-1549.
    Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K., and Slack, F.J. (2004). The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-413'UTR. Genes Dev.18,132-137.
    Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309,310-311.
    Wightman, B., Burglin, T.R., Gatto, J., Arasu, P., and Ruvkun, G (1991). Negative regulatory sequences in the lin-143'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev.5, 1813-1824.
    Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75,855-862.
    Wu, L., and Belasco, J.G (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25,9198-9208.
    Xiao, C, Calado, D.P., Galler, G, Thai, T.H., Patterson, H.C., Wang, J., Rajewsky, N., Bender, T.P., and Rajewsky, K. (2007). MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131,146-159.
    Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005). Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature 434,338-345.
    Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304,594-596.
    Yoo, A.S., and Greenwald, I. (2005). LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310,1330-1333.
    Zhao, Y, Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220.
    Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pinl[J]. J Cell Sci,1999,112:2493-2500.
    Ayala G, Wang D,Wulf G,et al. Pinl is a novel prognostic marker in prostate cancer[J]. Cancer Res,2003,63:6224-51.
    Bao L, Kimzey A, Sauter G, et al. Prevalent overexpression of prolyl isomerase Pinl in human cancers[J]. Am J Pathol,2004,164 (5):1727-37.
    Blume-Jensen P, Hunter T. Oncogenic kinase signalling[J]. Nature,2001, 411:355-365.
    Brondani V, Schefer Q, Hamy F, Klimkait T. The peptidyl-prolyl isomerase Pinl regulates phospho-Ser77 retinoic acid receptor alpha stability. Biochem Biophys Res Commun 2005;328:6-13
    CampbellH D,W ebbG C, Fountains,et al.The human PINI peptidyl-prolylci s/transisomerase gene maps to human chromosome 19p13 and the close lyr elated PINI gene to Genomics,1997,44:157-62
    ClarkRA. Biology of dermal wound repair. Dermatol Clin 1993;11:647-66
    DeVita VT,Hellman S and Rosenberg S.Principles on Oncology (5th).Philadelphia:Lippincott Raven Publisher,1997;p135
    Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 2005;17:215-24.
    D. Max Parkin, Freddie Bray, J. Ferlay and Paola Pisani.Global Cancer Statistics, 2002.CA Cancer J Clin 2005;55;74-108
    Galas MC, Dourlen P, Begard S, et al.The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer diseaseJ Biol Chem,2006,281(28):19296-304.
    Hanahan D,Weinberg RA. The hallmarks of cancer.Cell 2000;100:57-70. He J, Zhou F, Shao K,et al.Overexpression of Pinl in non-small cell lung cancer (NSCLC) and its correlation with lymph node metastases.Lung Cancer.2007 Apr;56(1):51-8.
    Hou G, Xue L, Lu Z, Fan T, Tian F, Xue Y. An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Lett.2007;Aug 18;253(2):236-48.
    Hunter T. Prolyl isomerase and nuclear function[J]. Cell,1998,92:141-143 JacobsD M,S axenaK,V ogtherrM,et al.Peptide binding induces large scale changes in inter-domain mobilityin human P in 1.J B iolC hem,2003,278:26174-82.
    Landrieu I, Smet C, Wieruszeski JM,et al. Exploring the molecular function of Pin1 by nuclear magnetic resonance[J].Curr Protein Pept Sci.,2006,7(3):179-94.
    LiH Y,S hiX Y,X uQ,et al.The over-expression of Pin1 and its association with Ki67 in cervical cancer.Chin J C lin Oncol,2006,33(4):181-185.(i nC hinese)李红雨,石小燕,徐茜,等,Pinl在宫颈癌中过表达及其与Ki67关系的研究.中国肿瘤临床,2006,33(4):181-185
    LiH Y,X uQ,Zhu T,et al.Expression and clinical significance of pinl and cyclind lin cervical cancer cell lines and cervical epithelial tissues.Chin J Cancer,2006,25 (3):367-372.(in Chinese)李红雨,徐茜,朱涛,等.宫颈癌细胞株和宫颈上皮组织中Pinl和cyclinDI的表达及临床意义3.癌症,25(3):367—72.
    Li HY, Zhu T, Zhou JH, et al. Short hairpin RNA silences Pint and affects proliferation and apoptosis in HeLa cell line. Chin J Obstety necol,2006,4 1(6):417-421.(in Chinese)李红雨,朱涛,周金华,等.短发夹状RNA千扰对子宫颈癌细胞中Pinl基因表达及细胞增殖和凋亡的影响(J].中华妇产科杂志,2(6):417—42
    Lim J, Lu KP. Pinning down phosphorylated tau and tauopathies. Biochim Biophys Acta 2005;1739:311-22
    Liou YC, Ryo R, Huang HK,et al. Loss of Pinl function in the mouse resembles the cyclin D1-null phenotypes[J]. Proc Natl Acad Sci USA,2002,99:1335-1340.
    Li Y, Tondravi M, Liu J, et al.Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res.2001,61 (18):6906-6911.
    Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996;380:544-7
    Lu KP. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem Sci 2004;29:200-9.
    LuP J,Z houX Z,L iouY C,et al.Critical role of WW domain pho sphorylation in regulating its phosphoserine-binding activ ty and the Pinl function.J B iolC hem,2002,277:23814
    Miyashita H, Uchida T, Mori S, et al. Expression status of Pinl and cyclins in oral squamous cell carcinoma:Pin1 correlates with Cycline D1 mRNA expression and clinical significance of cyclins. Oncol Rep 2003;10:1045-8
    Pang RW, Lee TK, Man K,et al.Pinl expression contributes to hepatic carcinogenesis[J]..J Pathol,2006,210(1):19-25.
    Rippmann JF, Hobbie S, Daiber C, et al. Phosphorylation-dependent proline isomerization catalyzed by Pinl is essential for tumor cell survival and entry into mitosis. Cell Growth Differ 2000;11:409-16
    Ryo A, Nakamura N, Wulf G, Liou YC, Lu KP. Pinl regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC[J]. Nat Cell Biol,2001,3:793-801.
    Ryo A, Liou YC, Wulf G,et al. Pin1 Is an E2F Target Gene Essential for Neu/Ras-Induced Transformation of Mammary Epithelial Cells[J]. Mol Cell Biol,2002,22:5281-5295
    Ryo A, LiouYC, Lu KP, Wulf G. Prolylisomerase Pinl:a catalyst for oncogenesis and apotential therapeutic target in cancer. J Cell Sci 2003;116:773-83.
    Ryo A, Uemura H, Ishiguro H,et al. Stable suppression of tumorigenicity by Pinl-targeted RNA interference in prostate cancer[J].Clin Cancer Res,2005,11(20):7523-31.
    Uchida T, Takamiya M, Takahashi M, et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem Biol 2003; 10:15-24.
    Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, and Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA.2008;Mar 25;105(12):4826-31
    WinklerK E,S wensonK I,K ornbluthS,e ta l.Requirement o f the prolyl isomerase Pinl for the replication check point. Science,2000,287:1644-7.
    Wulf G, Garg P, Liou YC, Iglehart D, Lu KP. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 2004;23:3397-407
    Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP. Pinl is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001;20:3459-72.
    Xiong WH, Chen AM, Guo FJ, et al. Cloning and construction of sense and antisense eukaryotic expression vector of human PIN1.Cent Chin a Med J,2006,30(3):217-218.(in Chinese)熊文化,陈安民,郭风劲,等.正反义人PINT基因克隆及真核表达载体的构建.华中医学杂志,2006,30(3):217-218.
    Xiong WH, Chen AM, Guo FJ, et al. Transfection of PIN1 antisense oligo nucleotides inhibited proliferation of human osteosarcoma cells.Tumor,2006,26 (1):32-36.(in Chinese);熊文化,陈安民,郭风劲,等.]PIN1反义基因转染抑制人骨肉瘤细胞的增殖.肿瘤,2006,26(1):32-36.
    Yang L, Parkin M, Li L, Chen Y and Bray F. Estimation and projection of the national profile of cancer mortality in China:1991-2005. British Journal of Cancer 2004; 90:2157-66.
    Yang L, Parkin M, Ferlay J, Li L, and Chen Y. Estimates of Cancer Incidence in China for 2000 and Projections for 2005. Cancer Epidemiology, Biomarkers& Prevention 2005:243-50
    YehE S,M eansA R.PIN1,the cell cycle and cancer.Nat Rev Cancer,2007,7 (5):3 81-388.
    Yoshida BA, Sokoloff MM, Welch DR, Rinker-Schaeffe CW. Metastasis-suppressor genes:a review and perspective on an emerging field. J Natl Cancer Inst 2000;92:1717-30.
    白春学,张新.(2006)中华结核和呼吸杂志,2006,29(3):146-148肺癌的治疗现状.中华结核和呼吸杂志,2006,29(3):146-148
    许良中,杨文涛.(1996)[J],6:229-231.中国癌症杂志免疫组织化学反应结果的判断标准
    AllawiH T,D ahlbergJ E,O lsonS,et al.Quantitation of micruRNAs using amodified invader assay.RNA,2004,10(7):1153-1161.
    Bernstein E, CaudyAA, Hammond S, etal. Role for a bidentate—ribonuclease in the initiation step of RNA interference[J]. Nature,2001,409(6818):363—366.
    Baudino T A, Maclean K H, Brennan J, et al. Myc-mediated prolifera ion and lymphoma genesis,but not a optosis, a recompromised by E2fl loss[J].MolC ell,2003,11(4):905—14.
    BrenneckeJ,H ipfnerD R,S tarkA,e tal.B antame ncodesa developmentally r egulated microRNA that controls cell proliferation and regulates the proapoptotic gene hidin Drosophila[J].Cell,2003,113 (1);25-36.
    CalinGA. Creee CM. MicroRNA signatures in human ca/Iceil. Nat Rev C&ncer.2006,6(11): 857-866.
    Calin GA, Dumitru CD. Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 inchronic lymphocytic leukemia. Proc Nail Acad Sci USA, 2002.99(24):15524-15529.
    Calin G A, Sevignani C, Dumitru c D, el al. Human microRNA genes a recluenfly located at fragile sites and genomie regions involved in cancer's [J]. Proc Natl Aead Sci USA,2004,101(9): 2999.3004.
    Chan J A, krichevsky A M, Kosik K S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J].Cancer Res 2005,65(14):6029-6033.
    Ciafre S A, Galardi S, Man巨ola A, et al. Extensive modulation ofas eto f m ic roR NAsin p rimaryg lioblastoma[J].Biochem BiophysRes C om mu n,2005,334(4):1351-1358
    ChenC Z,l. iL,L odishH F,et al.M icroRNAs modulate hematopoietic lineage differentiation[J].Science,2004,303(5654):83-86.
    DostieJ,M ourelatosZ,Ya ngM,e ta l.N umerousm ieroRNP sinneuronal cells containing novel m icroRNPs[J].RNA,2003,9(2):180-186
    Gaur A. Jewell DA, Liang Y。et al. Characterization of microRNAexpression levels and their biological correlates in human cancer cell lines. Cancer Res.2007,67f6):2456-2468.
    Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36:D154—158
    HayashitaY,O sadaH,TatematsuY,e ta l.A polycistronic micro RNA cluster, miR-17-92, is over evxpressed in human lung cancers and enhances cells proliferation.C ancerRes,2005,65 (21):9628-9632.
    HeH,Ja zdzewskiK,L iW,et al.The role of m icroRNA genes in papillary thyroid carcinoma[J].Proc Natl Acad SciU SA,2005,102 (52):19075-19080. He L Thomson JM. HemannMr, etal. AmicmRNApolyeistron a potential human oncogene. Nature,2005, 435(7043):828-833.
    Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulationin human breast cancer[J].Cancer Res,2005,65(16):7065-7070
    I. undE。GuttingerS, CaladoA, etal. Nuclear export of micro—RNAprecursors[J]. Science, 2004,303(5654):95—98.
    Jiang JM, Lee EJ, Kwak CK, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines[J].Nucleic Ac ids Res,2005,33(17):5394-5403
    Kluiver J, Poppema S, de Jong D. et al. BIC and miR-155 hishly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphonms. JPathoi,2005.207(2):243-249.
    Kumar M S, Erkeland S J, Pester R E, el{11. Suppression of non-small cell lung tumor development by the let-7 microRNA family[J]. Pree Natl Aead Sci USA,2008,105(10): 3903.3908.
    Lee Y. Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization[J]. EMBOJ,2002,21(17):4663-4670.
    LeeY,K im M,H anJ,e ta l.M icroRNA genes are transcribed by RNA polymeraseI.EMBOJ,2 004,23(20):40514060.
    LeeR C,F einbaum RL,A mbrosV.T he C.elegans hetero chronic gene lin-4 encodess mall RNA with antisense complementarity to lin-14.C ell,l 993,75(5):843-854.
    Lu J, Getz G, Ebet BL, et al. MicroRNA expression profiles classify human cancers[J].Nature,20 05,435(7043):834-838.
    MayrC, Hcmaun M T, Bar[el D P. Disrupting the pair lins between let-7 and Hmga2 enhances ancogcnictransformation[J]. Science,2007,315(5818):1576.1579.
    Michael MZ, O'Connor SM, v Hoist Pelhkaan NC, I. Reduced accumulation of specific micmRNAs in celorectal neoplasia. Mol Cancer Res.2003,1(12):882-891.
    Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell.1997,88(5):637-646.
    MurakamiY,Y asudaT,S aigoK,et al.Comprehensive analysis of microRNA expression patterns in hepatocellularc arcinoma and nontumorous tisues[J].Oncogene,2006,25(17):2537-2545
    Nielsen, C.B., Shomron, N., Sandberg, R., Hornstein, E., Kitzman, J., and Burge, C.B. (2007). Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894-1910.
    O'D onnellK A,W entzelE A,Z ellerK I,et al.c-Myc regulated microRN As modulate E2F1 expression[J].Nature,2005,435(7043):839-843.
    Ota APagawa H, Kaman S, et al. Identification an dization of a novel gene, C13orf25, as a target for 13q31characterq32 amplificationin malignant lymphoma[J]3087-3095.Cancer Res,2004, 64(9):
    PallanteP,V isoneR,F erracinM,et al.M icroRNA deregulation in h um a nt hyro idp apillary carcinomas[J].EndocrR elatC ancer,2006,13(2):497-508.
    Reinhart B J,Slack FJ,Basson M,et al. The 21n ucletide let-7 RNA r egulatesd evelopmental timingin caenorhabditis elegan s. Nature,2000,403(6772):901-906.
    Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets. PLoS Biol.2003,1(3):E60.
    Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res,2004,64(1 1):3753-3756.
    Valencia—Sanchez MA, Liu J, Hannon GJ. et al. Control of translation and mRNA degradation by miRNA and siRNAs[J]. Genes Dev,2006。20:515—524.
    Volinia S,C alinG A,L iuC G,et al.A microRNA expressions ignature of human solid tumours defines cancer genetargets. Proc Natl AcadSci USA,2006,103(7):2257-2261.
    VoorhoeveP M,le S ageC, SchrierM,et al.A genetics creenim-plicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors[J].Cell,2006,124(6):1169-118
    WeberF, Te resiR E,B roelschC E,et a l.Al imiteds eto fh uman mic roR N Ai sd eregulatedi nfo llicularth yroidc arcinoma[J] JC lin En do cri nol M etab,2006,91(9):3584-3591.
    Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz
    HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development. Science.2005,309(5732):310-311.
    Williams A E, Mosches S A, Perry MM, et al. Maternally imprinted mi-croRNAs are differentially expressed during mouse and human lung development[J]. DevDyn,2007,236(2): 572—580.
    XuP,V ernooyS Y,G uoM,et al.T heD rosophilam icroRNAm ir-14 suppresses cell death and is required for normal fat metabolism [J]. Curr Biol,2003,13(9):790-795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700