(Nd,Pr)FeB系纳米晶永磁的制备及其结构与磁性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在总结和分析纳米晶双相复合永磁材料交换耦合作用机理及其磁性能影响因素的基础上,采用熔体快淬加后续晶化退火的方法制备了多个系列的稀土铁系永磁粘结磁体,并用XRD、AFM、DTA及TEM等手段,比较系统地研究了制备工艺参数、合金稀土含量及掺杂元素的添加对合金显微组织结构、磁性相的本征磁学性质及合金磁性能的影响规律和影响机理。
    合金快淬态结晶度显著影响其晶化后的晶粒大小和均匀性。以24,26,28和30m/s快淬的(Nd0.8Pr0.2)10.5Fe77.5Co5Zr1B6合金,快淬态薄带由非晶和部分微晶组成。快淬速度越高,快淬态薄带结晶度越低。含有微晶的快淬态薄带,退火时新相非均匀形核析出。以26m/s快淬的、结晶度约为30%的薄带,新相析出的形核率较高,可获得细小、均匀的显微组织结构,合金具有较佳的综合磁性能。结晶度过高,形核率降低,且微晶的长大使显微组织结构不均匀;结晶度过低,新相析出形核以均匀形核为主,形核率较低,显微组织结构较均匀,但平均晶粒尺寸较大。晶化退火温度和时间也直接决定磁体的磁性能。在700℃下退火10min,磁性相析出充分,晶粒均匀细小,磁体综合磁性能较佳。温度低于700℃,或时间少于10min,磁性相析出不完全;温度高于700℃,或时间多于10min,磁性相析出充分,但晶粒会进一步长大。
    随稀土含量的降低,(Nd0.8Pr0.2)xFe88-xCo5Zr1B6合金的软磁相含量增加,合金的剩磁Br增加,而内禀矫顽力Hci和最大磁能积(BH)m下降。10%是合金磁性能发生较大变化的临界稀土含量。低于这一含量,合金的内禀矫顽力非常低。这一实验结果与完全耦合软磁相体积分数计算示意模型的计算结果吻合较好。依据完全耦合软磁相体积分数计算示意模型,计算出软磁相的临界体积分数
    
    
    为~20%。若软磁相的体积分数超过这一理论值,则会存在部分软磁相不被硬磁相完全耦合,成为整个磁体反向磁畴的核心。
    随(NdxPr1-x)10.5Fe77.5Co5Zr1B6合金中Pr含量x的增加,磁体的Hci单调上升,Br单调下降,(BH)m在x=0.8处达到最大值70.6kJ/m3。该系列合金Pr替代Nd的最佳分数为0.8。Pr基合金较高的内禀矫顽力,来源于Pr2Fe14B磁晶各向异性常数比Nd2Fe14B高约30%。加入Pr元素会使合金非晶态的晶化转变温度和转化能降低,热力学稳定性变差,退火时晶粒易于长大,从而使合金的显微组织结构较粗大和较不均匀,降低合金的剩磁。
    本论文制备了不同Co含量和不同Zr含量的(Nd0.2Pr0.8)10.5Fe82.5-xCoxZr1B6和(Nd0.2Pr0.8)10.5Fe81.5-xCo2ZrxB6系列粘结磁体。添加的Co原子进入硬磁相和软磁相,取代Fe原子位置,使合金的饱和磁化强度提高,内禀矫顽力降低。Co元素添加量为2%的合金,(BH)m和退磁曲线方形度达到最佳。Zr元素通过两个“钉扎”作用来影响合金磁性能。富Zr粒子和晶界处的富Zr相“钉扎”磁性相晶界移动,能非常有效地阻止磁性相的晶粒长大,从而提高合金的Br、Hci和(BH)m。富集于晶界的富Zr相在合金退磁时“钉扎”畴壁,阻碍其移动,从而提高合金的Hci。但是,Zr元素添加过多,富集于晶界的富Zr相体积增加,厚度增大,隔离磁性相晶粒,减弱交换耦合,使合金剩磁下降。1%是合金具有较佳的综合磁性能的最佳Zr元素添加量。
    本论文通过纳米晶复合永磁合金相组成、各相磁性能及显微组织结构对合金磁性能影响规律的研究,获得了低稀土含量、低Nd元素比例、低Co含量、低Zr含量的(Nd0.2Pr0.8)10.5Fe80.5Co2Zr1B6六元合金。合金的相组成大部分为2:14:1硬磁相,小部分为软磁相α-Fe。合金的平均晶粒尺寸为25nm,且晶粒大小均匀、形状规整。粘结磁体具有良好的综合磁性能:Br=0.662T,Hci=616kA/m,Hcb=410kA/m,(BH)m=74kJ/m3,Hk/Hci=39.9%。合金制备的原材料成本也大幅度降低。这对于更好地综合平衡利用稀土资源,降低永磁材料制备的原材料成本,具有重要的工程意义。
According to the summarization and analysis of the exchange coupling principle for nanocrystalline composite permanent magnets and the influence factors of their magnetic properties, several series of iron-based bonded magnets have been prepared by using melt spinning and post annealing method. By means of XRD, AFM, DTA, and TEM, the dependence and mechanism of the preparing process parameters, the rare earths content, the substitution of Nd by Pr, and the addition of Co and Zr on the microstructure of alloy, the intrinsic magnetic feature of magnetic phases, and the magnetic properties of bonded magnets have been systematically investigated.
    The crystallinity of as-spun alloy significantly influences the microstructure of crystallized ribbons. For the (Nd0.8Pr0.2)10.5Fe77.5Co5Zr1B6, the as-spun alloy ribbons rapidly quenched at 24, 26, 28, and 30 m/s consist of amorphous phases and fine crystallites. The higher the quenching speed is, the lower the alloy crystallinity is, For the as-spun ribbons with the crystallinity of about 30%, which were quenched at 26 m/s, the heterogeneous nucleation of new grains occurs. The nucleation of a
    
    
    solid precipitate from the matrix occurs most easily on boundary already present in the structure and the amount of nuclei is largest. Then a fine and homogenous microstructure and an excellent combination of magnetic properties are obtained. Beyond the 30% of crystallinity, the amount of nuclei decreases and the crystallites present grow easily, which results in an inhomogeneous microstructure. Below 30%, the homogeneous nucleation occurs in the ribbons and the amount of nuclei reduces, which results in an uniform but a coarse grain structure. The annealing temperature and annealing time directly determine the properties of bonded magnets,too. Crystallized at 700℃ for 10 minutes, the magnetic phases precipitate completely and their grains are fine and uniform. The significant interaction among the magnetic grains makes the combination of properties excellent. If annealing temperature<700℃, or time<10min, the magnetic phases precipitate incompletely. If annealing temperature>700℃, or time>10min, the magnetic phases precipitate completely, but the grains grow furthermore. Both of them make the exchange couplings weakened and the magnetic properties degraded.
    With the decrease of rare earths content for the (Nd0.8Pr0.2)xFe88-xCo5Zr1B6 alloy, the volume fraction of soft magnetic phase and the remanence Br of bonded magnets increase., but both the intrinsic coercivity Hci and the maximum energy product (BH)m decrease. Atom fraction of 10% is the critical rare earths content for the magnetic properties change. Below this value, the magnetic properties, especially Hci, are very low. This experimental result is generally consistent with the calculated result using the model of volume fraction of soft magnetic phase coupled completely. According to this model suggested by us 20% is the maximum volume fraction of soft magnetic phase completely coupled with the hard magnetic phase. Beyond this theoretical value, there may exist some extra soft magnetic phases which are not coupled with the hard magnetic phase. These soft magnetic phases become the nuclei of the reverse magnetic domain and consequently initiate a cascade-type demagnetization process of the assembly.
    With the increase of Pr content of the (NdxPr1-x)10.5Fe77.5Co5Zr1B6 series alloy,
    
    
    the Hci of bonded magnets increases, but the Br decreases. The (BH)m reaches the maximum value of 70.6 kJ/m3 at x=0.8. For these alloys, the optimum substituted fraction of Nd by Pr is 0.8, in which the best combination of properties is obtained. The higher intrinsic coercivity of Pr-based magnets is derived from the 30% higher anisotropy field of Pr2Fe14B than that of Nd2Fe14B. With the substitution of Nd by Pr the alloy has a lower crystallization temperature and a lower crystallization energy of amorphous, which means that Pr makes the alloy instabler in crystallization kinetics. So the crystallization transition and the grain g
引文
1 周寿增,董清飞. 超强永磁体[M].北京:冶金工业出版社,1999:30
    2 Sagawa M., Fujimura S., Togawa N., et al. New material for permanent magnets on a base of Nd and Fe[J]. J Appl Phys, 1984, 55: 2083
    3 Sagawa M., Fujimura S., Yamamoto H., et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds[J]. IEEE Trans Magn , 1984, 20(5): 1584
    4 Croat J.J., Herbst J.F., Lee R.W., et al. Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets[J]. J Appl Phys, 1984, 55(6):2078
    5 高彦东,张少卿.纳米复相NdFeB磁体永磁材料发展新方向[J]. 材料工程,2000(3),5:31
    6 计其根,都有为,等. 纳米复合磁性材料的研究现状[J]. 金属功能材料,1999,6(2):49
    7 张静贤,张同俊,崔崑. NdFeB纳米晶双相复合永磁合金[J]. 材料导报,2001,15(4):48
    8 赵韦人,王新林,等.一种新型的永磁材料―复相纳米永磁[J].金属功能材料,2000,7(4)29
    9 Eckart F Kneller, Reinhard Hawig. The Exchange-spring Magnet:A New Material Principle for Permanent Magnets[J]. IEEE Trans Magn , 1991, 27(4): 3588
    10 Skomski Ralph, Coey J.M.D. Giant energy product in nanostructured two-phase magnets[J]. Physical Review B, 1993, 48(6): 15812
    11 Coehoorn R.,de Mooij D.B., de Waard C. Meltspun permanent magnet materials containing Fe3B as the main phase[J]. J Magn Magn Mater, 1989, 80(6): 101
    12 Manaf A, Buckley R. A, Davies H. A. New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification[J]. J Magn Magn Mater, 1993, 128(6): 302
    13 Bauer J., Seeger M., Zern A., et al. Nanocrystalline FeNdB permanent magnets with enhanced remanence[J]. J Appl Phys, 1996, 80(3): 1667
    14 Miao W.F., Ding J., McCormick P.G., et al. Remanence-enhanced Nd8Fe87M1B4 alloys[J]. J Magn Magn Mater, 1998, 177-181: 976
    15 Gao Youhui, Zhu Jinghan, Yang Choongjin, et al. Thermomagnetic behaviors of Nd2Fe14B/Fe3B based nanocomposite magnets[J]. J Magn Magn Mater, 1998, 186: 97
    16 Jurczyk M., Jakubowicz J. Nanocomposite Nd2(Fe,Co,Cr)14B/α-Fe materials[J]. J Magn
    
    
    Magn Mater, 1998, 185: 66
    17 Withanawasam L., Murphy A.S., Hadjipanayis G.C. Nanocomposite R2Fe14B/Fe exchange coupled magnets[J]. J Appl Phys, 1994, 76(10): 7065
    18 Jakubowicz J., Jurcz M., Hand A., et al. Temperature dependence of magnetic properties for nanocomposite Nd2(Fe,Co,Cr)14B/α-Fe magnets[J]. J Magn Magn Mater,2000, 208: 163
    19 Neu V., Hubert A., Schultz L. Modelling of enhanced remanence of nanocrystalline, exchange-coupled hard magnetic grains[J]. J Magn Magn Mater, 1998, 189: 391
    20 Skomski R. Aligned two-phase magnets: Permanent magnetism of the future? [J] J Appl Phys, 1994, 76(10): 7059
    21 Schrefl T.,Fischer R., Kronmuller H. Two- and three-dimensional calculation of remanence enhancement of rare-earth based composite magnets[J]. J Appl Phys, 1994, 76(10): 7053
    22 Schrefl T., Fidler J., Kronmuller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets[J]. Physical Review B, 1994, 49: 6100
    23 Kronmuller H., Schrefl T. Interactive and cooperative magnetization processes in hard magnetic materials[J]. J Magn Magn Mater, 1994, 129: 66
    24 Fischer R., Kronmuller H. The role of the exchange interaction in nanocrystalline isotropic Nd2Fe14B-magnets[J]. J Magn Magn Mater, 1999, 191: 225
    25 Fischer R., Kronmuller H. The role of grain boundaries in nanoscaled high-performance permanent magnets[J]. J Magn Magn Mater, 1998, 184: 166
    26 Fischer R., Schrefl T., Kronmuller H., et al. Phase distribution and computed magnetic properties of high-remanent composite magnets[J]. J Magn Magn Mater, 1995, 150: 329
    27 Fischer R., Schrefl T., Kronmuller H. Grain-size dependence of remanence and coercive field of nanocrystalline composite permanent magnets.[J]J Magn Magn Mater,1996,153: 35
    28 Fischer R., Kronmuller H. Importance of ideal grain boundaries of high remanent composite permanent magnets[J]. J Appl Phys, 1998, 83(6): 3271
    29 Branagan D.J., Kramer M.J., Tang Y.L., et al. Maximizing loop squareness by minimizing gradients in the microstructure[J]. J Appl Phys, 1999, 85(8): 5923
    30 Crew D.C., Lewis L.H. Effect of grain alignment on magnetic structure in nanoscale material[J]. IEEE Trans Magn , 2001, 37(4): 2512
    
    31 O’Grady.K., EL-Hilo M., Chantrell R.W. The characterization of interaction effects in fine particle systems[J]. IEEE Trans Magn , 1993, 29(6): 2608
    32 Girt E., Krishnan K.M., Thomas G., et al. Coercivity limits and mechanism in nanocomposite Nd-Fe-B alloys. et al[J]. J Magn Magn Mater, 2001, 231: 219
    33 Billoni O.V., Urreta S.E., Fabietti L.M., et al. Dependence of the coercivity on the grain size in a FeNdB +αFe nanocrystalline composite[J]. J Magn Magn Mater, 1998, 187: 371
    34 Branagan D.J., Kramer M.J., Tang Y.L., et al. Engineering magnetic nanocomposite microstructure[J]. J Mater. Science, 2000, 35: 3459
    35 Xiao Q.F., Zhao T., Zhang Z.D., et al. Effect of grain size and anisotropy on exchange coupling in nanocomposite Nd-Fe-B magnets[J]. J Magn Magn Mater, 2001, 223: 215
    36 Zern A., Seeger M., Bauer J., et al. Microstructural investigations of exchange coupled and decouple nanocrystalline NdFeB permanent magnets[J]. J Magn Magn Mater, 1998, 184: 89
    37 Manaf A., Khafaji M., Zhang P.Z., et al. Microstructure analysis of nanocrystalline FeNdB ribbons with enhanced hard magnetic properties[J]. J Magn Magn Mater, 1993, 128: 307
    38 Gao Y.H., Zhu J.H., Weng Y.Q., et al. The exchange coupled interaction in nanocrystalline Nd2Fe14B/Fe3B+α-Fe alloys[J]. J Magn Magn Mater, 1999, 191: 146
    39 Leineweber T., Kronmuller H. Micromagnetic examination of exchange coupled ferromagnetic nanolayers[J]. J Magn Magn Mater, 1997, 176: 145
    40 Hopfinger T., Yavari A.R., Negri D., et al. Nanocrystallization reactions in the fabrication of Fe14Nd2B+Fe hard-soft magnets[J]. J Magn Magn Mater, 1996, 164: 7
    41 Billoni O.V., Bordone E.E., Urreta S.E., et al. Magnetic viscosity in a nanocrystalline two phase composite with enchanced remanence[J]. J Magn Magn Mater, 2000, 208: 1
    42 Lu B., Huang M.Q., Chen Q., et al. Magnetic coupling in boron-rich NdFeB composites[J]. J Appl Phys, 1999, 85(8): 5921
    43 Shield J.E., Kappes B.B., Crew D.C. et al. Exchange coupling in crystalline/amorphous NdFeB nanoassemblies[J]. J Appl Phys, 2000, 87(9): 6113
    44 Chang W.C., Chiou D.Y., et al. The effect of B and RE content on the magnetic properties of La and Cr substitutedα-Fe/R2Fe14B nanocomposites[J]. J Appl Phys, 1998,83(11): 6271
    45 Chang W.C., Chiou D.Y., et al. High performance α-Fe/R2Fe14B nanocomposites with
    
    
    nominal composition of (Nd,La)9.5Fe78-xCoxCr2B10.5[J]. J Magn Magn Mater, 1998, 189: 55
    46 Lewis L.H., Wang J.Y., Welch D.O. Anomalous high-temperature coercivities in hard nanocomposite alloys[J]. J Appl Phys, 1998,83(11): 6274
    47 Shen B.G., Zhang J.X., et al. Magnetic properties and phase components in amorphous (Fe1-xNdx)81.5B18.5 alloys after crystallization[J]. J Magn Magn Mater, 1990, 89: 195
    48 Arai A., Kato H., Akioka K. High-energy isotropic resin bonded magnets produced from (Nd,Dy)-(Fe,Co)-B nanocomposite[J]. IEEE Trans Magn , 2001, 37(4): 2555
    49 Jiang S.Y., Pourarian F., Yan J.X., et al. Magnetic characteristics of NdTbFe14-xCoxB and Nd2-xTbxCo14B alloys[J]. J Magn Magn Mater, 1988, 74: 181
    50 Melsheimer A., Seeger M., Kronmuller H. Influence of Co substitution in exchange coupled NdFeB nanocrystalline permanent magnets[J]. J Magn Magn Mater, 1999, 202: 458
    51 Chang W.C., Wu S.H., Ma B.M., et al. Magnetic properties enhancement ofα-Fe/R2Fe14B nanocomposites by Co substitution[J]. J Appl Phys, 1998,83(4): 2147
    52 Fernengel W., Rodewald W., Blank R., et al. The influence of Co on the corrosion resistance of sintered Nd-Fe-B magnets[J]. J Magn Magn Mater, 1999, 196-197: 288
    53 Kojima A., Makino A., Inoue A. Effect of Co on the magnetic properties of nanocrystalline alloys produced by crystallization of an amorphous phase[J]. Scripta Mater, 2001, 44:1383
    54 Wang Z.C., Zhang M.C., Li F.B., et al. High-coercivity (NdDy)2(FeNb)14B-α-Fe nanocrystalline alloys[J]. J Appl Phys, 1997,81(8): 5097
    55 Pourarian F., Sankar S.G., Wallace W.E. Intrinsic magnetic properties of multicomponent Pr2-x-yRxR’xFe11.6Co2Al0.4B compounds[J]. J Magn Magn Mater, 1988, 74: 177
    56 Zhang W., Inoue A. Crystallization and hard magnetic properties of Fe-Co-Nd-Dy-B amorphous alloys with glass transition[J]. J Appl Phys, 2000,87(9): 6122
    57 Gauder D.R., Froning M.H., White R.J., et al. Elevated temperature study of Nd-Fe-B-based magnets with Co and Dy addition[J]. J Appl Phys, 1988,63(8): 3522
    58 Kim A.S. High coercivity Nd-Fe-B magnets with lower dysprosium content[J]. J Appl Phys, 1988,63(8): 3519
    59 Tokunaga M., Endoh M., Harada H. et al. Magnetizability of Nd-Fe-B-type magnets with Dy additions[J]. J Appl Phys, 1988,63(8): 3510
    
    60 Hirosawa S., Miyoshi T., et al. Effects of Cu-Nb/Zr addition on magnetic properties of Fe3B/(Nd-Dy)2Fe14B nanocomposite magnets [J] IEEE Trans Magn , 2001, 37(4): 2558
    61 Jin Z.Q., Okumura H., Hadjipanayis G.C. The influence of Tb substitution on the magnetic properties of Pr2Fe14B/α-Fe magneys[J]. IEEE Trans Magn , 2001, 37(4): 2564
    62 Bauer J., Seeger M., Kronmuller H. Magnetic properties and microstructural analysis of rapidly quenched FeNdBGaNb permanent magnets[J]. J Magn Magn Mater, 1995, 139: 323
    63 Rieger G., Seeger M., Li s. et al. Micromagnetic analysis applied to melt-spun NdFeB magnets with small addition of Ga and Mo[J]. J Magn Magn Mater, 1995, 151: 193
    64 Chiriac H., Marinescu M., Buschow K.H.J., et al. Nanocrystalline Nd8Fe77Co5CuNb3B6 melt-spun ribbons[J]. J Magn Magn Mater, 1999, 203: 153
    65 Yamasaki M., Hamano M., Mizuguchi H., et al. Microstructure of hard magnetic bccFe/NdFeB nanocomposite alloys[J]. Scripta Mater, 2001, 44:1375
    66 Lewis L.H., Gallagher K., Panchanathan V. The effect of Nb additions on the thermal stability of melt-spun Nd2Fe14B[J]. J Appl Phys, 1999,85(8): 5926
    67 Betancourt R.J.I., Davies H.A. High coercivity Zr and Co substituted (Nd-Pr)-Fe-B nanophase hard magnetic alloys[J]. IEEE Trans Magn ,2001,37(4):2480
    68 de Rango P., Genin F.N., Fruchart D., et al. Localisation of Zr in Nd-Fe-B alloys[J]. J Magn Magn Mater, 2001, 226-230: 1377
    69 Suzuki K., Cadogan J.M., Uehara M., et al. Effect of Cr content on decomposition behaviour of amorphous Nd5Fe74Cr3B18[J]. Scripta Mater, 2000, 42:487
    70 Uehara M., Konno T.J., Kanekiyo H., et al. Effect of Cr doping on crystallization behavior of Fe3B/Nd2Fe14B permanent magnets[J]. J Magn Magn Mater, 1998, 177-181: 997
    71 Lewis L.H., Panchanathan V. The influence of Cr additions on the magnetic properties of Nd2(Fe,Co)14B-based nanocomposites[J]. J Magn Magn Mater, 1999, 196-197: 299
    72 Jurczyk M. Effect of substitution of Al and Mo on the magnetic properties of R2Fe12-xTxCo2B[J]. J Magn Magn Mater, 1988, 73: 199
    73 Kramer M.J., Li C.P., Dennis K.W., et al. Effect of TiC additions to the microstructure and magnetic properties of Nd9.5Fe84.5B6 melt-spun ribbons[J]. J Appl Phys, 1998,83(11): 6631
    74 Bernardi J., Soto G.F., Fidler J. Influence of microstructure on magnetic properties of
    
    
    nanocomposite RE5.5(Fe,Cr,M)76.5B18 magnetic materials[J]. J Appl Phys, 1999,85(8): 5905
    75 Suzuki K., Cadogan J.M., et al. Formation and decomposition of Fe3B/Nd2Fe14B nanocomposite structure ribbons under annealing[J]. J Appl Phys, 1999,85(8): 5914
    76 You C.Y., Sun X.K., Liu W., et al. Effect of Wand Co on the phase transformation and magnetic properties of Nd2Fe14B/α-Fe magnets[J]. J Phys D, 2002,35:943
    77 Matsumoto F., Sakamoto H., Komiya M., et al. Effect of Si and Al on magnetic properties of rapidly quenched Nd-Fe-B permanent magnets[J]. J Appl Phys, 1988,63(8): 3507
    78 李斌,刘颖,涂铭旌. 合金元素对PrFeB永磁合金结构和磁性能的影响[J]. 金属功能材料,2002,9(2):12
    79 王佐诚,周寿增,张茂才,等. 添加Dy和Nb的纳米复合Pr2Fe14B/α-Fe永磁合金结构和磁性[J]. 北京科技大学学报,1998,20(1):68
    80 吴严,姜忠良,等.合金元素对Nd2Fe14B/α-Fe磁性能的影响.[J]稀有金属,2002,26(5):321
    81 白飞明,姜忠良,陈秀云,等.复合添加合金元素对纳米双相Nd2Fe14B/α-Fe永磁体微观结构和磁性能的影响.[J] 中国稀土学报,2002,20(4):315
    82 李山东,田宗军,谢国治,等. 纳米复合永磁材料(Nd1-xDyx)4.5Fe77B18.5微结构和磁性能研究[J]. 功能材料(增刊), 2001,10:423
    83 田宗军,谢国治,计齐根,等. 高剩磁的低钕Nd9(Fe,In)85B6纳米复合稀土永磁材料的研究[J]. 功能材料(增刊), 2001,10:395
    84 包小倩,周寿增,王佐诚,等. 合金成分对Pr2Fe14B/α-Fe纳米复合永磁材料组织与磁性的影响[J]. 中国有色金属学报,2003,13(2):414
    85徐孝荣,姚国兰,等. 快淬Nd-Fe-Co-Zr-B合金磁性研究.[J]磁性材料及器件,2001,32(4):6
    86 Lu B., Huang M.Q., Chen Q., et al. Microstructure and magnetic domain structure of Nd2(Fe,Co)14B melt-spun ribbons[J]. J Magn Magn Mater, 1999, 195: 611
    87 Chen Z.M., Zhang Y., George C. et al. Effect of wheel speed and subsequent annealing on the microstructure and magnetic properties of nanocomposite Pr2Fe14B/α-Fe magnets[J]. J Magn Magn Mater, 1999, 206: 8
    88 Mendoza G., Escalante J.I., Lopez J., et al. Effect of roll speed on the magnetic properties of nanocomposite PrFeB magnets[J]. J Magn Magn Mater, 1999, 206: 37
    89 Wang Z.C., Zhou S.Z.,et al. Effect of quenching rate on phase transformation and magnetic
    
    
    properties of Pr8Fe86B6 ribbons during annealing[J]. J Magn Magn Mater, 2000,218:72
    90 Chiriac H., Marinescu M., et al. Influence of the annealing procedures on magnetic properties of α-Fe/Nd2Fe14B nanocrystalline alloys[J]. J Magn Magn Mater, 1999, 202: 22
    91 Clavaguera M.T., Clavaguera N. Nucleation and growth of Nd2Fe14B crystals from rapidly quenched amorphous alloys: a kinetic study[J]. J Magn Magn Mater, 1999, 203: 66
    92 Lewis L.H., Collins S.M., Kramer M.J., et al. Solidification, quenching gas and magnetic properties in melt-spun Nd2Fe14B[J]. IEEE Trans Magn , 2001, 37(4): 2486
    93 Hermann R., Bacher I., Matson D.M., et al. Growth kinetics in levitated and quenched Nd-Fe-B alloys[J]. IEEE Trans Magn , 2001, 37(3): 1100
    94 Tetsuji Saito. Production of bulk materials of an Nd4Fe77.5B18.5 alloy and their magnetic properties[J]. IEEE Trans Magn , 2001, 37(4): 2561
    95 Gao Y.D., Zhang S.Q., Liu B.C. Crystallization behaviour of melt-spun Nd7Fe86Nb1B6 ribbons under different heating rates[J]. J Magn Magn Mater, 2000, 208: 158
    96 刘颖,陈悦,涂铭旌,等. 高矫顽力的低钕Nd9(FeCoZrAl)85B6纳米晶合金的制备[J]. 中国有色金属学报,1999,9(2):259
    97 刘颖,陈悦,涂铭旌,等. 热处理对非晶态合金Nd9(FeCoZrAl)85B6磁性能的影响[J]. 中国稀土学报,2000,18(2):112
    98 包小倩,周寿增,王佐诚,等. 纳米复合Pr2Fe14B/α-Fe永磁材料的交换耦合作用研究[J]. 功能材料, 2003,34(4):395
    99 周寿增,王佐诚,张茂才等. 快淬速度对Pr8Fe86B6合金快淬带组织结构与性能的影响[J]. 功能材料(增刊), 2001,10:350
    100 石永金,周济,庞薇,等. 纳米晶Nd-Fe-B永磁材料的磁性能和微结构[J]. 功能材料(增刊), 2001,10:350
    101Zhang W.Y., Zhang S.Y., Yan A.R., et al. Effect of the substitution of Pr for Nd on microstructure and magnetic properties of nanocomposite Nd2Fe14B/α-Fe magnets[J]. J Magn Magn Mater, 2001, 225: 389
    102 Betancourt R.J.I., Davies H.A. Magnetic properties of nanocrystalline didymium (Nd-Pr)-Fe-B alloys[J]. J Appl Phys, 1999,85(8):5911
    103 Harland C.L., Davies H.A. Effect of Co and Zr on magnetic properties of nanophase PrFeB
    
    
    alloys[J]. J Appl Phys, 2000,87(9):6116
    104 Davies H.A., Betancourt R.J.I., Harland C.L. Nanophase (Nd/Pr)2Fe14B/α-Fe alloys: arttractive materials for isotropic magnets with enhanced properties[J]. Scripta mater ,2001,44:1337
    105 Chen Z.M., Zhang Y., Ding Y.Q., et al. Studies on magnetic properties and microstructure of melt-spun R8(Fe,Co,Nb)86B6 magnets[J]. J Magn Magn Mater,1999,195:420
    106 Chen Z.M., Zhang Y., Ding Y.Q., et al. Magnetic properties and microstructure of nanocomposite R2(Fe,Co,Nb)14B/(Fe,Co) magnets[J]. J Appl Phys, 1999, 85(8): 5908
    107 Goll D., Kronmuller H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets[J]. J Magn Magn Mater, 1998, 185: 49
    108 Kussbach C., Schwetz M., Ericsson T., et al. Exchange coupling between soft magnetic grains in Pr9Fe85B6[J]. J Magn Magn Mater, 1999, 196-197: 211
    109 Mendosa S.G., Davies H.A., Escalante J.I. Hcj, Jr and (BH)max relationship in PrFeB melt spun alloys[J]. J Magn Magn Mater, 2000, 218: 97
    110 Bollero A., Kirchner A., Gutfleisch O., et al. Highly coercive milled and melt-spun (Pr,Nd)FeB-type magnets and their hot workability[J]. IEEE Trans Magn ,2001,37(4):2483
    111 冯明星. 钕铁硼与稀土平衡[J].磁性材料及器件,2002,33(1):43
    112 Satoshi Hirosawa, Masato Sagawa, Hitoshi Yamamoto et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals[J]. J Appl Phys., 1986,59(3):873
    113 Kim M.J., Kim Y.B., Kim C.S., et al. Magnetocrystalline anisotropy of Pr2Fe14B[J]. J Magn Magn Mater, 2000, 222:86
    114 Kim Y.B., Kim M.J., Jin Han-min, et al. Spin reorientation and magnetocrystalline anisotropy of (Nd1-xPrx)2Fe14B[J]. J Magn Magn Mater,1999,191:133
    115 李强,周邦新. 快淬Nd-Fe-B粉末的TEM样[J].稀有金属材料与工程,2000,29(4): 283
    116 胡赓祥,钱苗根. 金属学 [M] . 上海: 上海科学技术出版社,1980:354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700