SiC SBD和MESFET的抗辐照特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对Ni/4H-SiC SBD和MESFET的辐照效应进行了分析。重点研究了辐照引入的陷阱对这两种器件的影响。通过SBD的仿真,发现材料中的陷阱会导致正、反向电流的减小。从MESFET的仿真中可以看出,由于沟道掺杂浓度较大,器件可以承受更多的辐照引入的陷阱。
     制备了Ni/4H-SiC肖特基势垒二极管(SBDs)和欧姆接触TLM测试图形,并进行了高能电子辐照实验。电子能量为1MeV,最高剂量为3.43×10~(14)e/cm~2。辐照后器件在2v下的正向电流下降幅度约50%;在-200V下的反向电流上升幅度小于30%。辐照后,0V偏压的器件的势垒高度(φ_B)从1.20eV增加为1.21eV,-30V偏压下的势垒高度从1.25eV下降为1.19eV。通过对常温下退火效应的观察,φ_B的退化是由肖特基界面态的变化造成的。串联电阻(Rs)和反向电流随着辐照剂量的增加而增加,这是由于电子在SiC材料中引入辐照缺陷造成的。Ni/SiC欧姆接触的比接触电阻(ρ_c)辐照后从5.11×10~(-5)Ωcm~2上升为2.97×10~(-4)Ωcm~2。
     本文对制备的Ni/4H-SiC肖特基势垒二极管(SBD)进行了γ射线辐照实验,并在辐照过程中对器件分别加0V和-30V偏压。经过1Mrad(Si)总剂量的γ射线辐照后,不同辐照偏压下的Ni/4H-SiC肖特基接触的势垒高度和理想因子都没有退化,SiC外延层中的少子寿命也没有退化。辐照后器件的反向电流下降,这是由于器件表面的负界面电荷增加引起的。本文的研究结果表明辐照偏压对Ni/4H-SiC SBD的辐照退化效应没有明显的影响。
     通过实验以及仿真数据可以发现,Ni/4H-SiC SBD在经过3.43×10~(14)e/cm~(-2)剂量的电子辐照后,肖特基势垒高度有少许变化,常温退火一周即回到原值。最主要的变化是陷阱效应导致的串联电阻增加,这种辐照效应在常温下退火一周后仍不能完全恢复。而1Mrad(Si)总剂量的γ射线辐照对Ni/4H-SiC SBD影响很小。这些实验数据说明我们的Ni/4H-SiC SBD具有良好的抗辐照特性。
The radiation effect of the Ni/4H-SiC SBD and MESFET were studied in this thesis. The influence of the traps induced by irradiation on their characteristics were focused. In the SBD's simulation, traps in the material make the forward current and reverse current decreased. In the MESFET's simulation, we found that it can withstand more traps in the material induced by irradiation due to the higher impurity concentration in the channel.
     The Ni/4H-SiC Schottky barrier diodes (SBDs) and TLM (Transfer Length Method) test patterns of Ni/4H-SiC ohmic contacts were fabricated, and irradiated with1Mev electrons up to a dose of 3.43×l0~(14)e/cm~(-2).After radiation, the forward currents of the SBDs at 2v decreased by about 50%, and the reverse currents at -200v increased by less than 30%. Schottky barrier height (φ_B) of the Ni/4H-SiC SBD increased from 1.20ev to 1.21ev under Ov irradiation bias, and decreased from 1.25ev to 1.19ev under -30v irradiation bias. The degradation ofφ_B could be explained by the variation of interface states of Schottky contacts. The on-state resistance (Rs) and the reverse current increased with the dose, which could be ascribed to the radiation defects in bulk material. The specific contact resistance (ρ_c) of the Ni/SiC ohmic contact increased from 5.11×10~(-5)Ωcm~2 to 2.97×l0~(-4)Ωcm~2.
     The Ni/4H-SiC Schottky barrier diodes(SBDs) were irradiated with the ~(60)Co gamma-ray source to the accumulated dose of 1Mrad(Si).0v and -30v bias voltages were applied to the SBDs during irradiation. After 1Mrad(Si) radiation, Schottky barrier height and ideality factor of the Ni/4H-SiC SBDs under different bias voltage basicly remain the same values, and minority carrier lifetime of the epitaxial layer also has nodegradation.The reverse current decreases after radiation, which can be explained by the negative surface charge increase. The results show radiation bias voltage has little influence of gamma-ray on the Ni/4H-SiC SBD.
     Through testing and simulation data, we found after radiation with 1MeV electrons up to a dose of 3.43×10~(14)e/cm~(-2),the Schottky barrier height changed slightly and recovered with annealing at room temperature for a week. But Rs didn't recover after a week.1Mrad(Si) gamma-ray radiation hardly change the Ni/4H-SiC SBD's characters. These data show that 4H-SiC SBDs have excellent capability of radiation hardness.
引文
[1] R.L.Pease.Total-Dose issues for microelectronics in space system. IEEE trans.Nucl.Sci. 1996, Vol.43,No.2. p442
    [2] 赖祖武.抗辐照电子学-辐照效应及加固原理.北京:赖祖武,1998.p4
    [3] R.F.Davis, GKelner . Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proceeding of the IEEE. 1991, Vol.79, No.5. p677
    [4] 张义门,张玉明.碳化硅器件的需求背景及其发展现状.电子科学技术评论.1996,No.2,p18
    [5] 张玉明,张义门.SiC功率器件.电子科技导报.1996,No.29.p42
    [6] 张玉明,张义门,罗晋升.SiC、GaAs和Si的高温特性的比较.固体电子学研究与进展.1997,Vol.17,No.3.pp 305-310
    [7] 田敬民.SiC半导体材料与器件(1).半导体杂志.1996,Vol.21,No.1.p24
    [8] M.A.Capano, R.J.Trew.Silicon Carbide electronic materials and devices.MRS BULLETIN. March, 1997.p19
    [9] A.Lvanov, V.E.Chelnokov . Recent developments in SiC single-crystal electronics.Semicond.Sci.Technol. 1992,No.7. p863
    [10] R.B.Campbell . Whatever happened to Silicon Carbide. IEEE trans.Indus.Elec.1982, Vol.29, No.2. p124
    [11] L.A.Lipkin, J.W.Palmour . Improved oxidation procedures for reduced SiO_2/SiC defects.J.Electronic Materials. 1996, Vol.25, No.5. p909
    [12] J.M.McGarrity, F.B.Mclean, W.M.Delancey . Silicon carbide JFET radiation responce. IEEE Trans.Nucl.Sci. 1992, Vol39,No6
    [13] A.K.Agarwal, J.B.Casady.1.1kv 4H-SiC power UMOSFET's. IEEE.Elec.Dev.Lett. 1997, Vol.18,No.12.p586
    [14] S.Sriram,GAugustine . 4H-SiC MESFET's with 42 GHz f_(max).IEEE.Elec.Dev.Lett. 1996, Vol.17,No.7.p369-371
    [15] 郝跃,杨银堂.SiC材料和器件发展状况与趋势.电子技术评论.1998,No.1.p33
    [16] 杨银堂,高洪福.SiC半导体技术新进展.西安电子科技大学学报.1998,Vol.25,No.4.p478
    [17] 李跃进,杨银堂.Si基3C-SiC薄膜的外延生长技术.西安电子科技大学学报.2000,Vol.27,No.1.p80
    [18] 张玉明,罗晋生.n型6H-SiC体材料欧姆接触的制备.半导体学报.1997,Vol.18,No.9.p718
    [19] 张玉明,张义门.SiC肖特基势垒二极管的研制.半导体学报.1999,Vol.20,No.11.p1040
    [20] S.Nigam, Jihyun Kim, F.Ren . High energy proton irradiation effects on SiC Schottky rectifiers. APPLIED PHYSICS LETTERS. 2002, Vol.81, No.13, p2385
    [21] Richard D. Harris, Albert J. Frasca,Martin O.Patton.Displacement Damage Effects on the Forward Bias Characteristics of SiC Schottky Barrier Power Diodes.IEEE TRANSACTIONS ON NUCLEAR SCIENCE. DECEMBER, 2005, VOL.52,NO.6.pp 2408-2412
    [22]]Leif Scheick, Member, IEEE, Luis Selva,and Heidi Becker . Displacement Damage-Induced Catastrophic Second Breakdown in Silicon Carbide Schottky Power Diodes. IEEE TRANSACTIONS ON NUCLEAR SCIENCE.DECEMBER, 2004, VOL.51,NO. 6. pp 3193-3200
    [23] Jihyun Kim and F. Ren. Comparison of stability of WSi_X/SiC and Ni/SiC Schottky rectifiers to high dose gamma-ray irradiation. APPLIED PHYSICS LETTERS.JANUARY, 2004, VOLUME 84, NUMBER 3. pp 371-373
    [24] David C. Sheridan, Gilyong Chung. The Effects of High-Dose Gamma Irradiation on High-Voltage 4H-SiC Schottky Diodes and the SiC-SiO2 Interface. IEEE TRANSACTIONS ON NUCLEAR SCIENCE. DECEMBER, 2001 VOL.48,NO.6.pp 2229-2232
    [25] H.Ohyama,K.Takakura,K.Uemura etc. Radiation source dependence of device performance degradation for 4H-SiC MESFETs. Superlattices and Microstructures (2006). doi:10.1016/j.spmi.2006.09.009
    [26] 宁瑾,刘忠立,孙国胜等.4H-SiC肖特基二极管抗辐照特性的研究.第八届全国抗辐射电子学与电磁脉冲学术交流会论文集.2005
    [27] C.J.Scozzie, J.M.McGarrity, J.Blackburn . Silicon Carbide FETs for high temperature nuclear environments. IEEE Trans.Nucl.Sci. 1996, Vol.43, No.3.p1642
    [28] S.Seshadri, A.R.Dulloo, F.H.Ruddy.Demonstration of an SiC neutron detector for high-radiation environment. IEEE Trans.Elec.Dev, 1999, Vol.46, No.3.p567.
    [29] 尚也淳,张义门.SiC抗辐照特性的分析.西安电子科技大学学报.1999,Vol.26,No.6.p807
    [30] A.L.Barry . Energy dependence of electron damage and displacement threshold energy in 6H silicon carbide. IEEE Trans.Nucl.Sci.1991,Vol38,No6.p1111
    [31] C.Raynaud, J.L.Autran . Theoretical investigation of incomplete ionization of dopants in 6H-SiC metal-oxide-semiconductor capacitors. J.Appl.Phys. 1999,Vol.86, No.4, p2232
    [32] W.J.Schaffer, GH.Negley . Conductivity anisotropy in epitaxial 6H and 4H SiC.Mat.Res.Soc.Symp.Proc. 1994, Vol.339 . p595
    [33] Kassamakova L, Kakanakov R D, Kassamakov I V, etc . Temperature Stable Pd Ohmic Contacts to p-Type 4H-SiC Formed at Low Temperatures. IEEE Trans.Electron Device. 1999,46(3). pp605-611
    [34] S.M.Sze . Physics of Semiconductor Devices. New York: Wiley, 1981.pp232-255
    [35] K.J.Schoen, J.M.Woodall, J.A.Cooper . Design Consideration and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers. IEEE Trans.Electron Devices. July, 1998, Vol. 45,No.7. ppl595-1604
    [36] C. Hemmingsson, N.T.Son, O.Kordina, J.P.Bergman, and E.Janzen.Deep level defects in electron-irradiated 4H-SiC epitaxial layers. JAP. 1997,81(9).pp6155-6159
    [37] 张玉明,张义门,崔杰,罗晋升.3C-SiC体特性的Monte Carlo模型.物理学报.1997,Vol.46,No.11.pp 2215-2222
    [38] 张义门,任建民.半导体器件计算机模拟.电子工业出版社.1991
    [40] Matthias Roschke and Frank schwierz . Electron Mobility Models for 4H,6H,and 3C SiC.IEEE.Tran.on E.D. July, 2001, vol.48,NO.7. pp 1442-1447
    [41] 张玉明.西安电子科技大学博士论文.1998
    [42] G. Alfieri,E.V.Monakhov, and B. G. Svensson . Defect energy levels in hydrogen-implanted and electron-irradiated n-type 4H silicon carbide. JOURNAL OF APPLIED PHYSICS. NUMBER, 2005, VOLUME 98. pp 113524
    [43] L. Storasta, J. P. Bergman, E. Janzen . Deep levels created by low energy electron irradiation in 4H-SiC. JOURNAL OF APPLIED PHYSICS. NOVEMBER, 2004.VOLUME 96, NUMBER 91.pp 4909-4915
    [44] Katsunori Danno and Tsunenobu Kimoto.Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. JOURNAL OF APPLIED PHYSICS. VOLUME 100, NUMBER 11. pp 3728-2006
    [45] Zhang Yum-ing, Zhang Yi-men.Pt Schottky Barrier Diodes on n-type 6H-Silicon Carbide. CHINESE JOURNAL OF SEMICONDUCTORS. Nov, 1999, Vol. 20,No. 11. pp 2336-2342
    [46] Chang Yuan-cheng, Zhang Yi-men, Zhang Yu-ming . Analytical model for I-V characteristics of 4H-SiC Schottky barrier diodes. JOURNAL OF XIDIAN UNIVERSITY. Aug. 2001, Vol.28 No.4. pp 467-471
    [47] Zhang Lin, Zhang Yi-men, Zhang Yu-ming . Model and analysis of 4H-SiC Schottky Diode as Gamma-ray Detector. HIGH POWER LASER AND PARTICLE BEAM. May, 2008, VOL.20, NO.5. pp 854-858
    [48]]J.H. Ha, S.M. Kang, Y.H. Cho . Schottky barrier heights of semi-insulating 6H-SiC irradiated by high-dose g-rays. Nuclear Instruments and Methods in Physics Research A. Sep, 2007, VOL. 580, No.1.pp 416-418
    [49] Shinobu Onoda, Takeshi Ohshima, Toshio Hirao . Decrease of Charge Collection Due to Displacement Damage by Gamma Rays in a 6H-SiC Diode. IEEE TRANSACTIONS ON NUCLEAR SCIENCE. DECEMBER 2007. VOL. 54, NO.6. pp1953-1960
    [50] Shang Yechun, Zhang Yimen, Zhang Yuming . Study on the Electric Characteristics and Radiation Response of 6H-SiC MOS Structure. JOURNAL OF ELECTRONICS AND INFORMATION TECHNOLOGY. Mar, 2003, Vol.25 No.3. pp 389-392
    [51] Zhiyun Luo, Tianbing Chen, Ayayi C. Ahyi Proton. Radiation Effects in 4H-SiC Diodes and MOS Capacitors. IEEE TRANSACTIONS ON NUCLEAR SCIENCE,DECEMBER, 2004, VOL. 51, NO. 6. pp 3748-3752
    [52] M. Bruzzia, F. Navab . High quality SiC applications in radiation dosimetry.Applied Surface Science. DEC, 2001, VOL.184. pp 425-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700