掺杂Ca_3Co_4O_(9+δ)材料制备及热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用高分子网络凝胶法合成Ca_3Co_4O_(9+δ)前驱粉体,借助放电等离子烧结(SPS)技术制备高致密掺杂Ca_3Co_4O_(9+δ)陶瓷。采用XRD、SEM、TEM等分析手段对其组织结构进行表征。测试了钆掺杂Ca_3Co_4O_(9+δ)、钇掺杂Ca_3Co_4O_(9+δ)、钆钇复合掺杂Ca_3Co_4O_(9+δ)三个系列试样的电阻率、热电系数及热导率随温度的变化规律;并研究了其高温输运机制。采用XPS光电子谱,分析材料掺杂后XPS特征峰的偏移及材料中离子价态的变化。利用热处理调整晶粒大小,并研究其对电输运性能的影响。采用电场力显微镜观察材料的微观形貌,并将其与传导性质联系起来。通过不同氧气氛下的电阻率测试,分析材料电阻率的变化原因。
     首先利用高分子网络凝胶法制备系列钆掺杂Ca_3Co_4O_(9+δ),系列钇掺杂Ca_3Co_4O_(9+δ),系列钆钇复合掺杂Ca_3Co_4O_(9+δ)三个体系的前驱粉体,经粉体的XRD和透射电镜观察证实,此方法成功获得纯相、晶粒较小的粉体。通过实验研究,确定最佳工艺参数为,丙烯酰胺为单体,N,N'亚甲基双丙烯酰胺为交联剂,单体与交联剂质量比为5:1,单体相对溶液加入量为6g/100ml,pH值在6左右,在348K以上形成均匀的凝胶。金属离子浓度对晶粒大小影响不大。DTA的分析结果表明Ca_3Co_4O_(9+δ)的合成温度远低于固相法的合成温度。
     对SPS烧结的高致密陶瓷进行扫描电镜观察,晶粒呈片层状、大小1~2μm,并具有一定的取向性;经透射电镜照片观察,可以看出晶粒间结合紧密,没有观察到晶间相和非晶层,表明界面结合良好。电阻率的测试表明,Ca_3Co_4O_(9+δ)试样电阻率在500K以下呈现正温度系数特征,在500K以上呈现负温度系数特征;钆掺杂Ca_3Co_4O_(9+δ)、钇掺杂Ca_3Co_4O_(9+δ)、钆钇复合掺杂Ca_3Co_4O_(9+δ)试样在测试温度范围均呈现负温度系数特征。通过对材料高温区的传导机制分析,可知材料在650K以上属于小极化子跳跃传导机制;并且随着掺杂量增加跳跃激活能逐渐增大。由于自旋散射的影响,钆掺杂Ca_3Co_4O_(9+δ)试样的激活能明显高于钇掺杂Ca_3Co_4O_(9+δ)试样,钆钇复合掺杂Ca_3Co_4O_(9+δ)试样的激活能介于两者之间。Ca_3Co_4O_(9+δ)、10mol%钆掺杂Ca_3Co_4O_(9+δ)、10 mol %钇掺杂Ca_3Co_4O_(9+δ)、10mol%钆钇复合掺杂Ca_3Co_4O_(9+δ)试样(钆、钇各掺杂5mol%)ZT值分别是0.136、0.249、0.223、0.263(973K)。
     经不同退火温度处理试样,可以适当调整晶粒尺寸,973K处理后晶粒尺寸大约1~2μm,1123K处理后,晶粒尺寸大约3~5μm,对不同晶粒大小的试样进行电阻率测试,两者差别不大;说明晶粒大小不是影响陶瓷材料电阻率的主要因素。
     XPS分析结果表明,掺杂后Co~(2+)的含量增加,并且在掺杂位和其附近离子的XPS特征峰都向高结合能方向偏移,说明在掺杂位置存在弱束缚电子。掺杂使得价带谱的峰加强,载流子浓度减少。原子力形貌相及电场力相位图形象地将晶粒特征与材料性能联系起来,显示了材料电阻率的各向异性。
     同一试样在不同氧气氛下的电阻率测试结果表明,富氧条件下测得的电阻率更低。通过高温线性拟合结果表明,在富氧气氛下,跳跃激活能变小。这主要因为氧压力增大,对材料氧化能力增强,材料中Co~(4+)的浓度增大,Co~(4+)和Co~(3+)之间的有效跳跃距离缩短,载流子在其间跳跃变得容易,所以激活能变小。钆掺杂Ca_3Co_4O_(9+δ)试样在不同氧气氛下测试结果差别不大,说明钆掺杂具有稳定材料热电性能的作用。
Gd-doped Ca_3Co_4O_(9+δ),Y-doped Ca_3Co_4O_(9+δ) and Y,Gd-doped Ca_3Co_4O_(9+δ) were synthesized by the polyacrylamide gel method, and their powders were sintered by Spark Plasma Sintering(SPS). The microstructures of samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The resistivity, Seebeck coefficient and thermal conductivity of the three series samples were tested at different temperatures. The conduct mechanism of samples was studied at temperatures above 650K. The hopping conduct mechanism of small polarons was determined for the materials. The XPS peak shift and changes of ion value were studied. Grain sizes of samples were controlled by heat treatment and the effects of grain sizes on resistivity were studied. Micro-topography was characterized by electric force microscopy (EFM) and relationships between micro-topography and resistivity were built up.
     The results of XRD and TEM indicated that the powders synthesized by the polyacrylamide gel method were fine and single phase. The parameters of optimal process were defined: the proportion between Acrylamide(monomer) and N,N'-methylene-bisacrylamide(crosslinked agent) is 5:1. The value of pH was controlled at about 6. The uniform gel was gained above 348K. Effects of metal ions concentrations on grain sizes are not obvious. DTA analysis showed that the synthesized temperature of Ca_3Co_4O_(9+δ) was lower than that of other methods.
     Samples sintered by SPS process showed c-Axis aligned at some degree. TEM observation of the Samples indicated that there were no other phases and non-crystal layers among grains. The temperature dependence on resistivity of Ca_3Co_4O_(9+δ) sample showed positive temperature coefficient below about 500K and negative temperature coefficient above about 500K. But that of doped Ca_3Co_4O_(9+δ) samples only showed negative temperature coefficient. According to the analysis of high temperature conduct mechanism, the materials have the hopping conduct mechanism of small polarons. With increasing of doping, the hopping activation energy increased. In addition, the hopping activation energy of samples doping with Gd was higher than that of samples doping with Y due to the effects of spin scatter. At 973K, ZT values of 10% Y-doped and 10% Gd-doped samples reached 0.223 and 0.249 respectively. The ZT value of 10% double-doped sample reached 0.263, which was the highest in the three material systems.
     The grain size was adjusted by heat treatment. After treated at 973K, the size of grain was about 1~2μm; after treated at 1123K, the size of grain was about 3~5μm. But the resistivities of two samples were almost same. So the grain size was not the main factor on the resistivity.
     XPS results showed that Co~(2+) increases after doping. The peaks of elements in doped sites shifted to high bind energy, which indicated there were weak bound charges in doped sites. The intensity of peaks increased in value band spectra of doped samples, which showed the decreasing of carriers. The electric force microscopy phase image connected resistivity with grain shape, and showed anisotropic properties of materials.
     The effect of oxygen nonstoichiometry on resistivity was obvious. The resistivity tested in full oxygen condition was lower than that tested in air condition due to oxided cobalt ions in materials. The concentration of Co~(4+) increases, and effective distance between Co~(4+) and Co~(3+) decreases; the hoping between two sites is easier, so hopping activation energy becomes smaller. For samples doping with Gd, there is no obvious difference for the resistivity tested in different conditions, which showed that the doped Gd element could stabilize thermoelectric properties of materials.
引文
1 胡海泉, 鄢春根, 刘春福等. 电子陶瓷最新研究动向和开发趋势.中国陶瓷. 2003,39(5): 34~37
    2 D. M. Rowe, G. Min. Evakuation of Thermoelectric Modules for Power Generation. J Power Sources. 1998, 73: 193~198
    3 刘长洪,何元金. 热电物理的研究进展. 物理. 1997, 26: 134~139
    4 G. Min, D. M. Rowe. “Symbiotic” Application of Thermoelectric Conversion for Fluid Preheating/Power Generation.Energy Conversion and Management. 2002, 43: 221~228
    5 E. M. Conwell, V. F. Weisskopf. Theory of Impurity Scattering in Semi -conductor. Phy.Rev. 1950, 71(1): 388~393
    6 C. Herring. Role of Low Energy Phonons in Thermal Conduction. Phy.Rev. 1954, 95: 954~965
    7 B. C. Sales. Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials. MRS Bullitin. 1998, 23(11): 15~21
    8 T. Ota, C. Tokunaga, K. Fujita. Development of Thermoelectric Power Generation System for Industrial Furnaces. 24th International Conference on Thermoelectrics.Clemson, IEEE. 2005: 323~325
    9 J. G. Haidar, J. I. Ghojel. Optimization of the Thermal Regime of Thermo -electric Generators in Waste Heat Recovery Applications. 21st International conference on thermoelectrics. LongBeach, IEEE. 2002: 427~430
    10 M. N. OviduStoican, J. G. Stockholm. Thermoelectric Generators with Electric Pulsed Output. 21st International conference on thermoelectrics. LongBeach, IEEE. 2002: 439~441
    11 Y. Ono, D. Kimura, S. Kawano. Fabrication and Performance of an Oxide Thermoelectric Power Generator. 21st International conference on thermo -electrics. LongBeach, IEEE. 2002: 454~458
    12 R. Funahashi, T. Mihara, M. Mikami. Power Generation of Thermoelectric Oxide Modules, 24th International conference on thermoelectrics. Clemson,IEEE. 2005: 295~298
    13 H. Scherrer, L. Vikhor, B. Lenoir. Solar Thermolectric Generator Based on Skutterudites. J Power Sources. 2003, 115: 141~148
    14 T. Mutod, K. Tokuda, T. Itoh et al. Fabrication of Segmented p-type AgSbTe2 /Sb2Te3/Bi0.4Sb1.6Te3 Thermoelectric Module and Its Performance. 24th International conference on thermoelectrics. Clemson, IEEE. 2005: 524~527
    15 R. W. Diller, Y. W. Chang. Experimental Results Confirming Improved Performance of Systems Using Thermal Isolation. 21st International conference on thermoelectrics. LongBeach, IEEE. 2002: 548~551
    16 H. Kaibe, I. Aoyama, M. Mukoujima. Development of Thermoelectric Generating Stacked Modules Aiming for 15% of Conversion Efficiency,24th nternational Conference on Thermoelectrics. Clemson, IEEE. 2005: 227~230
    17 D. Muchilo, A. Mrotzek, E. Muller. Development of Mechanically and Chemically Stable Electrical Contacts for Thermoelectric Oxide Material, 22th international Conference on Thermoelectrics. Monpellier, IEEE. 2003: 243~246
    18 X. Y. Li, L. D. Chen, J. F. Fan. Mo / Ti / CoSb3 Joining Technology for CoSb3 Based Materials, 24th International Conference on Thermoelectrics. Clemson. IEEE. 2005:528~531
    19 A. K. Pramanick, P. K. Das. Constructal Design of a Thermoelectric Device. Int J Heat Mass Tran. 2006, 49: 1420~1429
    20 E. E. Antonova , C. David. Looman. Finite Elements for Thermoelectric Device Analysis in Ansys. 24th International Conference on Thermoelectrics. Clemson, IEEE. 2005: 200~203
    21 M. A. Soto, R. Venkatasubramanian. Ansys-Based Detailed Thermo Mechani -cal Modeling of Complex Thermoelectric Power Designs. 24th International Conference on Thermoelectrics. Clemson, IEEE. 2005: 204~207
    22 J. P. Fleurial. Solid-State Power Generation and Cooling Micro-nanodevices for Distributed System Architectures. XX Proc ICT 2001.Beijing, 2001:24~29.
    23 G. H. Zeng, J. E. Bowers,Y. Zhang, SiGe/Si Superlattice Power Generators.24th International Conference on Thermoelectrics. Clemson, IEEE. 2005: 164 ~167
    24 C. Watkins, B. Shen, R. Venkatasubramanian. Low-grade-heat Energy Harvesting Using Superlattice Thermoelectrics for Applications in Implantable Medical Devices and Sensors. 24th International Conference on Thermoelec -trics. Clemson, IEEE. 2005: 250~253
    25 A. Jacquot, W. L. Liu, G. Chen. Fabrication and Modeling of an In-plane Thermoelectric Microgenerator. 21st International Conference on Thermo -electrics. LongBeach, IEEE. 2002: 561~565
    26 Y. Zhang, Z. X. Bian and A. Shakouri. Improved Maximum Cooling by Optimizing the Geometry of Thermoelectric Leg Elements. 24th International Conference on Thermoelectrics. Clemson, IEEE. 2005: 233~236
    27 X. H. Chen, B. H. Lin, J. Chen. The Parametric Optimum Design of a New Combined System of Semiconductor Thermoelectric Devices. Appl Energ. 2006, 83: 681~686
    28 U. Ghoshal, R. Schmidt. Refrigeration Technology for Sub-ambient Temperature Operation of Computing Systems. Proc ISSCC 2000. SanF rancisco, IEEE. 2000: 216~217
    29 D. J. Yao. In-plane MEMS Thermoelectric Micro-cooler. UCLA.PhD disserta- tion.2001: 36~39
    30 L. Weiwen,Z. Xinbing,Z. Tiejun. Transport Properties of Fe-Co-Si-Cu Thermoelctric Alloys. Rare Metal Mater Eng. 2003, 32(8): 621~623
    31 I. Terasaki, Y. Sasago, K. Uchinokura. Large Thermoelectric Power in NaCo2O4 Single Crystals. Phys.Rev. B. 1997, 56(20): R12685~12687
    32 K. Fujita, T. Mochida, K. Nakamura. High-Temperature Thermoelectric Properties of NaxCoO2-Single Crystals. 20th International Conference on Thermoelectrics. BeiJing, IEEE. 2001: 168~171
    33 H. Yakabe, K. Fujita, K. Nakamura. Thermoelectric Properties of NaxCoO2-δ (x= 0.5)System:Focusing on Partially Substituting Effects. 17th International Conference on Thermoelectrics. Nogaya, IEEE. 1998: 551~558.
    34 厉英, 张丽华, 姜茂发. ( Na1 - yMy) 1. 6Co2O4 (M = K, Ca , Sr) 的制备及电学性能.中国有色金属学报. 2006, 16(1): 142~146
    35 M. Ito, T. Nagira, Y. Oda. Effect of Partial Substitution of 3d Transition Metals for Co on the Thermoelectric Properties of NaxCo2O4, Mater Trans. 2002, 43(3): 601~607
    36 T. Motohashi, E. Naujalis, R. Ueda et al. Simultaneously Enhanced Thermoelectric Power and Reduced Resistivity of NaxCo2O4 by Controlling Na Nonstoichiometry. Apply. Phys. Letter. 2001, 79(10): 1480~1482
    37 D. J. Singh. Electronic Structure of NaCo2O4. Phys.Rev.B. 2000, 61: 13397~ 13402
    38 R. Ray, A. Ghoshray. 59Co NMR Studies of Metallic NaCo2O4. Phys. Rev. B. 2000, 59: 9454~9461
    39 I. Terasaki. Cobalt Oxides and Kondo Semiconductors: A Pseudogap System as a Thermoelectric Material. Mater Trans. 2001, 42(6): 951~955
    40 Y. Ando, N. Miyamoto, K. Segawa. Specific-heat Evidence for Strong Electron Correlateions in the Thermoelectric Materials (Na,Ca)Co2O4. Phys. Rev. B. 1999, 60(12): 10580~10583
    41 K. Takahata, Y. Iguchi, D. Tanaka. Low thermal conductivity of the layered oxide (Na,Ca)Co2O4: Another example of Phonon glass and an electron crystal, Phys. Rev. B. 2000, 61(19): 12551~12555
    42 I. Terasaki. Physical Properties of NaCo2O4 and Related Oxides: Strongly Correlated Layered Oxides as Thermoelectric Materials. 18th International Conference on Thermoelectrics. Baltimore, IEEE. 2000: 569~576
    43 W. Koshibae, S. Mackawa. Effects of Orbital Degeneracy on the Thermo- power of Strongly Correlated Systems. Phys. Rev. Lett. 2001, 87(23): 236603~236606
    44 W. Koshibae, S. Maekawa. Exact-diagonalization Study of Thermoelectric Response in Strongly Correlated Electron Systems. Phys. B. 2003, 329-333: 896~897
    45 K. Fujita, T. Mochida, K. Nakamura. High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals. Jpn. J. Appl. Phys. 2001, 40: 4644~ 4648
    46 A. C. Masset, C. Michel, A. Maignan et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B. 2000, 62: 166 ~175
    47 H. Minami, K. Itaka, H. Kawaji. Rapid Synthesis and Characterization of (Ca1-xBax)3Co4O9 Thin Films Using Combinational Methods. J. Appl. Phys. 2004, 826(3): 834~836
    48 S. W. Li, R. Funahashi, I. Matsubara. Synthesis and Thermoelectric Properties of the New Oxide Ceramics Ca3-xSrxCo4O9+δ (x=0.0~1.0). Ceram Int. 2001, 27: 321~324
    49 G. J. Xu, R. Funahashi, M. Shikano. High Temperature Transport Properties of Ca3-xNaxCo4O9 System. Solid State Commun. 2002, 124: 73~76
    50 M. Masashi, A. Naoko, G. Emmanuel. Effect of Bi Substitution on Microstructure and Thermoelectric Properties of Polycrystalline [Ca2CoO3]pCoO2. Jpn. J. Appl. Phys. 2006, 45(5): 4131~4136
    51 G. J. Xu, R. Funahashi, M. Shikano et al. Thermoeletric Propertyes of the Bi-and Na-Substituted Ca3Co4O9 System. Appl. Phys. Lett. 2002, 80: 3760~ 3762
    52 D. L. Wang, L. D. Chen, Q. Yao. High-temperature Thermoelectric Properties of Ca3Co4O9+δwith Eu Substitution. Solid state Commun. 2004, 129: 615~618
    53 D. L. Wang, L. D. Chen, Q. Wang et al. Fabrication and Thermoelectric Properties of Ca3.xDyxCo4O9+δ System. J Alloys and Compd. 2004, 376: 58~61
    54 I. Matsubara, R. Funahashi, T. Takeuchi et al. Thermoelectric Properties of Spark Plasma Ssintered Ca2.75Gd0.25Co4O9 Ceramics. J. Appl. Phys. 2001, 90: 462~465.
    55 M. Prevel, O. Perez, J. G. Noudem. Bulk Textured Ca2.5(RE)0.5Co4O9 (RE: Pr, Nd, Eu, Dy and Yb)Thermoelectric Oxides by Sinter-forging. Solid State Sciences. 2007, 9: 231~235
    56 Y. Miyazaki, Y. Suzuki, T. Miural. Effect of 3d-Transition Metal Substitution on the Thermoelectric Properties of the Misfit-Layered Cobalt Oxide [Ca2CoO3]pCoO2. 22nd International conference on thermoelectrics. La Grande Motte. France, IEEE. 2003:203~206
    57 D. Li, X. Y. Qin, Y. J. Gu et al. The Effect of Mn Substitution on the Thermoelectric Properties of Ca3MnxCo4-xO9 at Low Temperatures. Solid State Commun. 2005, 134: 235~238
    58 Q. Yao, D. L. Wang, L. D. Chen. Effects of Partial Substitution of Transition Metals for Cobalt on the High-temprature Thermoelectric Properties of Ca3Co4O9+δ. J. Appl. Phys. 2005, 97(10): 103905~103908
    59 I. Hiroshi, S. Jun, T. Toshihiko. Enhancement of Electrical Conductivity in Thermoelectric [Ca2CoO3]0.62CoO2 Ceramics by Texture Improvement. Jpn. J. Phys, 2004, 43(8): 5134~5139
    60 E. Guilmeau, R. Funahashi. Thermoelectric Properties-texture Relationship in Highly Oriented Ca3Co4O9 Composites. Appl. Phys. Lett. 2004, 85 (9): 1490 ~1492
    61 M. Prevel, S. Lemonnier, Y. Kelvin. Textured Ca3Co4O9 Thermoelectric Oxides by Thermoforging process. J. Appl. Phys. 2005, 98(1): 93706~93709
    62 J. Shmoyama, S. Horii. Synthesis and Thermoelectric Properties of Magnetically c-Axis-Oriented [Ca2CoO3-δ]0.62CoO2 Bulk with Various Oxygen Content . Jpn. J. Appl. Phys. 2003, 42: L194~L197
    63 R. Funahashi, I. Matsubara, H. Ikuta et al. An Oxide Single Crystal with High Thermoelectric Performance in Air. Jpn. J. Appl. Phys. 2000, 39: L1127~ L1129
    64 R. Funahashi, S. Urata. Enhancement of Thermoelectric Figure of Merit by Incorporation of Large Single Crystals in Ca3Co4O9 Bulk Materials. J. Mater. Res. 2003, 18: 1646~1651
    65 R. Funahashi, M. Shikano. Bi2Sr2Co2Oy Whiskers with High Thermoelectric Figure of Merit. Appl. Phys. Letters. 2002, 81: 1459~1461
    66 H. Fukutomi, E. Iguchi.Texture Development in Bi1.5Pb0.5Sr1.7Y0.5Co2O9-δ Layered Cobaltite by High-temperature Compression Deformation and its Effect on Thermoelectric Properties. Acta Materialia. 2007, 55: 4213~4219
    67 W. Shin. High Performance P-type Thermoelectric Oxide Based on NiO. Mater Lett. 2000, 45: 302~306
    68 M. Ohtaki, H.Koga, T.Tokunaga. Electrical Transport Properties and HighTemperature Thermoelectric Performance of (Ca0.9M0.1)MnO3(M=Y, La, Ce,Sm,In,Sn,Sb,Pb,Bi). J. Solid State Chem. 1995, 120: 105~111
    69 R. Ang, Y. P. Sun,Y. Q. Ma et al. Diamagnetism, Transport, Magnetothermo- electric Power and Magnetothermal Conductivity in Electron-doped CaMn1-xVxO3 Manganites. J Appl Phys. 2006, 100( 6): 63902~63906
    70 Y. Q. Zhou, I. Matsubara, R. Funahashi. High Temperature Thermoelectric Properties of (Ca,Ce)4Mn3O10. Mater Res Bull. 2002, 37: 1123~1131
    71 栾伟玲, 毛顺杰, 涂善东等. 锶掺杂铅酸钡陶瓷的热电性能. 硅酸盐学报. 2006, 34(2): 137~141
    72 M. Yasukawa, S. Itoh, T. Kono. Thermoelectric Properties of A-site Doped Perovskites (Sr0.6Ba0.4)(1-x)MxPbO3 (M = La, K). J Alloys Compd. 2005, 390 (1-2): 250~254
    73 W. Shin, N. Murayama. Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J Power Sources. 2001, 103: 80~85
    74 D. T. Morelli, G. P. Meisner. Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl.Phys. 1995, 77(8): 3777~3781
    75 T. M. Tritt. Thermoelectrics Run Hot and Cold.Science. 1996, 272: 1276 ~1277
    76 G. S. Nolas, G. A. Slack, D. T. Morelli et al. The effect of Rare-earth Filling on the Lattice Thermal Conductivity of Skutterudites. J Appl Phys. 1996, 79: 4002~4008
    77 L. Yang, J. S. Wu, L. T. Zhang. Synthesis of Filled Skutterudite Compound La0.75Fe3CoSb12 by Spark Plasma Sintering and Effect of Porosity on Thermoelectric Properties. J Alloys Compd. 2004, 364: 83~88
    78 L. Yang, J. S. Wu, L. T. Zhang. Thermoelectric Properties of Some Skutterudite Compounds with Different Grain Size. J Alloys Compd. 2004, 375: 114~119
    79 S. S. Kim, S. Yamamoto. Thermoelectric Properties of Anisotropy-controlled p-type Bi-Te-Sb System via Bulk Mechanical Alloying and Shear Extrusion. J Alloys Compd. 2004, 375: 107~113
    80 蒋俊, 李亚丽, 许高杰. 制备工艺对p 型碲化铋基合金热电性能的影响.物理学报. 2007, 56(5): 2858~2862
    81 K. Kishimoto, T. Koyanagi. Preparation of Sintered Degenerate n-type PbTe with a Small Grain Size and its Thermoelectric Properties. J Appl Phys. 2002, 92: 2544~2549
    82 P. W. Zhu, I. Yoshio, I. Yukihiro. Composition dependent Thermoelectric Properties of PbTe Doped with Bi2Te3. J Alloys Compd. 2006, 420(1): 233~236
    83 A. Lambrecht, H. Beyer, C. Künzel. High Figure of Merit ZT in PbTe and Bi2Te3 Bases Superlattice Structures by Thermal Conductivity Reduction. 20th International Conference on Thermoelectrics. Beijing: IEEE, 2001: 335~339
    84 高敏,张景韶.Rowe D M.温差电转换及其应用.兵器出版社,1996.25~56.
    85 E. Kasper. Properties of Strained and Relaxed Silicon Germanium. 国防工业出版社,2002.89~91.
    86 G. A. Slack,M. A. Hussain.The Maximum Possible Conversion Efficiency of Silicon-germanium Thermoelectric Generators. J Appl Phys. 1991, 70 (5):2694~2718.
    87 I. Yonenaga, T. Akashi, T. Goto. Thermal and Electrical Properties of Grown GeSi Single Crystals. J phys chem solid. 2001, 62: 1313~1317.
    88 A. Khitund, A.Balandin, K.L.Wang.Enhancement of the Thermoelectric Figure of Merit of Si1-xGex Quantum Wires due to Spatial Confinement of Acoustic Phonons. Physica E. 2000, 8: 13~18
    89 D. Chris, G. Chen. Modeling the thermal conductivity of a SiGe segmented nanowire. Proceeding of 21st international conference on thermoelectronics. Long Beach, IEEE. 2002: 365~374.
    90 M. Takashiri, B. Tasciuc, T. Jacquot. Structure and Thermoelectric Properties of Boron Doped Nanocrystalline Si0.8Ge0.2 Thin Film. J Appl Phys. 2006, 100: 054315
    91 S. W. Li, R. Funahashi, I. Matsubara. High Temperature Thermoelectric Properties of Oxide Ca9Co12O28, J. Mater. Chem. 1999, 9: 1659~1660
    92 M. Sano, S. Horii. Synthesis and Thermoelectric Properties of Magnetically c-Axis-Oriented [Ca 2 CoO 3-δ] 0.62 CoO2. Jpn.J.Appl.Phys. 2003, 42: L198 ~L200
    93 J. Nan, J. Wu, Y. Deng et al. Synthesis and Thermoelectric Properties of (NaxCa1?x)3Co4O9 Ceramics. J Eur Ceram Soc. 2003, 23: 859~863
    94 J. Nan, J. Wu, Y. Deng et al. Thermoelectric Properties of La-doped Ca–Co–O Misfit Cobaltites. Solid State Commun. 2002, 124: 243~246
    95 南军, 赵淑金. Ca3Co4O9 陶瓷的制备和热电性能. 硅酸盐学报. 2003, 31(2): 143~147
    96 G. J. Xu, R. Funahashi. High Temperature Transport Properties of Ca3-xNaxCo4O9 System. Solid State Commun. 2002, 124(3): 73~76
    97 R. Hara, S. Inoue. Aging Effects of Large-size n-type CoSb Prepared by Spark Plasma Sintering. J Alloys Compd. 2003, 349: 297~301
    98 S. Bhattacharya, D. K. Aswal, A. Singh. Anisotropic Electrical Transport Studies of CaCoO Single Crystals Grown by the Flux Method. J Cryst Growth. 2005, 277: 246~251
    99 Digital Instruments. MultiMode SPM Instruction Manual. Version 4.31ce. 1997: 287~288
    100 A. Douy,P. Odier. The Polyacrylamide Gel: a Novel Route to Ceramic and Glassy Oxide Powders. Mat.Res.Bull. 1989, 24: 1119~1126
    101 W. Zhou, Z. P. Shao, W. Q. Jin. Synthesis of nanocrystalline conducting composite oxidesbased on a non-ion selective combined complexingprocess for functional applications. J Alloys and Compd. 2006, 426: 368~374
    102 A. Douy. Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses. Int. J. Inorganic Mater. 2001, 3: 699~707
    103 A. Sin, P. Odier. Gelation by Acrylamide, a Quasi-Universal Medium for the Synthesis of Fine OxidePowders for Electroceramic Applications. Adv. Mater. 2000, 12(9): 649~652
    104 吴松全, 王福平, 何利娜等. 聚丙烯酰胺凝胶法制备Li2O-ALO-SiO微晶玻璃超微粉,硅酸盐学报. 2003, 32: 200~204
    105 金宝玉, 刘白则, 王洁晴. 医用聚丙烯酰胺水凝胶红外吸收光谱化学结构分析. 实用美容整形外科杂志. 2001, 12 (3): 143~145
    106 高锋, 唐杰渊, 林晓红. 聚丙烯酰胺镨配位聚合物的合成与性质. 福建师范大学学报(自然科学版). 2000, 16(2): 58~61
    107 E. Woermann, A. Muan. Phase Equilbria in the System CaO-Coblat Oxide in Air. J. Inorg Nucl Chem. 1970, 32: 1455~1459
    108 R. Asahi, J. Sugiyama, T. Tani. Electronnic Structure of Misfit-layer Calcium Cobaltite. Phys. Rev. B. 2002, 66: 155103~155106
    109 W. Koshibae, K. Tsutsui, S. Maekawa. Thermopower in Cobalt Oxides. Phys. Rev.B. 2000, 62: 6869~6872
    110 T. Kobayashi, H. Takizawa, T. Endo et al. Metal-insulator transition and thermoelectric properties in the system (R1?xCax)MnO3?δ (R: Tb, Ho, Y). J. Soild State Chem.1995, 92(1): 116~129
    111 P. Limelette, V. Hardy, P. Auban-Senzier et al. Strongly correlated properties of the thermoelectric cobalt oxide Ca3Co4O9. Phys Rev B. 2005, 71: 233108~233111
    112 G.Palsson, G.Kotliar. Thermoelectric Response Near the Density Driven Mott Transition. Phys. Rev. Lett. 1998, 80: 4775~4778
    113 李正中. 固体理论. 第二版. 高等教育出版社. 2002: 362~363
    114 M. Shikano, R. Funashi. Electrical and Thermal Properties of Single crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 Structure. Appl Phys Lett. 2003,82(12): 1851~1853
    115 刘恩科, 朱秉升, 罗晋生. 半导体物理. 第四版. 国防工业出版社. 1994: 296
    116 J. P. Heremans, C. H .Thrush, D. T. Morelli. Geometrical Magnetothermo- power in Semiconductors. Phys. Rev. Lett. 2001, 86: 2098~2101
    117 C. W. Nan, M. Douglas, A. C. Smith. Electrical Properties of Composite Solid Electrolytes. Mater. Sci Eng. B. 1991, 10(2): 99~106
    118 J. W. Moon, D. Nagahama, Y. Masuda et al. Anisotropic Thermoelectric Properties of Crystal-axis Oriented Ceramics of Layer-Structured Oxide in the Ca-Co-Osystem. J Ceram Soc Jpn. 2001, 109: 647~650
    119 南策文. 非均质材料物理——显微结构-性能关联. 科学出版社. 2005:55
    120 F. J. DiSalvo. Thermoelectric cooling and power generation. Science. 1999,285: 703~706
    121 T. Takeuchi, T. Kondo, K. Soda et al. Electronic Structure and Large Thermoelectric Power in Ca3Co4O9. J Electron Spectrosc. 2004, 137: 595~599
    122 S. H. Lambert, H. Leligny, D. Grebille. Three Forms of the Misfit Layered Cobaltite [Ca2CoO3] [CoO2]1.62 A 4D Structural Investigation. J Solid State Chem. 2001, 160: 322~331
    123 J. F. Moulder, W. F. Stickle, P. E. Sobol. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc. 1995: 82~83
    124 T. Mizokawa, L. H. Tjeng, P. G. Steeneken. Photoemission and X-ray -absorption Study of Misfit-layered (Bi,Pb)-Sr-Co-O Compounds: Electronic Structure of a Hole-doped Co-O Triangular Lattice. Phys. Rev. B. 2001, 64: 115104~115107
    125 B. Mayer, S. Uhlenbrock, M. Neumann. XPS Satellites in Transition Metal Oxides. J Electron Spectrosc. 1996, 81: 63~67
    126 K. S. Kim. X-ray-photoelectron spectroscopic studies of the electronic structure of CoO. Phys. Rev. B. 1975, 11: 2177~2185
    127 N. Gunasekaran, S. Rajadurai, J. Carberry. Surface Characterization and Catalytic Properties of La1-xAxMO Perovskite Oxides. Solid State Ionics. 1995,81:243~249
    128 Y. Q. Zhou, I. Matsubara, W. Shin et al. Effect of grain size on electric resistivity and thermopower of (Ca2.6Bi0.4)Co4O9 thin films. J. Appl Phys. 2004, 95: 625~627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700