690合金中晶界特征分布及其演化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
690合金作为压水反应堆的蒸汽发生器传热管材料,已经逐渐代替600合金,虽然取得了较好的效果,但随着核电工业的发展,进一步提高蒸汽发生器可靠性是急待研究的问题。蒸汽发生器传热管道破坏泄漏的主要原因在不同时期有不同的情况,从近几年统计的结果来看,现在与晶界有关的应力腐蚀和晶间腐蚀仍然是蒸汽发生器传热管道破坏的主要原因。
     包括690合金在内的绝大部分工程材料都是多晶体,材料的性能与其显微组织及晶界特性有着非常紧密的联系。如晶间腐蚀、断裂、合金及杂质元素的偏聚、蠕变等问题,都会受到晶界结构特征的影响。1984年Watanabe提出了晶界设计与控制这种概念,继而在上世纪90年代形成了“晶界工程(grainboundary engineering GBE)”这一研究领域.通过合适的形变及退火工艺,可以明显提高材料中的低∑CSL(CSL是“coincidence site lattice”的缩写,即重位点阵。低∑CSL是指∑≤29)晶界比例,优化其分布,就可以改善材料与晶界有关的多种性能。
     本工作应用光学显微镜、扫描电子显微镜、电子背散射衍射(EBSD)和取向成像显微技术(OIM)研究了加工和热处理工艺对690合金的晶界特征分布(各种晶界所占的比例)的影响。仔细观察分析了形变后退火过程中690合金的显微组织结构的演化过程,阐明了形变退火工艺与晶界特征分布之间关系及其演化的机理。通过晶间腐蚀试验考验了含有不同比例低∑CSL晶界690合金的耐腐蚀能力,探讨了其中的机理。得出以下主要结论:
     1)在低层错能面心立方金属690合金中,低∑CSL晶界比例的提高是基于退火孪晶(∑3)的形成,退火前的冷轧压下量在调整晶界特征分布中起关键作用。冷轧5%再在1100℃退火5min可使690合金的低∑CSL晶界比例提高到70%以上(按Palumbo-Aust标准统计),这时形成了数百微米尺寸的“互有∑3~n取向差关系晶粒的团簇”是其显微组织的重要特征(n为正整数,在低∑CSL范畴中只有n=1,2,3)。这种晶粒团簇的尺寸和内含∑3~n晶界的数量随冷轧压下量的增加而下降。初始经过固溶处理或固溶后再时效处理对690合金经过冷轧5%再在1100℃退火后的晶界特征分布影响不大。将冷轧和退火工艺重复使用,和单次处理效果基本一致。
     2)再结晶形核密度和多重孪晶的发展是控制690合金晶界特征分布的关键因素。“互有∑3~n取向差关系晶粒的团簇”是由再结晶时一个再结晶晶核在长大过程中不断产生退火孪晶,发生多重孪晶形成孪晶链而形成的。形变量小,形核密度低致使再结晶晶核有充分的空间发展,再结晶晶核与形变基体之间的随机晶界有很长的迁移距离,在不断迁移的过程中就能不断产生退火孪晶,发生多重孪晶,从而发展出很长的孪晶链,形成了大尺寸的晶粒团簇,同时也提高了∑3~n晶界的比例。因此,小形变量冷轧后再在高温短时间再结晶退火可以明显提高低∑CSL晶界比例。形变量越大,形核密度就越高,使得晶粒团簇尺寸小,∑3~n晶界比例也就低。
     3)对于低∑CSL晶界比例高的样品来说,用Brandon标准判定时得到的随机晶界网络的连通性可以明显被一些低∑CSL晶界片段打断,但这些低∑CSL晶界的相对偏差都很大。而用更为严格的Palumbo-Aust标准统计时随机晶界网络的连通性几乎不会被打断。因此,低∑CSL晶界比例提高以后随机晶界网络的连通性可以被打断的说法并不可靠。
     4)低∑CSL晶界比例高的样品比低∑CSL晶界比例低的样品耐晶间腐蚀性能明显好,其原因是前者晶粒团簇的尺寸明显比后者大,形状也不规则,并不是由于随机晶界网络的连通性被打断的缘故。
The nickel-based Alloy 690,with main composition Ni-30Cr-10Fe(wt.%),is currently replacing Alloy 600(Ni-16Cr-9Fe) as a steam generator tube material in pressurized water reactors,because of its superior resistance to intergranular stress corrosion cracking(IGSCC).But with prolonged service lifetime and improved performance being demanded by the nuclear energy industry,the need to improve the resistance to IGSCC and intergranular stress corrosion(IGA) in Alloy 690 should also be considered.
     Grain boundary structure has long been known to play a critical role in many material properties,such as precipitation,corrosion,and cracking.Grain boundary engineering(GBE),which was under the light of "grain boundaries design and control" proposed by Watanabe,developed a lot and was fruitful during the last two decades.The grain boundaries related properties of materials can be enhanced by exercising control over the population of low∑CSL(∑≤29) grain boundaries,as defined by the coincident site lattice(CSL) model.A large body of works proved that the grain boundary character distribution(GBCD) can be altered via proper thermomechanical treatments.Some face-centered cubic(fcc) metal materials with low to medium stacking fault energy,such as Pb-base alloy,Ni-base alloy,OFE copper,and austenitic stainless steel,were successfully applied this concept to promote∑3~n(n=1,2,3....) boundaries formation,and their properties were greatly enhanced.This may be an approach to further improve the resistance to intergranular corrosion of Alloy 690 which is also a f.c.c material with low stacking fault energy.
     The effects of thermomechanical treatments on GBCD in Alloy 690 were studied by optical microscope(OM),scanning electron microscope(SEM),electron backscatter diffraction(EBSD) and orientation imaging microscopy(OIM).The microstructure evolution of Alloy 690 during annealing at 1100℃after various cold rolling were observed and the microstructures in the partially recrystallized state were analyzed in detail.Based on these observations and analyzing the mechanism of the GBCD manipulation was elucidated.Finally,the intergraunlur corrosion testing was carried out on the specimens with different GBCD to reveal their intergraunlur corrosion resistance,and the mechanism involved.It is possible to reach the following general conclusions that are given below:
     (1)In Alloy 690,small strain(5%) and subsequent high temperature(1100℃) annealing for short time(5 min) can produce high proportion of low∑CSL grain boundaries(more than 70%),which mainly are∑3~n.In this case,the large size twin-induced grains-clusters(several hundred microns in dimension) constitute the microstructure.The proportion of Low∑CSL grain boundaries and the size of the grains-cluster decreased with the increase of strain.The starting state,i.e.solution annealed or aged after solution annealed,,didn't affect the GBCD obviously. Multi-cycle treatment didn't show different effects on the GBCD apart from single cycle treatment.
     (2) Based on the observation of partial and full recrystaUization state,it is clear that the nucleation density and multiple twinning are the key factors affecting the GBCD.The grains-cluster is formed by continuous chain of twinning events starting from a single nucleus of recrystallization,and with the associated presence of multiple∑3~n boundaries.As a consequence,all the grains inside the same cluster have close∑3~n misorientations even at a long distance.That the mean size of the grains-clusters and proportion of low∑CSL boundaries decrease with the increasing strain,is caused by the increasing nucleation density of recrystallization with the increase of strain.
     (3)In the case of high proportion of low∑CSL boundaries,connectivity of random boundaries network is very sensitive to the applied criterion of CSL.The connectivity of random boundary network is not fragmented obviously when the Palumbo-Aust criterion is used,whereas substantially interrupted when the Brandon criterion is applied.Almost all those low∑CSL boundaries(Brandon criterion) appear on the network of the random boundaries have very large deviations.Hence, the marked discontinuity of random boundaries according to Brandon criterion is not reliable.
     (4) When the proportion of low∑CSL boundaries is enhanced,the high resistance to mass loss during intergranular corrosion testing is attributed to the large size of the grains-cluster and its zigzag shape,rather than the unreliable discontinuity of the random boundary network.
引文
[1]http://nsse.sjtu.edu.cn/hezhishi/henengkeji/content/3.htm
    [2]华北电力科学研究院信息所,中国核电发展概况,华北电力技术,2006增刊,3
    [3]杨文斗,反应堆材料学[M],北京:原子能出版社,2000.12
    [4]Kenneth Chuck Wade,Steam Generator Degradation and Its Impact on Continued Operation of Pressurized Water Reactors in the United States[R],Energy Information Administration/Electric Power Monthly August 1995.
    [5]D.R.Diercks,W.J.Shack,J.Muscat,Overview of steam generator tube degradation and integrity issues[J],Nuclear Engineering and Design 194(1999)19-30
    [6]张宏斌,李守军,胡尧和,谢锡善,王剑志,国外关于蒸汽发生器传热管用Inconel690合金研究现状[J],特钢技术,2003,4:2-11
    [7]1980年Huntington Alloy,Inc,技术资料。
    [8]杨湘,苏兴万,文燕,国产Inconel合金管的性能及应用研究[J],核动力工程,1997,Vol.18.No.3:269-272
    [9]Kronberg M L,Wilson F H.Trans.Am.Inst.Min.Engrs,1949;185:501
    [10]Kurban M,Erb U,Aust K T,A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel[J],Scripta Mater 2006;54:1053
    [11]Bi,Hong Yun;Kokawa,Hiroyuki;Wang,Zhan Jie;Shimada,Masayuki;Sato,Yutaka S.,Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel[J],Scripta Materialia,v 49,n 3,August,2003,p 219-223
    [12]B Bennett W,Picketing H W,Effect of grain boundary structure on sensitazation and corrosion of stainless steel[J],Metallurgical Transactions A,1987;18A:1117
    [13] Zhou, Y.; Aust, K.T.; Erb, U.; Palumbo, G., Effects of grain boundary structure on carbide precipitation in 304L stainless steel[J], Scripta Materialia, v 45, n 1, Jul 13, 2001, p49-54
    
    [14] Palumbo G, Erb U, Enhanceing the operationg life and performance of lead-acid batteries via grain-boundary engineering[J], MRS Bulletin 1999;24:27
    
    [15] Lehockey, E.M.; Limoges, D.; Palumbo, G.; Sklarchuk, J.; Tomantschger, K.; Vincze, A., On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering [J], Journal of Power Sources, v 78, n 1-2, Mar-Apr, 1999, p 79-83
    
    [16] Lin P, Palumbo G, Erb U, Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J], Scripta Metall Mater, 1995;33:1387
    
    [17] Kim, S.H.; Erb, U.; Aust, K.T.; Palumbo, G., Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum [J], Scripta Materialia, v 44, n 5, Mar 26, 2001, p 835-839
    
    [18] Lehockey, E.M.; Palumbo, G.; Lin, P.; Brennenstuhl, A., Mitigating intergranular attack and growth in lead-acid battery electrodes for extended cycle and operating life [J], Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 29A, n 1, Jan, 1998, p 387-396
    
    [19] Lehockey, E.M.; Palumbo, G.; Lin, P.; Brennenstuhl, A.M., On the relationship between grain boundary character distribution and intergranular corrosion [J], Scripta Materialia, v 36, n 10, May 15,1997, p 1211-1218
    
    [20] Shimada, M.; Kokawa, H.; Wang, Z.J.; Sato, Y.S.; Karibe, I., Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering [J], Acta Materialia, v 50, n 9, May 24, 2002, p 2331-2341
    
    [21] Michiuchi, M.; Kokawa, H.; Wang, Z.J.; Sato, Y.S.; Sakai, K., Twin-induced grain boundary engineering for 316 austenitic stainless steel [J], Acta Materialia, v 54, n 19, November, 2006, p 5179-5184
    
    [22] Lehockey, E.M.; Palumbo, G., On the creep behaviour of grain boundary engineered nickel [J], Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, v A237, n 2, Sep 30,1997, p 168-172
    
    [23] Alexandreanu, Bogdan; Was, Gary S., The role of stress in the efficacy of coincident site lattice boundaries in improving creep and stress corrosion cracking [J], Scripta Materialia, v 54, n 6, March, 2006, Grain Boundary Engineering, p 1047-1052
    
    [24] Gupta, Gaurav; Was, Gary S., The role of grain boundary engineering on the high temperature creep of ferritic-martensitic alloy T91 [J], Journal of ASTM International, v 2, n 3, March, 2005, p 265-277
    
    [25] Gupta, Gaurav; Was, Gary S., Interpretation of improved creep properties of a 9Cr-lMo-Nb-V (T91) steel by grain boundary engineering [J], JOM, v 56, n 11, November, 2004, p 255
    
    [26] Thaveeprungsriporn, Visit; Was, Gary S., Role of coincidence-site-lattice boundaries in creep of Ni-16Cr-9Fe at 360℃ [J], Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 28A, n 10, Oct, 1997, p2101-2112
    
    [27] Lehockey, E.M.; Palumbo, G.; Lin, P., Grain boundary structure effects on cold work embrittlement of microalloyed steels [J], Scripta Materialia, v 39, n 3, Jul 3, 1998, p353-358
    
    [28] Aust, K.T.; Erb, U.; Palumbo, G., Interface control for resistance to intergranular cracking [J], Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, v A176, n 1-2, Mar 31, 1994, p 329-334
    
    [29] Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S., Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9 [J], Journal of Nuclear Materials, v 361, n 2-3 SPEC. ISS., Apr 15, 2007, p 160-173
    
    [30] Alexandreanu, B.; Capell, B.; Was, GS., Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni-16Cr-9Fe-xC alloys[J],Materials Science and Engineering A,v 300,n 1-2,Feb 28,2001,p 94-104
    [31]Watanabe,Tadao;Tsurekawa,Sadahiro;Kobayashi,Shigeaki;Yamaura,Shin-Ichi,Structure-dependent grain boundary deformation and fracture at high temperatures[J],Materials Science and Engineering A,v 410-411,Nov 25,2005,p 140-147
    [32]Watanabe,Tadao;Tsurekawa,Sadahiro,Toughening of brittle materials by grain boundary engineering[J],Materials Science and Engineering A,v 387-389,n 1-2SPEC.ISS.,Dec 15,2004,p 447-455
    [33]Yamaura,Shin-Ichi;Tsurekawa,Sadahiro,Watanabe,Tadao,The control of oxidation-induced intergranular embrittlement by grain boundary engineering in rapidly solidified Ni-Fe alloy ribbons[J],Materials Transactions,v 44,n 7,July,2003,p 1494-1502
    [34]Watanabe,Tadao;Tsurekawa,Sadahiro,Control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering[J],Acta Materialia,v 47,n 15-16,Nov,1999,p 4171-4185
    [35]Ulrich Krupp,William M.Kane,Xinyu Liu,Olaf Dueber,Campbell Laird,The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718,Materials Science and Engineering A349(2003) 213_/217
    [36]M.Qian,J.C.Lippold,The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys,Acta Materialia 51(2003) 3351-3361
    [37]Grimmer H,Bollmann W,Warrington DH.Acta Crystallog 1974;A30:197;
    [38]Watanabe T.J Physique 1985;46(C4):555.
    [39]T Watanabe,"An approach to grain-boundary design for strong and ductile polycrystals"[J].Research Mechanica,1984,11(1) 47-84,
    [40]Randle V,The Role of the Conincidence Site Lattice in Grain Boundary Engineering[M].Cambridge,UK:Cambridge University Press:1996
    [41]G.Gottstein,Physical Foundations of Materials Science[M].Germany:Springer,2004
    [42]Humphreys F J,Hatherly M,Recrystallization and Related Annealing Phenomena[M],second ed.,Elsevier,Oxford,2004.
    [43]陈继勤,陈敏熊,赵敬世,晶体缺陷[M],浙江:浙江大学出版社:1992。
    [44]Valerie Randle,A methodology for grain boundary plane assessment by single-section trace analysis[J],Scripta mater.44(2001) 2789-2794
    [45]S.I.Wright,Journal of Microscopy.2002;205:245
    [46]V Randle,Yan Hu,The role of vicinal∑3 boundaries and∑9 boundaries in grain boundary engineering[J],JOURNAL OF MATERIALS SCIENCE 40(2005) 3243-3246
    [47]Gregory S.Rohrer,Valerie Randle,Chang-Soo Kim,Yan Hu,Changes in the five-parameter grain boundary character distribution in a-brass brought about by iterative thermomechanical processing,Acta Materialia 54(2006) 4489-4502
    [48]V.Randle,“Special” boundaries and grain boundary plane engineering[J],Scripta Materialia 54(2006) 1011-1015
    [49]Saylor,David M.;Morawiec,Adam;Rohrer,Gregory S.Distribution of grain boundaries in magnesia as a function of five macroscopic parameters[J],Acta Materialia,v 51,n 13,Aug 1,2003,p 3663-3674
    [50]Rohrer,Gregory S.;Saylor,David M.;El Dasher,Bassem;Adams,Brent L.;Rollett,Anthony D.;Wynblatt,Paul.,The distribution of internal interfaces in polycrystals[J],Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques,v 95,n 4,April,2004,p 197-214
    [51]Saylor,David M.;Morawiec,Adam;Rohrer,Gregory S.,The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters[J],Acta Materialia,v 51,n 13,Aug 1,2003,p 3675-3686
    [52]Saylor,David M.;El-Dasher,Bassem S.;Adams,Brent L.;Rohrer,Gregory S., Measuring the five-parameter grain-boundary distribution from observations of planar sections[J], Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 35 A, n 7, July, 2004, p 1981-1989
    
    [53] Brandon DG, Acta Metall. 1966; 14:1479
    
    [54] Randle V, Davies H, A comparison between three-dimensional and two-dimensional grain boundary plane analysis[J],Ultramicroscopy, Vol. 90, 2002, pp.153-162
    
    [55] Randle V, Davies P, Deviation from Reference Planes and Reference Misorientation for §3 Boundaries [J], Interface Science, 1999 ;7:5-13
    
    [56] Palumbo G, Aust K T, Structure-dependence of intergranular corrosion in high purity nickel[J], Acta Metall Mater 1990;38:2343-2352
    
    [57] Palumbo, G.; Aust, K.T.; Lehockey, E.M.; Erb, U.; Lin, P., On a more restrictive geometric criterion for 'special' CSL grain boundaries [J], Scripta Materialia, v 38, n 11, May 5, 1998, p1685-1690
    
    [58] Randle V, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials [J], Acta Mater. 1999;47:4187-4196
    
    [59] Randle V, Twinning-related grain boundary engineering [J], Acta Mater, 2004;52:4067-4081
    
    [60] V. Randle. The role of the grain boundary plane in cubic polycrystal [J], Acta mater. Vol. 46, No. 5, pp. 1459-1480,1997
    
    [61] P. DAVIES, V. RANDLE, G WATKINS, H. DAVIES, Triple junction distribution profiles as assessed by electron backscatter diffraction, JOURNAL OF MATERIALS SCIENCE 37 (2002) 4203 - 4209
    
    [62] V. Randle, Application of electron backscatter diffraction to grain boundary characterisation [J] International Materials Reviews, Vol. 49, No. 1, 2004, p1-11.
    
    [63] Thomson CB, Randle V, Fine tuning' at E3n boundaries in nickel [J], Acta Mater 1997;45: 4909-4916
    
    [64] Gregory Owen and Valerie Randle, On the role of iterative processing in grain boundary engineering, Scripta Materialia 55 (2006) 959-962
    
    [65] D. Horton, C. B. Thomson, V. Randle, Aspects of twinning and grain growth in high puity and commercially pure nickel[J], Materials Science and Engineering A, 203 (1995), 408-414
    
    [66] V. RANDLE, The influence of annealing twinning on microstructure evolution [J], JOURNAL OF MATERIALS SCIENCE 40 (2005) 853- 859
    
    [67] Valerie Randle, Gregory Owen, Mechanisms of grain boundary engineering[J], Acta Materialia 54 (2006) 1777-1783
    
    [68] C. B. Thomson, V Randle, A Study of Twinning in Nickel [J], Scripta materialia, Vol. 35 No. 3, pp. 385-390,1996
    
    [69] Randle, Valerie; Davies, Helen, Evolution of microstructure and properties in alpha-brass after iterative processing [J], Metall Mat Trans A, Vol. 33, No. 6, 2002, P.1853-1857
    
    [70] V. Randle, Grain assemblage in polycrystal [J], Acta Metallurgica et Materialia, Vol, 42, No.6,1994, p.1769-1784
    
    [71] Randle, V.; Davies, P.; Hulm, B., Grain-boundary plane reorientation in copper [J], Philosophical Magazine A: Vol. 79, No. 2,1999, p. 305-316
    
    [72] Palumbo P. International Patent Classification C21D 8/00 8/10, C22F 1/10 1/08 , No. WO 94/14986; 1994
    
    [73] Palumbo G U.S. Patent No. 5702543 (1997) and 5817193 (1998)
    
    [74] Lin, P.; Palumbo, G.; Aust, K.T., Experimental assessment of the contribution of annealing twins to CSL distributions in FCC materials [J], Scripta Materialia, v 36, n 10, May 15, 1997, p1145-1149
    
    [75] Lehockey, E.M.; Palumbo, G.; Lin, P., Improving the weldability and service performance of nickel- and iron-based superalloys by grain boundary engineering [J], Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 29A, n 12, Dec, 1998, p 3069-3079
    
    [76] Lehockey, E.M.; Palumbo, G.; Aust, K.T.; Erb, U.; Lin, P., the role of intercrystalline defects in polycrystal plasticity [J], Scripta Materialia, v 39, n 3, Jul 3,1998, p341-34
    
    [77] King WE, Schwartz AJ, Toward optimization of the grain boundary character distribution in OFE copper[J] ,Scripta Mater 1998; 38:449-455
    
    [78] Kumar, Mukul; Schwartz, Adam J.; King, Wayne E., Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials [J], Acta Materialia, v 50, n 10, Jun 12, 2002, p 2599-2612
    
    [79] Schwartz, Adam J.; King, Wayne E.; Kumar, Mukul, Influence of processing method on the network of grain boundaries [J], Scripta Materialia, v 54, n 6, March, 2006, Grain Boundary Engineering, p 963-968
    
    [80] Kumar, Mukul; King, Wayne E.; Schwartz, Adam J., Modifications to the microstructural topology in F.CC. materials through thermomechanical processing [J], Acta Materialia, v 48, n 9, May, 2000, p 2081-2091
    
    [81] Schuh, Christopher A.; Kumar, Mukul; King, Wayne E., Analysis of grain boundary networks and their evolution during grain boundary engineering [J], Acta Materialia, v 51, n 3, Feb 7, 2003, p 687-700
    
    [82] Schuh, Christopher A.; Kumar, Mukul; King, Wayne E., Connectivity of CSL grain boundaries and the role of deviations from exact coincidence [J], Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, v 94, n 3, March, 2003, p 323-328
    
    [83] Reed, Bryan Walter; Kumar, Muku, Mathematical methods for analyzing highly-twinned grain boundary networks [J], Scripta Materialia, v 54, n 6, March, 2006, Grain Boundary Engineering, p 1029-1033
    
    [84] Schuh, Christopher A. ; Minich, Roger W.; Kumar, Mukul, Connectivity and percolation in simulated grain-boundary networks[J], Philosophical Magazine, v 83, n6, Feb 21, 2003, p711-726
    
    [85] Frary, M.; Schuh, C.A., Connectivity and percolation behaviour of grain boundary networks in three dimensions [J], Philosophical Magazine, v 85, n 11, Apr 11,2005, p1123-1143
    
    [86] Frary, Megan,; Schuh, Christopher A., Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering [J], Acta Materialia, v 53, n 16, September, 2005, p 4323-4335
    
    [87] Schuh, C.A.; Frary, M, Correlations beyond the nearest-neighbor level in grain boundary networks, Scripta Materialia, v 54, n 6, March, 2006, Grain Boundary Engineering, p 1023-1028
    
    [88] Schuh, Christopher A.; Minich, Roger W.; Kumar, Mukul, Connectivity and percolation in simulated grain-boundary networks [J], Philosophical Magazine, v 83, n 6, Feb 21, 2003, p 711-726
    
    [89] Frary, M.; Schuh, C.A., Combination rule for deviant CSL grain boundaries at triple junctions [J], Acta Materialia, v 51, n 13, Aug 1,2003, p 3731-3743
    
    [90] Gertsman, V.Y.; Henager Jr., C.H., Grain Boundary Junctions in Microstructure Generated by Multiple Twinning, Interface Science, v 11, n 4, October, 2003, p 403-415
    
    [91] Gertsman, Valery Y.; Reed, Bryan W., On the three-dimensional twin-limited microstructure [J], Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, v 96, n 10, October, 2005, p 1106-1111
    
    [92] Gertsman, Valery Y., On the line defects associated with grain boundary junctions [J], Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, v 94, n 10, October, 2003, p 1153-1156
    
    [93] Gertsman, V.Y.; Tangri, K. Source, On the relationship between ∑3n boundaries meeting at a triple junction, Scripta Metallurgica et Materialia, v 32, n 10, May 15, 1995, p 1649-1652
    
    [94] Gertsman, V.Y.; Tangri, K., Computer simulation study of grain boundary and triple junction distributions in microstructures formed by multiple twinning [J], Acta Metallurgica et Materialia, v 43, n 6, Jun, 1995, p 2317
    
    [95] Gertsman, V. Y. Coincidence site lattice theroy of multicrystallineensembles [J], Acta Crystallographica Section A, (2001). A57, 649-655
    
    [96] Gertsman, V. Y. Gerometrical theory of triple juctions of CSL boundaries [J], (2001). A57, 369-377
    
    [97] Gertsman, V.Y; Szpunar, J.A., On the grain boundary character distributions and grain boundary network topology (grain boundary statistics in materials susceptible to annealing twinning, revisited) [J], Scripta Materialia, v 38, n 9, Apr 3, 1998, p 1399-1404
    
    [98] Gertsman, V.Y.; Tangri, K., Modelling of intergranular damage propagation[J], Acta Materialia, v 45, n 10, Oct, 1997, p 4107-4116
    
    [99] Gertsman, V.Y.; Janecek, M.; Tangri, K., Grain boundary networks in AISI 316 L stainless steel [J], Physica Status Solidi (A) Applied Research, v 157, n 2, Oct, 1996, p 241-247
    
    [100] Gertsman, V.Y.; Tangri, K.; Valiev, R.Z., On the grain boundary statistics in metals and alloys susceptible to annealing twinning [J], Acta Metallurgica et Materialia, v 42, n 6, Jun, 1994, p 1785-1804
    
    [101] Gertsman, V.Y.; Bruemmer, S.M., Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys [J], Acta Materialia, v 49, n 9, May 25, 2001, p 1589-1598
    
    [102] Mishin, O.V.; Gertsman, V.Y.; Alexandrov, I.V.; Valiev, R.Z., Grain boundary character distributions and mechanical properties of 304 stainless steel [J], Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, vA212, n 2, Jul 30,1996, p 281-283
    
    [103] Watanabe, Tadao; Tsurekawa, Sadahiro; Kobayashi, Shigeaki; Yamaura, Shin-Ichi, High temperature deformation and fracture controlled by grain boundaries [J], JOM, v 56, n 11, November, 2004, p 105
    
    [104] Yamaura, S.; Igarashi, Y.; Tsurekawa, S.; Watanabe, T., Structure-dependent intergranular oxidation in Ni-Fe polycrystalline alloy [J], Acta Materialia, v 47, n 4, Mar, 1999, p1163-1174
    [105]Tsurekawa,Sadahiro;Nakamichi,Shinya;Watanabe,Tadao,Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel[J],Acta Materialia,v 54,n 13,August,2006,p 3617-3626
    [106]Lee S -L,Richards N L,Mater Sci and EngA,2005;390:81
    [107]Guyot,B.M.;Richards,N.L.,A preliminary model to predict the special grain boundary fraction in commercial-purity nickel[J],Journal of Materials Processing Technology,v 189,n 1-3,Jul 6,2007,p 162-168
    [108]Li,Qiangyong;Guyot,B.M.;Richards,N.L.,Effect of processing parameters on grain boundary modifications to alloy Inconel 718[J],Materials Science and Engineering A,v 458,n 1-2,Jun 15,2007,p 58-66
    [109]Li,Qiangyong;Cahoon,J.R.;Richards,N.L.,On the calculation of annealing twin density[J],S cripta Materialia,v 55,n 12,December,2006,p 1155-1158
    [110]Lee,Siu-Lun;Richards,N.L.,Influence of long term annealing on grain boundary character distributions in nickel,Materials Science and Engineering A,v 405,n 1-2,Sep 25,2005,p 74-85
    [111]Guyot,B.M.;Richards,N.L.,A study on the effect of cold rolling and annealing on special grain boundary fractions in commercial-purity nickel[J],Materials Science and Engineering A,v 395,n 1-2,Mar 25,2005,p 87-97
    [112]Lee,S.-L.;Richards,N.L.,The effect of single-step low strain and annealing of nickel on grain boundary character[J],Materials Science and Engineering A,v 390,n 1-2,Jan 15,2005,p 81-87
    [113]Palumbo,G.;Aust,K.T.;Erb,U.;King,P.J.;On Annealing twins and CSL distribution in F.C.C.polycrystals,Phys.Stat.sol.(a) 131,425(1992)
    [114]Wang W,Guo H,Mater Sci Eng A 2006;445-446:155
    [115]Shuang Xia,Bangxin Zhou,Wenjue Chen,Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in Alloy 690[J],Journal of Materials Science:INTERFACE SCIENCE(DOI 10.1007/s 10853-007-2164-y,in press )
    [116]Lehockey,E.M.;Brennenstuhl,A.M.;Thompson,I.,On the relationship between grain boundary connectivity,coincident site lattice boundaries,and intergranular stess corrosion cracking[J],Corrosion Science,46(2004) 2383-2404
    [117]Palumbo,G.;King,P.J.;Aust,K.T.;Erb,U.;Lichtenberger,P.C.,Grain boundary design and control for intergranular stress-corrsion resistance[J],Scripta Metallurgica et Materialia,v 25,1991,p 1775-1780
    [118]夏爽,周邦新,陈文觉,王卫国.铅合金在高温退火过程中晶界特征分布的演化[J],金属学报,42(2)2006:129-133
    [119]S.Xia,B.X.Zhou,W.J.Chen,W.G.Wang,Effects of strain and annealing processes on the distribution of ∑3 boundaries in a Ni-based superalloy[J],Scripta Materialia 54(2006) 2019 - 2022
    [120]C.V.Kopezky,A.V.Andreeva,G.D.Sukhomlin,Multiple twinning and specific properties of ∑=3~n boundaries in f.c.c,crystals[J],Acta Metall Mater 39(1991)1603
    [121]Gottstein G,ANNEALING TEXTURE DEVELOPMENT BY MULTIPLE TWINNING IN F.C.C.CRYSTALS.[J],Acta Metall.1984;32:1117
    [122]Berger A,Wilbrandt P -J,Ernst F,On the Generation of New Orientations During Recrystallization:Recent Results on the Recrystallization of Tensile-Deformed fcc Single Crystals[J],progress in materials science,1988;32:1-95
    [123]Fullman R L,Fisher J C,Formation of annealing twins during grain growth[J],J.Appl.Phys.,1951;22:1350-1354
    [124]Gleiter H,The formation of annealing twins[J],Acta metall.,1969;17:1421-1428
    [125]Meyers MA,Murr LE,Model for the formation of annealing twins in f.c.c metals and alloys[J],Acta Metall.1978;26:951-962
    [126]Dash,S.;Brown,N.;Acta Metall.1963;11:1067
    [127]Mahajan S,Pande C S,Imam M A,Rath B B,Formation of annealing twins in f.c.c,crystals[J],Acta Mater,1997;45:2633-2638
    [128]P.J.Goodhew,Annealing twin formation by boundary dissociation[J,]Metal Sci,13(1979)108-112
    [129]Gindraux,G.;Form,W.,J.New concept of annealing-twin formationin face-centered cubic metals[J],Inst.Metals.,1973.101,85-92
    [130]上海大学金相制样讲义[M],上海大学材料学院。
    [131]杨平,电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.7
    [132]Randle,V.,Microtexture determination and its applications[M],second ed.,Maney,London,2003
    [133]http://www.oxinst.com/
    [134]http://www.edax.com/
    [135]中华人民共和国国家标准(GB/T19501-2004)
    [136]Thuvander M,Stiller K.Microstructure of a boron containing high purity nickel-based alloy 690[J],Mater Sci Eng A 2000;281:96-103
    [137]Gonzalez-Roddguez,J.G.;Casales,M.;Espinoza-Medina,M.A.;Microstructural evolution of alloy 690 during sensitization at 700℃[J],Materials Characterization 51(2003)309-314
    [138]李强,周邦新,690合金的显微组织研究[J],金属学报,(2001)37,1,8-12
    [139]Hong,H.U.;Rho,B.S.;Nam,S.W.,Correlation of the Cr_(23)C_6 precipitation morphology with grain boundary characteistics in austenitic stainless steel[J],Mater Sci Eng A 2001;318:285-292
    [140]S.G.Protasova,G.Gottstein,D.A.Molodov,V.G.Sursaeva and L.S.Shvindlerman,Triple junction motion in aluminum tricrystal[J],Acta mater.49(2001) 2519-2525
    [141]G.Gottstein,Y.Ma,L.S.Shvindlerman,Triple junction motion and grain microstructure evolution[J],Acta Matedalia 53(2005) 1535-1544
    [142]G.Gottstein and L.S.Shvindlerman,Ttiple juction draging and VON NEUMANN-MULLINS ralation[J],Scripta Materialia,Vol.38,No.10,pp.1541-1547,1998
    [143] G Gottstein, V. Sursaeva, L. S. Shvindlerman, The Effect of Triple Junctions on Grain Boundary Motion and Grain Microstructure Evolution[J], INTERFACE SCIENCE 7, 273-283 (1999)
    
    [144] U. Czubayko, V. G Sursaeva, G G Gottstein and L. S. Shvindlerman, Influence of triple junction on grain boundary boundary motion[J], Acta mater. Vol. 46, No. 16, pp. 5863-5871,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700