HBXIP调节乳腺癌细胞迁移的分子机制及其蛋白纯化条件的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙肝病毒X蛋白结合蛋白(Hepatitis B X-interacting protein, HBXIP)因可与乙肝病毒X蛋白(hepatitis B virus x protein, HBx)的羧基端特异性结合而得名,在细胞凋亡及有丝分裂等细胞生命活动过程中发挥重要作用。我们发现,HBXIP也能促进乳腺癌细胞迁移,但其分子机制尚不清楚。MicroRNA(miRNAs)作为一类小分子非编码RNA,可以参与肿瘤发生、发展等诸多生命活动。本室前期研究发现,在不同转移潜能的乳腺癌细胞系中,HBXIP和miR-520b的表达水平均存在差异,且二者在表达量上呈负相关。本研究以不同转移能力的人乳腺癌细胞系MCF-7、LM-MCF-7及MDA-MB-231为材料,探讨了HBXIP促进乳腺癌细胞迁移的分子机制,并对HBXIP的纯化条件进行了初步探索,主要研究内容如下:
     1. HBXIP调节乳腺癌细胞迁移的分子机制
     在前期研究基础上,应用western blot及实时定量PCR法分别检测了三种不同转移能力乳腺癌细胞系中HBXIP和miR-520b的表达水平,发现具有高转移潜能的LM-MCF-7及MDA-MB-231细胞中的HBXIP表达水平明显高于低转移的MCF-7细胞,而miR-520b的表达水平则明显低于MCF-7细胞。这表明HBXIP可能促进乳腺癌细胞迁移,而miR-520b可能抑制乳腺癌细胞迁移。近年来,HBXIP一直是本室的研究重点,为了阐释HBXIP促进乳腺癌细胞迁移的分子机制,我们应用生物信息学方法进行了预测,发现HBXIP是miR-520b的靶基因之一。接下来,我们克隆了HBXIP 3'UTR及其3'UTR突变体的报告基因载体,双荧光素酶报告基因实验及western blot检测结果显示,miR-520b可以靶向HBXIP的3'UTR,影响HBXIP的表达水平。在LM-MCF-7细胞系中共转染miR-520b及pCMV-hbxip-3'UTR(或pCMV-hbxip)后检测细胞的迁移能力,发现,当HBXIP的表达水平被miR-520b下调后,LM-MCF-7细胞系的迁移能力也随之降低,表明HBXIP促进乳腺癌细胞迁移的过程受miR-520b的调控。
     本实验对HBXIP调节乳腺癌细胞迁移的机理进行了探索,其分子机制是:miR-520b靶向HBXIP的3'UTR,抑制HBXIP的翻译,从而调节乳腺癌细胞迁移。
     2.HBXIP蛋白纯化条件的探索
     HBXIP全长173个氨基酸,分子量约19 kDa,几乎表达于高等动物的各种组织中,但在肌肉组织和恶性肿瘤组织中高表达。HBXIP可以参与细胞凋亡中心体复制、细胞迁移、细胞周期等过程,揭示HBXIP的蛋白晶体结构有助于进一步了解HBXIP在细胞生命活动中所发挥的作用。实验中,我们构建了含HBXIP基因全长522bp的原核表达载体pet-28a-HBXIP1和含其C端273bp的原核表达载体pet-28a-HBXIP2,利用亲和层析、分子筛层析、离子交换层析等方法,对His-HBXIP1及His-HBXIP2的纯化条件进行了初步探索。发现,His-HBXIP1经分子筛层析纯化后,吸收峰单一,但蛋白浓度较低;经离子交换层析纯化后,His-HBXIP1穿透明显,蛋白弥散分布。His-HBXIP2的纯化效果与His-HBXIP1情况类似。
     本实验对HBXIP的纯化条件进行了初步探索,发现His-HBXIP的分子筛层析纯化效果优于离子交换层析。
Hepatitis B X-interacting protein(HBXIP),which plays important roles in many cellular activities,such as apoptosis and mitosis,was named according to that it can bind to the C terminal of hepatitis B virus x protein(HBx) specificly. Besides,we found that HBXIP can involve in promoting breast cancer cell migration. However, the molecular mechanism is unclear. MicroRNAs (miRNAs) are small non-coding RNA, participating in many cellular activities during the carcinogenesis and tumor progression. Our previous studies showed that both miR-520b and HBXIP were differently expressed in breast cancer cell lines with different metastatic potential,representing inverse relationship in expression level. In the present study,we investigated the molecular mechanism of HBXIP on regulating breast cancer cell migration,using human breast cancer cell lines MCF-7,LM-MCF-7 and MDA-MB-231 as cell models. In addition, we explored the purification conditions of HBXIP fusion protein. The investigation contains two parts as follows:
     Part I:Mechanism of HBXIP on regulating migration of breast cancer cells
     On the basis of previous research, firstly, we examined the expression level of HBXIP and miR-520b in MCF-7, LM-MCF-7 and MDA-MB-231 cell lines by western blot and quantitative real-time PCR respectively, founding that the expression level of HBXIP was much higher in LM-MCF-7 and MDA-MB-231 cell lines than its in MCF-7.On the contrary, the level of miR-520b is higher in MCF-7 than in LM-MCF-7 and MDA-MB-231.This indicates that HBXIP may promote the migration of breast cancer cells, and miR-520b plays a opposite role in regulating breast cancer cell migration. To investigate the mechanism of HBXIP which has been a research focus of our lab for many years on regulating breast cancer cell migration, bioinformatics was used, founding that HBXIP was one of the target genes of miR-520b. Then,we constructed the dual-luciferase reporter gene vectors containing HBXIP 3'UTR or its 3'UTR mutant. The results of dual-luciferase reporter gene assay and western blot detection indicated that miR-520b can target the 3'UTR of HBXIP directly, regulating the expression of HBXIP. The cell migration abilities of LM-MCF-7 was detected after co-transfecting with miR-520b and pCMV-hbxip-3'UTR plasmid (or pCMV-hbxip),founding that the migration ability of LM-MCF-7 was decreased while the expression of HBXIP was down-regulated by miR-520b,which indicated that the role of HBXIP on regulating breast cancer cell migration was regulated by miR-520b.
     In this study,we explored the molecular mechanism of HBXIP on regulating breast cancer cell migration,and found that HBXIP was regulated by miR-520b when it plays roles in regulating the migration of breast cancer cells.
     Part II:Purification conditions exploration of HBXIP
     The molecular weight of HBXIP is about 19 kDa,with 173 amino acids in all. HBXIP was expressed in almost all tissues of higher animals, with over-expression in muscle tissue and malignant tumors. HBXIP can involve in many celluar activities,such as apoptosis, centrosome replication,cell migration,cell cycle and so on. So, revealing the crystal structure of HBXIP may help to understand the roles of HBXIP further. In the present study, we constructed pet-28a-HBXIP1 prokaryotic gene expression vector, containing full-length(522bp) of HBXIP gene,and pet-28a-HBXIP2 prokaryotic gene expression vector,with C terminal 273bp of the HBXIP gene, and explored the purification conditions of His-HBXIP1 and His-HBXIP2.We found that after molecular sieve chromatography using Superdex G200, the map peak of His-HBXIP1 was single, but the protein concentration was low. The results of ion exchange chromatography showed that His-HBXIP1 hardly binded to the Q columns. So did His-HBXIP2.
     This study explored the purification conditions of His-HBXIP and found that His-HBXIP was more suitable for molecular sieve chromatography.
引文
1. Parker SL, Davis KJ, Wingo PA, Ries LA, Heath CW, Jr. (1998) Cancer statistics by race and ethnicity. CA Cancer J Clin 48:31-48.
    2. Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, et al. (2005) Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97:755-765.
    3. Chang JC (1998) A review of breast cancer chemoprevention. Biomed Pharmacother 52: 133-136.
    4. Cowey S, Szafran AA, Kappes J, Zinn KR, Siegal GP, et al. (2007) Breast cancer metastasis to bone:evaluation of bioluminescent imaging and microSPECT/CT for detecting bone metastasis in immunodeficient mice. Clin Exp Metastasis 24:389-401.
    5. Almholt K, Juncker-Jensen A, Laerum OD, Dano K, Johnsen M, et al. (2008) Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model. Mol Cancer Ther 7:2758-2767.
    6. Bendre M, Gaddy D, Nicholas RW, Suva LJ (2003) Breast cancer metastasis to bone:it is not all about PTHrP. Clin Orthop Relat Res:S39-45.
    7. Ye LH, Wu LY, Guo W, Ma HT, Zhang XD (2006) [Screening of a sub-clone of human breast cancer cells with high metastasis potential]. Zhonghua Yi Xue Za Zhi 86:61-65.
    8. Wang FZ, Sha L, Zhang WY, Wu LY, Qiao L, et al. (2007) Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells. Acta Pharmacol Sin 28: 431-438.
    9. Melegari M, Scaglioni PP, Wands JR (1998) Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication. J Virol 72:1737-1743.
    10. Marusawa H, Matsuzawa S, Welsh K, Zou H, Armstrong R, et al. (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J 22:2729-2740.
    11. Wen Y, Golubkov VS, Strongin AY, Jiang W, Reed JC (2008) Interaction of hepatitis B viral oncoprotein with cellular target HBXIP dysregulates centrosome dynamics and mitotic spindle formation. J Biol Chem 283:2793-2803.
    12. Su F, Schneider RJ (1997) Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci U S A 94:8744-8749.
    13. Garcia-Saez I, Lacroix FB, Blot D, Gabel F, Skoufias DA (2011) Structural characterization of HBXIP:the protein that interacts with the anti-apoptotic protein survivin and the oncogenic viral protein HBx. J Mol Biol 405:331-340.
    14. Wiemer EA (2007) The role of microRNAs in cancer:no small matter. Eur J Cancer 43: 1529-1544.
    15. Zhang L, Coukos G (2006) MicroRNAs:a new insight into cancer genome. Cell Cycle 5: 2216-2219.
    16. Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259-269.
    17. Stahlhut Espinosa CE, Slack FJ (2006) The role of microRNAs in cancer. Yale J Biol Med 79: 131-140.
    18. Ricarte Filho JC, Kimura ET (2006) [MicroRNAs:novel class of gene regulators involved in endocrine function and cancer]. Arq Bras Endocrinol Metabol 50:1102-1107.
    19. Slack FJ, Weidhaas JB (2006) MicroRNAs as a potential magic bullet in cancer. Future Oncol 2: 73-82.
    20. Chen Y, Banda M, Speyer CL, Smith JS, Rabson AB, et al. (2010) Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol Cell Biol 30:3902-3913.
    21. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, et al. (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81.
    22. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, et al. (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283:29897-29903.
    23. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, et al. (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324: 1710-1713.
    24. Bagnyukova TV, Pogribny IP, Chekhun VF (2006) MicroRNAs in normal and cancer cells:a new class of gene expression regulators. Exp Oncol 28:263-269.
    25. Yang CJ, Shen WG, Liu CJ, Chen YW, Lu HH, et al. (2011) miR-221 and miR-222 expression increased the growth and tumorigenesis of oral carcinoma cells. J Oral Pathol Med.
    26. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, et al. (2007) MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14:791-798.
    27. Prueitt RL, Yi M, Hudson RS, Wallace TA, Howe TM, et al. (2008) Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate 68: 1152-1164.
    28. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, et al. (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189-198.
    29. Iorio MV, Casalini P, Tagliabue E, Menard S, Croce CM (2008) MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer 44: 2753-2759.
    30. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435:834-838.
    31. Tabernero MD, Maillo A, Gil-Bellosta CJ, Castrillo A, Sousa P, et al. (2009) Gene expression profiles of meningiomas are associated with tumor cytogenetics and patient outcome. Brain Pathol 19:409-420.
    32. Casalini P, Iorio MV (2009) MicroRNAs and future therapeutic applications in cancer. J BUON 14 Suppl 1:S17-22.
    33. Watanabe T, Fujisawa H, Hasegawa M, Arakawa Y, Yamashita J, et al. (2002) Metastasis of breast cancer to intracranial meningioma:case report. Am J Clin Oncol 25:414-417.
    34. Ji Q, Karnak D, Hao P, Wang R, Xu L (2010) No small matter:microRNAs-key regulators of cancer stem cells. Int J Clin Exp Med 3:84-87.
    35. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, et al. (2009) miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 69:2287-2295.
    36. Moriarty CH, Pursell B, Mercurio AM (2010) miR-10b targets Tiaml:implications for Rac activation and carcinoma migration. J Biol Chem 285:20541-20546.
    37. McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253-258.
    38. M NG, J JL, Tadros R, Hermanis G (2004) A narrow time-window for access to the brain by exogenous protein after immunological targeting of a blood-brain barrier antigen. J Comp Pathol 131:52-60.
    39. Harger JW, Dinman JD (2003) An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9:1019-1024.
    40. Alcaraz-Perez F, Mulero V, Cayuela ML (2008) Application of the dual-luciferase reporter assay to the analysis of promoter activity in Zebrafish embryos. BMC Biotechnol 8:81.
    41. Shan ZX, Lin QX, Tan HH, Deng CY, Liu XY, et al. (2009) [An efficient method for screening effective siRNAs using dual-luciferase reporter assay system]. Nan Fang Yi Ke Da Xue Xue Bao 29:1577-1581.
    42. Kanda T, Yokosuka O, Imazeki F, Yamada Y, Imamura T, et al. (2004) Hepatitis B virus X protein (HBx)-induced apoptosis in HuH-7 cells:influence of HBV genotype and basal core promoter mutations. Scand J Gastroenterol 39:478-485.
    43. Kitago Y, Watanabe N, Tanaka I (2005) Structure determination of a novel protein by sulfur SAD using chromium radiation in combination with a new crystal-mounting method. Acta Crystallogr D Biol Crystallogr 61:1013-1021.
    44. Kitago Y, Watanabe N, Tanaka I (2009) [Development of the crystal mounting method for the protein structure determination without heavy-atom labels]. Tanpakushitsu Kakusan Koso 54: 1490-1492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700