蟾蜍灵对人胆管癌细胞QBC939增殖及cyclinE和p27表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆管癌是来源于肝内或肝外胆管上皮细胞的恶性肿瘤,在肝脏原发肿瘤中,胆管癌的发病率仅次于肝癌。其发病隐匿,临床症状及体征出现较晚,恶性程度很高。胆管癌占所有人类恶性肿瘤的2%以下,占消化道肿瘤的3%。1840年Durand Fardel首次提出胆管癌。近年来胆管癌的发病率和病死率呈上升的趋势,5年生存期低于5%。目前胆管癌多倾向于以手术为主的综合治疗,但手术治疗仅对部分的早期患者适用。然而,由于胆管癌所处的位置特殊,在胆管尚未被肿瘤完全堵塞之前患者的临床表现不明显,故早期诊断困难,临床上收治的大多是晚期患者。故大约80%的胆管癌患者由于发现时已处于进展期或转移,不能手术切除,而只能行姑息治疗。由于胆管癌对常规的放疗和化疗方法也不敏感,因此,探讨一种新的有效治疗途径,改善其预后,具有十分重要的意义。中药单体蟾蜍灵来源于中华大蟾蜍和黑框蟾蜍耳后腺及皮肤腺分泌的浆液,分子式为C24 H34 O4,相对分子质量为386.5,研究表明这种成分具有抗癌、强心、镇痛及麻醉等作用,有可能是通过干扰细胞周期而抑制白血病细胞的增殖,通过改变凋亡相关基因如bcl-2家族、抑制异常活化MAPK等多种途径诱导肿瘤细胞分化和凋亡。其对肝癌、胃癌、结肠癌细胞的相关作用已有报道,但是在对胆管癌细胞的作用及其机制方面研究鲜有报道。我们以蟾蜍灵单体作用于人胆管癌细胞QBC939,检测其对细胞增殖抑制以及cyclin E和p27的mRNA和蛋白表达影响,旨在探讨蟾蜍灵对胆管癌细胞的影响以及可能的分子机制,为临床治疗提供理论依据。
     目的
     通过观察蟾蜍灵对人胆管癌细胞QBC939的增殖及cyclin E和p27表达的影响,探讨其调控胆管癌细胞增殖的作用和机制。
     方法
     1、MTT比色法观察不同浓度蟾蜍灵(0.1μM、1μM、10μM)作用于人胆管癌细胞QBC939,分别观察24小时和48小时,观察其对细胞增殖的影响。
     2、乳酸脱氢酶(LDH)试验检测实验最大浓度蟾蜍灵毒性。观察蟾蜍灵是否是通过其毒性抑制了细胞增殖。
     3、流式细胞术检测不同浓度蟾蜍灵(0.1μM、1μM、10μM)作用人胆管癌细胞QBC939 24小时后细胞周期的变化。
     4、RT-PCR法测定不同浓度蟾蜍灵(0.1μM、1μM、10μM)作用于人胆管癌细胞QBC939 24小时后RT-PCR法测定cyclin E、p27 mRNA水平变化。
     5、Western blot法测定不同浓度蟾蜍灵(0.1μM、1μM、10μM)作用于人胆管癌细胞QBC939 24小时后cyclin E、p27蛋白水平变化。
     结果
     1、MTT比色法结果表明蟾蜍灵对人胆管癌细胞QBC939生长具有较强的抑制作用,并在一定范围内具有时间和浓度依赖性。
     2、蟾蜍灵不是通过其毒性作用抑制QBC939细胞增殖。
     3、流式细胞仪检测经不同浓度蟾蜍灵作用24小时后,人胆管癌细胞QBC939细胞周期阻滞在G0/G1期,具有良好的量效关系。
     4、RT-PCR法测定显示,经不同浓度蟾蜍灵作用24小时后,人胆管癌细胞QBC939中cyclin E mRNA表达量下降,p27 mRNA表达量升高。
     5、Western blot测定显示,经不同浓度蟾蜍灵作用24小时后,人胆管癌细胞QBC939中cyclin E蛋白表达量下降,p27蛋白表达量升高。
     结论
     蟾蜍灵可能是通过减少人胆管癌细胞QBC939 cyclinE的表达,增加p27的的表达,阻滞细胞增殖周期,抑制了细胞增殖,达到抗肿瘤作用。
Cholangiocarcinoma is derived from the intrahepatic or extrahepatic bile duct epithelial tumors. In the liver primary tumors, the incidence of cholangiocarcinoma is lower than the liver cancer. There is a high degree of malignancy with occult its incidence, clinical symptoms and signs appeared later. which accounts for less 2% of all human malignancies, accounting for 3% of gastrointestinal cancer. In 1840, Durand Fardel firstly proposed cholangiocarcinoma, In recent years, the incidence and mortality of cholangiocarcinoma upward trend, the survival of 5-year is less than 5%. More tend to comprehensive treatment based on surgery, even only part of the early surgical treatment for patients. Since the special position of cholangiocarcinoma, the bile duct tumors have not been completely blocked in patients with subclinical before. So it is difficult to make an early diagnosis. Most of the clinical patients are treated in end of stage. Because of the advanced or metastatic of the tumors, about 80% of cholangiocarcinoma patients are only treated with palliative treatment. The conventional methods of cholangiocarcinoma are not sensitive to radiotherapy and chemotherapy. It is great significance to explore a new and effective therapeutic approach to improve its prognosis.
     Monomer bufalin, the traditional Chinese medicine, originates from the Chinese big toad and the black frame toad ear the gland and the skin gland secretion's size, the molecular formula is C24 H34 O4, relative molecular mass is 386.5. A great many of researches have indicated that this ingredient has lots of medical functions, such as anticancer treatment, cardiotonic effect, toxicity and anaesthesia. The machines of induction tumour cell differentiation and perishe are possible to suppresses the leukemia cell's multiplication through the disturbance of mitotic cycle, the changing of perishes in related gene, such as bcl-2 family, inhibit the abnormal activation of MAPK and so on. There have been a lot of studies reported in liver cancer, stomach cancer, the colon cancer, however, only few of reports have concerned cell's function and the machine-made aspect of bile duct cancer. We use the bufalin monomer function in human bile duct cancer cell, named QBC939, to examine the suppressing of cyclin E, P27 mRNA and the protein expression. The purpose of this stuy is to explore the influence of bufalin on the bile duct cancer cell, its possible molecular mechanism and then provide the theory basis for the clinical therapy.
     Objective
     The aim of this study is to observe the effect of bufalin on the expression of P27 and Cyclin E in cholangiocarcinoma cell line QBC939, investigate the pathways of bufalin in inhibiting tumor cell proliferation, and explore its antitumor mechanism.
     Methods
     1. Cholangiocarcinoma cell line QBC939 was cultured by routine method, and then treated with different concentrations of bufalin (0.1μM, 1μM, 10μM).The proliferation apoptosis and cell cycle of QBC939 cells were investigated by MTT and Flow cytometry.
     2. Bufalin toxicity was assayed by Lactate dehydrogenase (LDH).
     3. RT-PCR and Western blot were performed to measure the expression of P27 and Cyclin E at gene and protein level.
     Results
     1. MTT assay results showed that of bufalin on the growth of human cholangiocarcinoma cell QBC939 inhibited, and in a certain range of time-and concentration-dependent.
     2. Bufalin does not through its toxic effects to inhibition of cell proliferation QBC939.
     3. With different concentrations of bufalin for 24 hours, cholangiocarcinoma cell line QBC939 cell cycle arrest in G0/G1, with a good dose-effect relationship.
     4. By RT-PCR and Western blot assay, we found that bufalin at different concentrations for 24 hours, in cholangiocarcinoma cell line QBC939 decreased expression of cyclin E, p27 expression increased.
     Conclusion
     Bufalin may inhibit the proliferation of QBC939 cells by down-regulating the expression of Cyclin E and up-regelating the expression of P27, blocking cell cycle.
引文
[1] Shaib Y., El-Serag H. B. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004. 24(2). 115-125
    [2] Shahid A Khan, Howard C Thomas, Brian R Davidson, Simon D .Taylor-Rohinsonet. Cholangiocarcinoma.Lancet,2005,366(1394):1303-1314.
    [3] Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States.Hepatology,2001,33(6):1353-1357.
    [4]张秀华,缪林,季国忠,范志宁,刘政. C-Met siRNA对肝细胞生长因子诱导的人胆管癌QBC939细胞增殖的影响.医学研究生学报, 2009, 22(11) : 1154-1158.
    [5] Blechacz BR,Gores GJ. Cholangiocarcinoma. Clinliver Dis.2008 12(1):131-150
    [6]柴新群,安丹,冯贤松.胆管癌的流行病学与危险因素.肝胆外科杂志,2008,16(4):316-317
    [7]季林华,吴志勇.胆管癌的当前认识与诊治进展.外科理论与实践.2009,14(2):230-234
    [8] Blechacz B, Gores GJ. Cholangiocarcinoma:advances in pathogenesis, Diagnosis, and treatment.Hepatology, 2008, 48(1);308-21.
    [9] Anderson C, Kim R . Adjuvant therapy for resected extrahepatie Eholangiocarcinoma;a review of the literature and future directions. Can cer Treat Rev,2009,35:322-327.
    [10] Hushes MA, Frassica DA, Yeo CJ, Riall TS, Lillemoe KD, Cameron JL, Donehower RC, Laheru DA, Hruban RH, Abrams RA.Adjuvant concurrent chemoradiation for adenocarcinoma of the distal common bile duct.hat J Radiat Oncol Biol Phys,2007,68:178 -182.
    [11] Watabe M., Nakajo S., Yoshida T., Kuroiwa Y., Nakaya K. Treatment of U937 cells with bufalin induces the translocation of casein kinase 2 and modulates the activity of topoisomerase II prior to the induction of apoptosis. Cell Growth Differ.1997. 8(8). 871-879
    [12] Numazawa S., Inoue N., Nakura H., Sugiyama T., Fujino E., Shinoki M., Yoshida T., Kuroiwa Y. A cardiotonic steroid bufalin-induced differentiation of THP-1 cells. Involvement of Na+, K(+)-ATPase inhibition in the early changes in proto-oncogene expression. Biochem Pharmacol. 1996. 52(2). 321-329
    [13] Kurosawa M., Numazawa S., Tani Y., Yoshida T. ERK signaling mediates the induction of inflammatory cytokines by bufalin in human monocytic cells. Am J Physiol Cell Physiol. 2000. 278(3). C500-C508
    [14] Takai N, Ueda T, Nishida M, Nasu K, Narahar H. Bufalin induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells.Int J Mol Med,2008,26(2):186-188.
    [15] Bhuiyan MB, Fant ME, Dasgupta A. Study on mechanism of action of Chinese medicine Chan Su:dose-dependent biphasic production of nitric oxide in trophoblastic BeWo cells. Clin Chim Acta, 2003, 330(1-2):179-184.
    [16]陈小义,韩景田,邓昌辉.蟾蜍灵对小鼠S180肉瘤bcl-2基因表达的影响.中国药物与临床.2006, 6(1):28-29.
    [17] Han KQ, Huang G, Gu W, Su YH, Huang XQ, Ling CQ. Anti-tumor activities and apoptosis-regulated mechanisms of bufalin on the orthotopic transplantation tumor model of human hepatocellular carcinoma in nude mice. World J Gastroenterol, 2007, 13(24):3374-3379.
    [18]陈小义,徐瑞成,陈莉,钱进.蟾蜍灵对人胃癌细胞系MGc-803的细胞毒作用.中草药, 2000,31(2):920-922.
    [19] Kelly Burak, Paul Angulo, Tousif Pasha, Kathleen Egan, Jan Peta, Keith D Lindor.Incidence and risk factors for cholangiocarcinoma in primary selemsing cholangitis. Am J Gastmenterol,2004,99(3):523-526.
    [20] Annika Bergquistl, Anders Ekbom, Rolf Olsson, Dan Kornfeldt, Lars L??f, ?keDanielsson, Rolf Hultcrantz, Stefan Lindgren, Hanne Prytz, Hanna Sandberg-Gertzén, Sven Almer,Fredrik Granath,Ulrika Broomé.Hepatic and extrahepatic malignancies in primary sclerosing cholangitis.J Hepatol,2002,36(3):321-327.
    [21] Lazaridis KN, Gores GJ .Cholangiocarcinoma.Gastroenterology, 2005, 128(6):1655-1667.
    [22] Fischer D., Li Y., Ahlemeyer B., Krieglstein J., Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003. 24(7). 1121-1131
    [23] Karunagaran D, Joseph J, Kumar T R. Cell growth regulation. Adv Exp Med Biol, 2007, 595:245-268.
    [24] Jing Y., Watabe M., Hashimoto S., Nakajo S., Nakaya K. Cell cycle arrest and protein kinase modulating effect of bufalin on human leukemia ML1 cells. Anticancer Res. 1994. 14(3A). 1193-1198
    [25]徐瑞成,陈小义,陈莉,等.蟾蜍灵对HL260细胞的生长抑制及凋亡诱导作用.中华血液学杂志,2000,21 (7):359-361.
    [26]陈小义,徐瑞成,陈莉,钱进.蟾蜍灵对人胃癌细胞系MGc-803的细胞毒作用.中草药,2000, 31 (2):920-922.
    [27] Cobrinik D.Pocket proteins and cell cycle control.Oneogene, 2005, 24(17):2796-2809.
    [28] Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell, 2003, 3:233-245.
    [29] Vidal A, Koff A, Cell-cycle inhibitors:three families united by a common cause.Cene, 2000,247(1-2):1-15.
    [30] le Sage C., Nagel R., Egan D. A., Schrier M., Mesman E., Mangiola A., Anile C., Maira G., Mercatelli N., Ciafre S. A., Farace M. G., Agami R. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cellproliferation. EMBO J. 2007. 26(15). 3699-3708
    [31] Guan X, Chen L, Wang J. Protein profiling: a possible molecular mechanism to mislocalization and down-expression of p27(Kip1) in tumor cells. Med Hypotheses, 2007, 69(3):580-583.
    [32]杜莉莉,管晓翔,陈龙邦,等.外源性p27基因抑制细胞周期和人乳腺癌MCF-7细胞系的分化.医学研究生学报,2007,20(6):1010-1013.
    [33] Polyak K, Lee MH, Erdjument-Bmmage H, Koff A., Roberts J. M., Tempst P., Massague J. Cloning of p27kipl, a cyclin dependent kinase inhibitor and potential mediator of extracellular antimitogenic signals.CeU, 1994, 78(1):59-66.
    [34] Philipp-Staheli J, Payne SR, Kemp CJ.p27(Kipi):regulation and function of a hapioinsuffieicut tumor suppressor and its misregulation in cancer.Exp Cell Res,2001, 264(1):148-168.
    [35]何玮玮,管晓翔,陈龙邦.I、II期乳腺癌组织中p27kip1的表达及其临床意义.医学研究生学报,2009,22(3):252-259.
    [1] Patel T. Increasing incidence and mo rtality of p rimary intrahep2 atic cho langiocarcionoma in the U nited States . H ep atology ,2001 33 (6) : 135327.
    [2] Feng Z, Hu W,Rajagopal G, Levine AJ. The tumor suppressor p53: cancer and aging. Cell Cycle 2008;7(7):842–7.
    [3] Havlik R, Sbisa E, Tullo A, et al. Results of resection for hilar cholangiocarcinoma with analysis of prognostic factors. Hepatogastroenterology 2000;47(34):927–31.
    [4] Tannapfel A, Weinans L, Geissler F, et al. Mutations of p53 tumor suppressorgene, apoptosis, and proliferation in intrahepatic cholangiocellular carcinoma of the liver. Dig Dis Sci 2000;45(2):317–324.
    [5] Liu XF, Zhang H, Zhu SG, et al. Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma. World J Gastroenterol 2006;12(29): 4706–4709.
    [6] Limpaiboon T, Krissadarak K, Sripa B, et al. Microsatellite alterations in liver fluke related cholangiocarcinoma are associated with poor prognosis. Cancer Lett 2002;181(2):215–222.
    [7] Jenkins JR, Rudge K,Chumakov P,Currie GA. The cellular oncogene p53 can be activated by mutagenesis. Nature 1985;317(6040):816–818.
    [8] Wang Y, Yamaguchi Y, Watanabe H, et al. Usefulness of p53 gene mutations in the supernatant of bile for diagnosis of biliary tract carcinoma: comparison with K- ras mutation. J Gastroenterol, 2002, 37(10): 831-839.
    [9] Hoang MP, Murakata LA, Katabi N, Henson DE, Albores-Saavedra J. Invasive papillary carcinomas of the extrahepatic bile ducts: a clinicopathologic and immunohistochemical study of 13 cases. Mod Pathol 2002;15(12):1251–1258.
    [10] Argani P, Shaukat A, Kaushal M, et al. Differing rates of loss of DPC4 expression and of p53 overexpression among carcinomas of the proximal and distal bile ducts. Cancer 2001;91(7):1332–1341.
    [11] Buhlmann S, Putzer BM. DNp73 a matter of cancer: mechanisms and clinical implications. Biochim Biophys Acta 2008;1785(2):207–216.
    [12] Tannapfel A,Engeland K,Weinans L,et al. Expression of p73, a novel protein related to the p53 tumour suppressor p53, and apoptosis in cholangiocellular carcinoma of the liver. Br J Cancer 1999;80(7):1069–74.
    [13] Tannapfel A, Benicke M, Katalinic A , et al . Frequency of p16ink4A alterations and K2ras mutations in intrahepatic cholangiocarcinoma of the liver .Gut ,2000 ,47 (5) :721 - 727.
    [14] Nehls O, Gregor M, Klump B. Serum and bile markers for cholangio2 carcinoma . Semin Liver Dis ,2004 ,24 (2) :139 - 154.
    [15] Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem MolMorphol 2005;13(3):205–220.
    [16] Hong SM, Hwang I, Song DE, Choi J, Yu E. Clinical and prognostic significances of nuclear and cytoplasmic KIT expressions in extrahepatic bile duct carcinomas. Mod Pathol 2007;20(5):562–569.
    [17] Tan G, Yilmaz A, De Young BR, et al. Immunohistochemical analysis of biliary tract lesions. Appl Immunohistochem Mol Morphol,2004,12(3):193-197.
    [18] Gozuacik D, Kimchi A. DAPk protein family and cancer. Autophagy 2006;2(2):74–79.
    [19] Tozawa T, Tamura G, Honda T, et al. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci 2004;95(9):736–740.
    [20] Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy. Expert Opin Ther Targets 2008;12(4):463–476.
    [21] Miyachi K,Sasaki K, Onodera S, et al. Correlation between survivin mRNA expression and lymph node metastasis in gastric cancer. Gastric cancer 2003;6(4):217–224.
    [22] Schultz IJ, Kiemeney LA, Witjes JA, et al. Survivin mRNA expression is elevated in malignant urothelial cell carcinomas and predicts time to recurrence. Anticancer Rel 2003;23(4):3327–3331.
    [23] Cohen C, Lohmann CM, Cotsonis G, Lawson D, Santoianni R. Survivin expression in ovarian carcinoma: correlation with apoptotic markers and prognosis.Mod Pathol 2003;16(6):574–583.
    [24] Javle MM, Tan D, Yu J, et al. Nuclear survivin expression predicts poor outcome in cholangiocarcinoma. Hepatogastroenterology 2004;51(60):1653–1657.
    [25] Sharma PS, Sharma R, Tyagi R. Inhibitors of cyclin dependent kinases: useful targets for cancer treatment. Curr Cancer Drug Targets 2008;8(1):53–75.
    [26] Canepa ET, Scassa ME, Ceruti JM, et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007;59(7):419–426.
    [27] Hong SM, Choi J, Ryu K, Ro JY, Yu E. Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med 2006;130(1):33–38.
    [28] Ichikawa K, Imura J, Kawamata H, Takeda J, Fujimori T. Down-regulated p16 expression predicts poor prognosis in patients with extrahepatic biliary tract carcinomas. Int J Oncol 2002;20(3):453–461.
    [29] Uberall I, Kolar Z, Trojanec R, Berkovcova J, Hajduch M. The status and role of ErbB receptors in human cancer. Exp Mol Pathol 2008;84(2):79–89.
    [30] Javle MM, Yu J, Khoury T, et al. Akt expression may predict favorable prognosis in cholangiocarcinoma. Gastroenterol Hepatol 2006;21(11):1744–1751.
    [31] Gwak GY, Yoon JH, Shin CM, et al. Detection of responsepredicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. Cancer Res Clin Oncol 2005;131(10):649–652.
    [32] Aishima S, Taguchi K, Terashi T, Matsuura S, Shimada M, Tsuneyoshi M. Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma. Mod Pathol 2003;16(10):1019–1027.
    [33] Yeger H, Perbal B. The CCN family of genes: a perspective on CCN biology and therapeutic potential. Cell Commun Signal 2007;1(3–4):159–164.
    [34] . Bleau AM, Planque N, Perbal B. CCN proteins and cancer: two to tango. Front Biosci 2005;10:998–1009.
    [35] Tanaka S, Sugimachi K, Kameyama T, et al. Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 2003;37(5):1122–1129.
    [36] Hugo H, Ackland ML, Blick T, et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Cell Physiol 2007;213(2):374–383.
    [37] Friederichs J, Zeller Y, Hafezi-Moghadam A, Grone HJ, Ley K, Altevogt P. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 2000;60(23):6714–6722.
    [38] Park BK, Paik YH, Park JY, et al. The clinicopathologic significance of the expression of vascular endothelial growth factor-C in intrahepatic cholangiocarcinoma. Am J Clin Oncol Cancer Clin Trials 2006;29(2):138–142.
    [39] Aishima S, Kuroda Y, Nishihara Y, et al. Gastric mucin phenotype defines tumour progression and prognosis of intrahepatic cholangiocarcinoma: gastric foveolar type is associated with aggressive tumour behaviour. Histopathology 2006;49(1):35–44.
    [40] Takada A, Ohmori K, Yoneda T, et al. Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res 1993;53(2):354–361.
    [41] Abdel Wahab M, Fathy O, Elghwalby N, et al. Resectability and prognostic factors after resection of hilar cholangiocarcinoma. Hepatogastroenterology 2006;53(67):5–10.
    [42] Hirohashi K, Uenishi T, Kubo S, et al. Macroscopic types of intrahepatic cholangiocarcinoma: clinicopathologic features and surgical outcomes.Hepatogastroenterology 2002;49(44):326–329.
    [43] Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep 2002;4(3):250–255.
    [44] Gerhardt T, Milz S, Schepke M, et al. C-reactive protein is a prognostic indicator in patients with perihilar cholangiocarcinoma. World J Gastroenterol 2006;12(34):5495–5500.
    [45] Wongkham S, Bhudhisawasdi V, Chau-in S, et al. Clinical significance of serum total sialic acid in cholangiocarcinoma. Clin Chim Acta 2003;327(1–2):139–147.
    [46] Juntavee A, Sripa B, Pugkhem A, Khuntikeo N,Wongkham S. Expression of sialyl Lewis(a) relates to poor prognosis in cholangiocarcinoma. World J Gastroenterol 2005;11(2):249–254.
    [47] Limpaiboon T, Tapdara S, Jearanaikoon P, Sripa B,Bhudhisawasdi V. Prognostic significance of microsatellite alterations at 1p36 in cholangiocarcinoma. World J Gastroenterol 2006;12(27):4377–4382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700