大环内酯类化合物逆转肿瘤细胞(MCF-7/adr)多药耐药性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是目前人类死亡的一个重要原因,化学药物治疗在肿瘤的治疗中占有非常重要的地位。但由于在临床化疗过程中肿瘤细胞产生的多药耐药(multidrug resistance, MDR),使化疗药物难以起效甚至无效。可见,成功逆转肿瘤细胞MDR直接关系到肿瘤患者的化疗效果。然而,目前所研究的逆转MDR药物,多数副作用大、效果有限,至今仍未找到一种理想的逆转药物。近年来,大环内酯类的药物应用越来越广泛,并且毒副作用小、疗效佳,可能成为一种理想的MDR逆转剂。因此,本实验选用5种大环内酯类药物研究其对肿瘤细胞人乳腺癌耐阿霉素细胞系(MCF-7/adr)在体外及裸鼠体内的逆转作用及相应机制,旨在开发一种有效的肿瘤MDR逆转药物。
     首先在体外采用浓度梯度联合高浓度反复间歇诱导法构建人乳腺癌耐阿霉素细胞系(MCF-7/adr),测定耐药指数;采用MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]方法测定逆转药物的逆转作用。其次研究试验药物的逆转MDR的机制,通过检测经药物预处理的MCF-7/adr细胞中罗丹明123和ADR积累及罗丹明123外排的变化,探讨药物能否与P-gp结合、抑制其泵出功能来逆转MCF-7/adr细胞的MDR;通过RT-PCR半定量及流式细胞仪法检测药物作用MCF-7/adr细胞后MDR 1基因和MRP 1基因及P-gp蛋白的表达。最后为进行实验药物的体内逆转MDR实验研究,我们还测定试验药物对CYP1A2 (P450酶)活性的影响及对正常人成纤维细胞及外周血单个核细胞的毒性作用;并在体外构建人乳腺癌MCF-7/adr移植瘤Balb/c裸鼠模型,选取体外逆转MDR作用最强的一种药物作用后测量裸鼠的平均生存时间和肿瘤体积。
     结果表明,在体外构建的耐药细胞系耐药指数高达61倍,并检测到多拉菌素、米尔贝A4、尼莫克汀、米尔贝β14和次级米尔贝D在浓度为5umol/L时,逆转倍数分别为28.93、22.23、16.64、13.50、10.59倍,逆转作用均高于维拉帕米阳性对照组。此外,试验结果发现实验组较对照组MCF-7/adr细胞中的罗丹明123和ADR积累明显增加,而罗丹明123外排减少(P<0.05),并表现出剂量依赖与时间依赖关系,其中,疏水性最强的多拉菌素作用效果最为明显。同时,经药物逆转作用后明显降低了MDR 1基因、P-gp和MRP 1基因的表达(P<0.05)。进一步试验发现试验药物显示低浓度的试验药物对CYP1A2代谢活性无影响(P>0.05),且对正常人成纤维细胞及外周血单个核细胞的无毒剂量IC10分别为(4.545±0.876)μmol/L、(4.029±0.638)μmol/L;将多拉菌素与ADR联合应用后可显著延长荷人耐药乳腺癌细胞MCF-7/adr移植瘤裸鼠的平均生存时间,抑制实体移植瘤的增长(P<0.05)。
     综上,本研究成功建立了MCF-7细胞的多药耐药细胞系,并发现5种大环内酯类药物体外可以有效地逆转肿瘤细胞的MDR,主要通过两种机制:一是与P-gp竞争性结合,抑制其泵出功能;二是降低MDR 1基因和P-gp的表达,以及MRP 1基因的表达。进一步发现多拉菌素在体内有良好的逆转MDR作用,为其它四种米尔贝类药物的体内研究提供了理论依据。试验选用的药物有可能成为安全有效的逆转肿瘤多药耐药的化疗辅助药物,为肿瘤患者的有效化疗带来新的希望。
Cancer is one of the important causes of human death at present, and chemotherapy plays a very important role in cancer treatment. But chemotherapy drugs are difficult efficacy or even invalid because the tumor cells produce multi-drug resistance (MDR) during the progress of clinical chemotherapy. Therefore, the successful reversal of MDR could improve the effects on the patients. So far the drugs reversing MDR have been researched, but they have the side effects or the limited efficacy, there is not still an ideal reversal drug. In recent years, with more and more extensive applications of macrolide drugs, and they have no toxic side effects, well efficacy and structural features, they may be an ideal MDR reversal agents. In this study, we chose the five kinds of macrolides to investigate the effects on reversing to the tumor cells resistance to adriamycin in human breast cancer cell line (MCF-7/adr) in vitro and in vivo, and the corresponding mechanisms, to develop an effective tumor MDR reversal drugs.
     In vitro study, firstly, we established the MCF-7/adr cell line with increasing concentrations of adriamycin (ADR) gradient and the high concentration gradient way by repeating intermittent administration of adriamycin, then tested the resistance index, and evaluated the efficacy of doramectin, milbemycin A4, nemadectin, milbemycinβ14 and secomilbemycin D overcoming MDR of MCF-7/adr cells via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] approach. Secondly, we detected whether the five drugs blocked drug pump function of P-gp by detected the dose of adriamycin and Rh123 since they are good P-gp substrates with an autofluorescence capacity. We also employed the RT-PCR and immunofluorescence flow cytometry to check the expressions of MDR 1 and MRP 1 mRNA and P-gp. Finally, before the experiment in vivo, we measured the effect of tested drugs on CYP1A2 (one of P450 enzymes) activity and the toxic effect on the normal human fibroblasts and peripheral blood mononuclear cells. Then we established human cancer MCF-7/adr xenograft in nude mice, and selected doramectin, the best performing drug in vitro, as experimental agent in vivo. Combining with ADR, we tested the mean surviving time (MST) of xenografts nude mice and the volume of the transplanted tumor.
     The results showed that the resistance index of MCF-7/adr cell line resistant is up to 61 times in vitro. And our findings also demonstrated that 5μM doramectin, milbemycin A4, nemadectin, milbemycinβ14 and secomilbemycin D could reverse the MDR, and fold-reversal was 28.93、22.23、16.64、13.50 and 10.59, respectively, and they were better than VRP on reversing MDR. In addition, the five drugs in the experimental groups, especially doramectin with the highest hydrophobic, could concentration-dependent enhance the accumulation of intracellular adriamycin and Rh123, but did not affect that of parental MCF-7 cells (P<0.05). In the efflux assay, these compounds could inhibit the efflux of Rh123 from treated MCF-7/adr cells in a time-dependent manner. At the same time, The data showed that doramectin, milbemycin A4 and nemadectin could decrease the expressions of MDR 1 gene, MRP 1 gene and P-gp protein (P< 0.05). For the future study, our results showed that low concentrations of tested drugs had no effect on the CYP1A2 metabolic activity (P>0.05) and no obvious toxic effects can be observed on the normal human fibroblasts and peripheral blood mononuclear cells (IC 10:4.545±0.876μmol/L,4.029±0.638μmol/L). Moreover, doramectin in combination with ADR can significantly extended the mean surviving time (MST) of xenografts nude mice and inhibit the growth of transplanted tumor (P<0.05)
     In summary, we successfully established MCF-7 cells in multi-drug resistant cell line, and provided abundant evidences here revealing that the five drugs could effectively reverse MDR of MCF-7/adr cells in vitro through two main mechanisms:via inhibiting the P-gp pump function and down regulating expressions of MDR1 gene and P-gp and MRP 1 gene. Among them doramectin containing sugar moiety especially appeared more effective as MDR modulator than the others, therefore, we detected its effect of reversal MDR in vivo and provided a theoretical basis for the studies of other milbemycins reversing MDR in vivo. In conclusion, the five drugs might be candidates as effective MDR reversing agents in cancer chemotherapy, and take the hope for cancer patients undergoing the chemotherapy.
引文
陈纲,李世拥,于波,等.2006.草酸铂、5-氟尿嘧啶联合多药耐药基因反义RNA对耐药直肠癌细胞杀伤作用的研究[J].中华外科杂志,44:770~773.
    程书权.2003.大环内酯类药物非抗感染作用研究进展[J].世界临床药物.24:34.
    何一.2004.多药耐药蛋白P-gp的研究进展[J].四川肿瘤防治,17:257~260.
    李青山,高旭红.2003.P-糖蛋白介导的多药耐药与肺癌[J].承德医学院学报,2:151.
    厉颖,周永春.2006.抗肿瘤新药贝伐单抗的研究进展[J].上海医药,27:410.
    廖绍兰,王平.2008.肿瘤的多药耐药机制及逆转剂的研究进展[J].国外医药抗生素分册,29:7~11.
    刘雪强,陈信义,刘昌海,等.2006.中药肿瘤多药耐药逆转剂的研究进展[J].中医药学刊,24:1826~1829.
    郊静竹,李锦云,王嘉玺,等.1994.利用PCR技术检测多药耐药基因在白血病患者中的表达.中华血液学杂志,15:362~364.
    潘光栋.2007.Mdr1基因所致多药耐药逆转的基因治疗进展.华西医学,22:205.
    杨纯正.2001.肿瘤耐药研究的若干问题.中华医学杂志,81:1475~1478.
    杨铭,高瀛岱,熊冬生,等.2004.抗P-gp/抗CD3微型双功能抗体裸鼠体内分布研究[J].中国肿瘤临床,31:1182.
    张继瑜,李剑勇,周绪正,等.2005.多拉菌素在猪体内的药代动力学.畜牧兽医学报,36:722~726.
    朱燕,武淑兰,卜定方,等.2004.恶性血液病患者mdrl启动子区甲基化状态及其与表达的关系.中国实验血液学杂志,12:6.
    Barthomeuf C, Grassi J, Demeule M, et al.2005. Inhibition of P-glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin. Cancer Chemother Pharmacol, 56:173-181.
    Beck JF, Brugger D, Brischwein K, et al.2001. Anticancer drug mediated induction of multidrug resistance associated genes and protein kinase C isozymes in the T lymphoblastoid cell line CCRF CEM and in blasts from patients with acute lymphoblastic leukemias. Jpn J CancerRes,92:896~903.
    Blockburn RV, Galoforo SS, Berns CM, et al.1998. Differential induction of cell death in human glioma cell lines by sodium nitroprusside. Cancer,82:1137~1145.
    Borowski E, Bontemps-Gracz MM, Piwkowska A.2005. Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol,52: 609~627.
    Brugger D, Brischwein K, Liu C, et al.2002. Induction of drug resistance and protein kinase C genes in A2780 ovarian cancer cells after incubation with antineoplastic agents at sublethal concentrations. Anticancer Res,22:4229~4232.
    Carceles CM, Diaz MS.2001. Milk kinetics of moxidectin and doramectin in goats. Research in Veterinary Science,70:227~231.
    Carpinteiro A, Peinert S, Ostertag W, et al.2002. Genetic protection of repopulating hematopoietic cells with an improved MDR 1-retrovirus allows administration of intensified chemotherapy following stem cell transplantation in mice. Int J Cancer,98:785.
    Chen LM, Liang YJ, Ruan JW, et al.2004. Reversal of P-gp mediated multidrug resistance in-vitro and in-vivo by FG020318. J Pharm Pharmacol,56:1061~1066.
    Chin KV, Ueda K, Pastan I, et al.1992. Modulation of activity of the promoter of the human MDR-1 gene by Ras and p53. Science,255:459. Choudhuri S, Klaassen CD.2006. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP 1), and ABCG2 (BCRP) efflux transporters. Int J Toxicol,25:231~259.
    Deininger M. Resistance to imatinib:mechanisms and management.2005. J Natl Compr Canc Netw,3:757.
    Dider A, Loor F.1996. The abamectin derivative ivermectin is potent Pglycoprotein inhibitor. Anticancer Drugs,7:745~751.
    Heidemann R.1993. Attempt to prevent milk-borne Ancylostoma caninum infection of pups by treating the bitch with doramectin. Tierarztliche Hochschule,58:19.
    Elliott T, Sethi T.2002. Integrins and extracellular matrix:a novel mechanism of multidrug resistance. Expert Rev Anticancer Ther,2:449~459.
    Gao P, Zhou GY, Zhang QH, et al.2006. Reversal MDR in breast carcinoma cells by transfection of ribozyme designed according the secondary structure of mdrl mRNA.Chin J Physiol,49:96~103.
    Hofsli E, Nissen-Meyer J.1989. Effect of erythromycin and tumour necrosis factor on the drug resistance of multidrug resistant cells:reversal of drug resistance by erythromycin. Int J Cancer,43:520.
    Huang M, Jin J, Sun H, et al.2008. Reversal of P-glycoprotein-mediated multidrug resistance of cancer cells by five schizandrins isolated from the Chinese herb Fructus Schizandrae. Cancer Chemother Pharmacol,62:1015~1026.
    Jang M, Cai L, Udeani GO, et al.1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science,275:218~220.
    Ji BS, He L.2007. CJY, an isoflavone, reverses P-glycoprotein-mediated multidrug-resistance in doxorubicin-resistant human myelogenous leukaemia (K562/DOX) cells. J Pharm Pharmacol,59: 1011-1015.
    Jin J, Wang FP, Wei H, et al.2005. Reversal of multidrug resistance of cancer through inhibition of P-glycoprotein by 5-bromotetrandrine. Cancer Chemother Phannacol,55:179~188.
    Kim JH, Yun J, Sohng JK, et al.2007. Di(2-ethylhexyl)phthalate leached from medical PVC devices serves as a substrate and inhibitor for the P-glycoprotein. Environ Toxicol Phannacol,23: 272~278.
    Kim SW, Kwon HY, Chi DW.2003. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochem Pharmacol,65:75~82.
    Kitagawa S.2006. Inhibitory effects of polyphenols on p-glycoprotein-mediated transport. Biol Pharm Bull,29:1~6.
    Kitagawa S, Nabekura T, Kamiyama S.2004. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells. J Pharm Pharmacol,56:1001~1005.
    Kitagawa S, Nabekura T, Nakamura Y, et al.2007. Inhibition of P-glycoprotein function by tannic acid and pentagalloylglucose. J Pharm Pharmacol,59:965~969.
    Klamt F, Passos DT, Castro MA, et al.2008. Inhibition of MDR1 expression by retinol treatment increases sensitivity to etoposide (VP16) in human neoplasic cell line. Toxicology in Vitro,22:873~878.
    Korystov YN, Ermakova NV, Kublik LN, et al.2004. Avermectins inhibit multidrug resistance of tumor cells. Eur J Pharmacol,493:57~64.
    Kowalski P, Stein U, Scheffer GL, et al.2002. Modulation of the typical multidrug resistant phenotype by a hammerhead ribozyme directed against the ABC transporter BCRP/MXR/ABCG2. Cancer Gene Ther,9:579~586.
    Krishna R, Mayer LD.2000. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci,11:265~283.
    Krishnakumar S,Mallikarjuna K, Dusai N, et al.2004. Multidrug resistant proteins: P-glycoprotein and lung resistance proteinexp ression in retinoblastoma. Br J Ophthalmol,88: 1521~1526.
    Krishnamachary N, Center MS.1993. The MRP 1 gene associated with a non P-glycoprotein multidrug resistance encodes a 190 kDa membrane bound glycoprotein. Cancer Res,53:3658~3661.
    Kuhi JS, Krajewski S, Duran GE, et al.1997. Spontaneous overexpression of the long form of the bal-x protein in highly resistant P388 leukemia. Br J Cancer,75:268~274.
    Leslie EM, Deeley RG, Cole SP.2005. Multidrug resistance proteins:role of P-glycoprotein, MRP 11, MRP 12, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol.204:216~237.
    Lespine A, Dupuy J, Orlowski S, et al.2006. Interaction of ivermectin with multidrug resistance proteins (MRP 11,2 and 3). Chem Biol Interact,159:169~179.
    Lespine A, Martin S, Dupuy J, et al.2007. Interaction of macrocyclic lactones with P-glycoprotein:structure-affinity relationship. Eur J Pharm Sci,30:84~94.
    Li J, Xu LZ, He KL, et al.2001. Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line. Breast Cancer Res,3:253~263.
    Li X, Sun B, Zhu CJ, et al.2009. Reversal of p-glycoprotein-mediated multidrug resistance by macrocyclic bisbibenzyl derivatives in adriamycin-resistant human myelogenous leukemia (K562/A02) cells. Toxicol In Vitro,23:29~36.
    Lieda K, Yoshida A, Amaachi T.1999. Recent progress in P-glycoprotein research. Anticancer Drug Des,14:115.
    Liu F, Wang C, Zhang Q, et al.2002. Establishment of multidrug-resistance cell line C(6)/adr and reversal of drug-resistance. Chin Med J (Engl),115:238~241.
    Liu YH, Di YM, Zhou ZW, et al.2010. Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol,37:115~120.
    Maliepaard M, van Gastelen MA, de Jong LA, et al.1999. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res,59:4559~ 4563.
    Mazumder S, DuPree EL, Almasan A.2004. A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets,4:65~75.
    Molyneux DH, Bradley M, Hoerauf A, et al.2003. Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol,19:516~522.
    MOTOKI EGASHIRA, NORIHIICO KAWAMATA, KOICHI SUGIMO'PO, et al.1999. P-Glycoprotein Expression on Normal and Abnormally Expanded Natural Killer Cells and Inhibition of P-Glycoprotein Function by Cyclosporin A and Its Analogue, PSC833. Blood,93:599-606.
    MULLER C, HAILLY JD, GOUBIN F, et al.1994. Verapamil decreases P-glycoprotein expression in multidrug-resistant human leukemic cell lines. Int J Cancer,56:749~754.
    Omura T, Sato R.1964. The carbon monoxide-birding pigment of liver microsoes. J Bio Chem, 239:2370-2379.
    Perez M, Blazquez AG, Real R, et al.2009. In vitro and in vivo interaction of moxidectin with BCRP/ABCG2. Chemico-Biological Interactions,180:106~112.
    Perez R, Cabezas I.2002. Pharmacokinetics of doramectin and ivermectin after oral administration in horses. Veterinary-Journal,163:161~167.
    Perloff MD, von Moltke LL, Cotreau MM, et al.1999. Unchanged cytochrome P450 3A (CYP3A) expression and metabolism of midazolam, triazolam, and dexamethasone in mdr(-/-) mouse liver microsomes. Biochem Pharmacol,57:1227~1232.
    Ponce de Leon V, Barrera-Rodriguez R.2005. Changes in P-glycoprotein activity are mediated by the growth of a tumour cell line as multicellular spheroids. Cancer Cell Int,5:20.
    Pouliot JF, L'Heureux F, Liu Z, et al.1997. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol,53:17~25.
    Rautio J, Humphreys JE, Webster LO, et al.2006. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug can didates:a recommendation for probe substrates. Drug Metab Dispos,34:786~792.
    Richardson A, Kaye SB.2005. Drug resistance in ovarian cancer:the emerging importance of gene transcription and spatiotemporal regulation of resistance. Drug Resist Updates,8:311.
    Scheffer GL, Schroeijers AB, Izquierdo MA, et al.2000. Lung resistance related protein/major vault protein and vaults in multidrug resistant cancer. Curr Opin Oncol,12:550~556.
    Schaich M, Soucek S, Thiede C, et al.2005. MDR1 and MPR1 gene exp ression are independent predictous for treatment out in adult acute myeloid leukaemia. Br J Haematol,128: 324-332.
    Shabbits JA, Krishna R, Mayer LD.2001. Molecular and pharmacological strategies to overcome multidrug resistance. Expert Rev Anticancer Ther,1:585~594.
    Shi LX, Ma R, Lu R, et al.2008. Reversal effect of tyroservatide (YSV) tripeptide on multi-resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. Cancer Lett, 269:101-110.
    Shi YQ, Qu XJ, Liao YX, et al.2008. Reversal effect of a macrocyclic bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells. Eur J Pharmacol,584:66~71.
    Sikic BI, Fisher GA, Lum BL, et al.1997. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol,40 Suppl:S13~19.
    Thomas H, Coley HM.2003. Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control,10:159~165.
    Treichel RS, Bunuan M, Hahn N, et al.2004. Altered conjugate formation and altered apoptosis of multidrug resistance human leukemia cell line affects susceptibility to killing by activated natural killer(NK) cells. Int J Cancer,108:78.
    Tsukiyama T, Kinoshita A, Ichinose R., et al.2002. Synthesis of milbemycins b 9 and b10 from milbemycins A3 and A4 and their biological activities. Biosci Biotechnol Biochem,66: 1407-1411.
    Tsukiyama T, Kajino H, Tsukamoto Y, et al.2004. Synthesis of novel 26-substituted milbemycin A4 derivatives and their acaricidal activities. J Antibiot,57:446~455.
    Tsuruo T.2003. Molecular cancer therapeutics:recent progress and targets in drug resistance. Intern Med,42:237~243.
    Tsuruo T, Naito M, Tomida A, et al.2003. Molecular targeting therapy of cancer:drug resistance, apoptosis and survival signal. Cancer Sci,94:15~21.
    Vercruysse J, Dorny P, Claerebout E, et al.2000. Evaluation of the persistent efficacy of doramectin and ivermectin injectable against Ostertagia ostertagi and Cooperia oncophora in cattle. Vet Parasitol,89:63~69.
    Wang L, Kitaichi K, Hui CS, et al.2000. Reversal of anticancer drug resistance by macroide antibiotics is vitro and in vivo. Clin Exp Pharmocol Physiol,27:587.
    Wang XJ, Wang JD, Xiang WS, et al.2009. Three new milbemycin derivatives from Streptomyces bingchenggensi. Journal of Asian Natural Products Research,11:597~603.
    Williams JD.2001. Non-antimicrobial activities of macrolides. Int J Antimicrob Agents, 18(Suppl 1):S89.
    Wu CP, Calcagno AM, Ambudkar SV.2008. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells:evaluation of current strategies. Curr Mol Pharmacol,1:93~ 105.
    Wrighton SA, Stevens JC.1992. The human hepatic cytochromes P450 involved in drug metabolism.Crit Rev Toxicol,22:1~21.
    Xing H, Wang S, Weng D, et al.2007. Knock down of P glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Rep,17:117~122.
    Xiang WS, Wang JD, Wang XJ, et al.2007. Two New β-Class Milbemycins from Streptomyces bingchenggensis:Fermentation, Isolation, Strecture Elucidation and Biological Properties. J. Antibiot,60:351~356.
    Yas NE, Shamir M.2003. Doramectin toxicity in a collie. Veterinary Record,153:718y720.
    Yu ST, Chen TM, Tseng SY, et al.2007. Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem Biophys Res Commun,358:79~84.
    Zaman G J, Lankelma J, Van Tellingen O, et al.1995. Role of glutathione in the export of Compounds from cells by the multidrug resistance associated protein. Proc Natl Acad Sci USA, 92:7690~7694.
    Zheng LH, Bao YL, Wu Y, et al.2008. Cantharidin reverses multidrug resistance of human hepatoma HepG2/ADM cells via down-regulation of P-glycoprotein expression. Cancer Lett,272: 102~109.
    Zhou Y, Eppenberger-Castori S, Eppenberger U.2005. The NFkappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer,12(Suppl 1):S37.
    Zhou Y, Hopper-Borge E, Shen T, et al.2009. Cepharanthine is a potent reversal agent for MRP 17(ABCC10)-mediated multidrug resistance. Biochem Pharmacol,77:993~1001.
    Zimi N, Martelli AM, Subatelli P, et al.1992. The 180kD isoform of topoiso-merase Ⅱ is localized in the mucleolus and belongs to the structural elements of the nucleolar remnant. Exp Cell Res,200:460~466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700